1
|
Khan D, Price AJA, Huang B, Ach ML, von Lilienfeld OA. Adapting hybrid density functionals with machine learning. SCIENCE ADVANCES 2025; 11:eadt7769. [PMID: 39888985 PMCID: PMC11784814 DOI: 10.1126/sciadv.adt7769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/03/2025] [Indexed: 02/02/2025]
Abstract
Exact exchange contributions significantly affect electronic states, influencing covalent bond formation and breaking. Hybrid density functional approximations, which average exact exchange admixtures empirically, have achieved success but fall short of high-level quantum chemistry accuracy due to delocalization errors. We propose adaptive hybrid functionals, generating optimal exact exchange admixture ratios on the fly using data-efficient quantum machine learning models with negligible overhead. The adaptive Perdew-Burke-Ernzerhof hybrid density functional (aPBE0) improves energetics, electron densities, and HOMO-LUMO gaps in QM9, QM7b, and GMTKN55 benchmark datasets. A model uncertainty-based constraint reduces the method smoothly to PBE0 in extrapolative regimes, ensuring general applicability with limited training. By tuning exact exchange fractions for different spin states, aPBE0 effectively addresses the spin gap problem in open-shell systems such as carbenes. We also present a revised QM9 (revQM9) dataset with more accurate quantum properties, including stronger covalent binding, larger bandgaps, more localized electron densities, and larger dipole moments.
Collapse
Affiliation(s)
- Danish Khan
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Alastair J. A. Price
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Bing Huang
- Wuhan University, Department of Chemistry and Molecular Sciences, Wuhan 430072, China
| | - Maximilian L. Ach
- Department of Physics, University of Toronto, St. George Campus, Toronto, ON, Canada
- Department of Physics, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - O. Anatole von Lilienfeld
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, St. George Campus, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Department of Physics, University of Toronto, St. George Campus, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, St. George Campus, Toronto, ON, Canada
- Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data, 10587 Berlin, Germany
| |
Collapse
|
2
|
Thiemann FL, O'Neill N, Kapil V, Michaelides A, Schran C. Introduction to machine learning potentials for atomistic simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:073002. [PMID: 39577092 DOI: 10.1088/1361-648x/ad9657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Machine learning potentials have revolutionised the field of atomistic simulations in recent years and are becoming a mainstay in the toolbox of computational scientists. This paper aims to provide an overview and introduction into machine learning potentials and their practical application to scientific problems. We provide a systematic guide for developing machine learning potentials, reviewing chemical descriptors, regression models, data generation and validation approaches. We begin with an emphasis on the earlier generation of models, such as high-dimensional neural network potentials and Gaussian approximation potentials, to provide historical perspective and guide the reader towards the understanding of recent developments, which are discussed in detail thereafter. Furthermore, we refer to relevant expert reviews, open-source software, and practical examples-further lowering the barrier to exploring these methods. The paper ends with selected showcase examples, highlighting the capabilities of machine learning potentials and how they can be applied to push the boundaries in atomistic simulations.
Collapse
Affiliation(s)
- Fabian L Thiemann
- IBM Research Europe, Daresbury, Warrington WA4 4AD, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Niamh O'Neill
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Venkat Kapil
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
- Department of Physics and Astronomy, University College London, London, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, London, United Kingdom
| | - Angelos Michaelides
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| | - Christoph Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Lennard-Jones Centre, University of Cambridge, Trinity Ln, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Piris M. Exploring the potential of natural orbital functionals. Chem Sci 2024; 15:d4sc05810k. [PMID: 39421199 PMCID: PMC11480831 DOI: 10.1039/d4sc05810k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
In recent years, Natural Orbital Functional (NOF) theory has gained increasing significance in quantum chemistry, successfully addressing one of the field's most challenging problems: providing an accurate and balanced description of systems with strong electronic correlation. The quest for NOFs that strike the delicate balance between computational tractability and predictive accuracy represents a holy grail for researchers. Today, NOFs provide an alternative formalism to both density functional and wavefunction-based methods, with their appeal rooted in a wonderfully simple conceptual framework. This perspective outlines the basic concepts, strengths and weaknesses, and current status of NOFs, while offering suggestions for their future development.
Collapse
Affiliation(s)
- Mario Piris
- Donostia International Physics Center (DIPC), Euskal Herriko Unibertsitatea (UPV/EHU) 20018 Donostia Spain
- IKERBASQUE, Basque Foundation for Science 48013 Bilbao Spain
| |
Collapse
|
4
|
Voss J. Machine learning for accuracy in density functional approximations. J Comput Chem 2024; 45:1829-1845. [PMID: 38668453 DOI: 10.1002/jcc.27366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/16/2024] [Accepted: 03/25/2024] [Indexed: 07/21/2024]
Abstract
Machine learning techniques have found their way into computational chemistry as indispensable tools to accelerate atomistic simulations and materials design. In addition, machine learning approaches hold the potential to boost the predictive power of computationally efficient electronic structure methods, such as density functional theory, to chemical accuracy and to correct for fundamental errors in density functional approaches. Here, recent progress in applying machine learning to improve the accuracy of density functional and related approximations is reviewed. Promises and challenges in devising machine learning models transferable between different chemistries and materials classes are discussed with the help of examples applying promising models to systems far outside their training sets.
Collapse
Affiliation(s)
- Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| |
Collapse
|
5
|
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Computational chemistry is an indispensable tool for understanding molecules and predicting chemical properties. However, traditional computational methods face significant challenges due to the difficulty of solving the Schrödinger equations and the increasing computational cost with the size of the molecular system. In response, there has been a surge of interest in leveraging artificial intelligence (AI) and machine learning (ML) techniques to in silico experiments. Integrating AI and ML into computational chemistry increases the scalability and speed of the exploration of chemical space. However, challenges remain, particularly regarding the reproducibility and transferability of ML models. This review highlights the evolution of ML in learning from, complementing, or replacing traditional computational chemistry for energy and property predictions. Starting from models trained entirely on numerical data, a journey set forth toward the ideal model incorporating or learning the physical laws of quantum mechanics. This paper also reviews existing computational methods and ML models and their intertwining, outlines a roadmap for future research, and identifies areas for improvement and innovation. Ultimately, the goal is to develop AI architectures capable of predicting accurate and transferable solutions to the Schrödinger equation, thereby revolutionizing in silico experiments within chemistry and materials science.
Collapse
Affiliation(s)
- Abdulrahman Aldossary
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | | | - Sergio Pablo-García
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
| | - Shi Xuan Leong
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Ella Miray Rajaonson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Luca Thiede
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Gary Tom
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
| | - Andrew Wang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Davide Avagliano
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), Paris, F-75005, France
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada
- Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, ON, M5G 1M1, Canada
- Department of Materials Science & Engineering, University of Toronto, 184 College St., Toronto, ON, M5S 3E4, Canada
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College St., Toronto, ON, M5S 3E5, Canada
- Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 66118 University Ave., Toronto, M5G 1M1, Canada
- Acceleration Consortium, 80 St George St, Toronto, M5S 3H6, Canada
| |
Collapse
|
6
|
Briling K, Calvino Alonso Y, Fabrizio A, Corminboeuf C. SPA HM(a,b): Encoding the Density Information from Guess Hamiltonian in Quantum Machine Learning Representations. J Chem Theory Comput 2024; 20:1108-1117. [PMID: 38227222 PMCID: PMC10867806 DOI: 10.1021/acs.jctc.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/17/2024]
Abstract
Recently, we introduced a class of molecular representations for kernel-based regression methods─the spectrum of approximated Hamiltonian matrices (SPAHM)─that takes advantage of lightweight one-electron Hamiltonians traditionally used as a self-consistent field initial guess. The original SPAHM variant is built from occupied-orbital energies (i.e., eigenvalues) and naturally contains all of the information about nuclear charges, atomic positions, and symmetry requirements. Its advantages were demonstrated on data sets featuring a wide variation of charge and spin, for which traditional structure-based representations commonly fail. SPAHM(a,b), as introduced here, expand the eigenvalue SPAHM into local and transferable representations. They rely upon one-electron density matrices to build fingerprints from atomic and bond density overlap contributions inspired from preceding state-of-the-art representations. The performance and efficiency of SPAHM(a,b) is assessed on the predictions for data sets of prototypical organic molecules (QM7) of different charges and azoheteroarene dyes in an excited state. Overall, both SPAHM(a) and SPAHM(b) outperform state-of-the-art representations on difficult prediction tasks such as the atomic properties of charged open-shell species and of π-conjugated systems.
Collapse
Affiliation(s)
- Ksenia
R. Briling
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yannick Calvino Alonso
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Alberto Fabrizio
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| | - Clemence Corminboeuf
- Laboratory
for Computational Molecular Design, Institute of Chemical Sciences
and Engineering, École Polytechnique
Fédérale de Lausanne, 1015 Lausanne, Switzerland
- National
Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Chen Z, Yang W. Development of a machine learning finite-range nonlocal density functional. J Chem Phys 2024; 160:014105. [PMID: 38180254 DOI: 10.1063/5.0179149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024] Open
Abstract
Kohn-Sham density functional theory has been the most popular method in electronic structure calculations. To fulfill the increasing accuracy requirements, new approximate functionals are needed to address key issues in existing approximations. It is well known that nonlocal components are crucial. Current nonlocal functionals mostly require orbital dependence such as in Hartree-Fock exchange and many-body perturbation correlation energy, which, however, leads to higher computational costs. Deviating from this pathway, we describe functional nonlocality in a new approach. By partitioning the total density to atom-centered local densities, a many-body expansion is proposed. This many-body expansion can be truncated at one-body contributions, if a base functional is used and an energy correction is approximated. The contribution from each atom-centered local density is a single finite-range nonlocal functional that is universal for all atoms. We then use machine learning to develop this universal atom-centered functional. Parameters in this functional are determined by fitting to data that are produced by high-level theories. Extensive tests on several different test sets, which include reaction energies, reaction barrier heights, and non-covalent interaction energies, show that the new functional, with only the density as the basic variable, can produce results comparable to the best-performing double-hybrid functionals, (for example, for the thermochemistry test set selected from the GMTKN55 database, BLYP based machine learning functional gives a weighted total mean absolute deviations of 3.33 kcal/mol, while DSD-BLYP-D3(BJ) gives 3.28 kcal/mol) with a lower computational cost. This opens a new pathway to nonlocal functional development and applications.
Collapse
Affiliation(s)
- Zehua Chen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
8
|
Riemelmoser S, Verdi C, Kaltak M, Kresse G. Machine Learning Density Functionals from the Random-Phase Approximation. J Chem Theory Comput 2023; 19:7287-7299. [PMID: 37800677 PMCID: PMC10601474 DOI: 10.1021/acs.jctc.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 10/07/2023]
Abstract
Kohn-Sham density functional theory (DFT) is the standard method for first-principles calculations in computational chemistry and materials science. More accurate theories such as the random-phase approximation (RPA) are limited in application due to their large computational cost. Here, we use machine learning to map the RPA to a pure Kohn-Sham density functional. The machine learned RPA model (ML-RPA) is a nonlocal extension of the standard gradient approximation. The density descriptors used as ingredients for the enhancement factor are nonlocal counterparts of the local density and its gradient. Rather than fitting only RPA exchange-correlation energies, we also include derivative information in the form of RPA optimized effective potentials. We train a single ML-RPA functional for diamond, its surfaces, and liquid water. The accuracy of ML-RPA for the formation energies of 28 diamond surfaces reaches that of state-of-the-art van der Waals functionals. For liquid water, however, ML-RPA cannot yet improve upon the standard gradient approximation. Overall, our work demonstrates how machine learning can extend the applicability of the RPA to larger system sizes, time scales, and chemical spaces.
Collapse
Affiliation(s)
- Stefan Riemelmoser
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- Vienna
Doctoral School in Physics, University of
Vienna, Boltzmanngasse
5, A-1090 Vienna, Austria
| | - Carla Verdi
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- School
of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
- School
of Mathematics and Physics, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Merzuk Kaltak
- VASP
Software GmbH, Sensengasse
8/12, A-1090 Vienna, Austria
| | - Georg Kresse
- Faculty
of Physics and Center for Computational Materials Science, University of Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
- VASP
Software GmbH, Sensengasse
8/12, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Vuckovic S, Bahmann H. Nonlocal Functionals Inspired by the Strongly Interacting Limit of DFT: Exact Constraints and Implementation. J Chem Theory Comput 2023; 19:6172-6184. [PMID: 37611177 DOI: 10.1021/acs.jctc.3c00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Capturing strong correlation effects remains a key challenge for the development of improved exchange-correlation (XC) functionals in density functional theory. The recently proposed multiple radii functional (MRF) [J. Phys. Chem. Lett. 2017, 8, 2799; J. Chem. Theory Comput. 2019, 15, 3580] was designed to capture strong correlation effects seamlessly, as its mathematical structure draws from that of the exact XC functional in the limit of infinite correlations. The MRF functional provides a framework for building approximations along the density-fixed adiabatic connection, delivers accurate XC energy densities in the standard DFT gauge (same as that of the exact exchange energy density), and is free of one-electron self-interaction errors. To facilitate the development of XC functionals based on the MRF, we examine the behavior of the MRF functional when applied to uniform and scaled densities and consider how it can be made exact for the uniform electron gas. These theoretical insights are then used to build improved forms for the fluctuation function, an object that defines XC energy densities within the MRF framework. We also show how the MRF fluctuation function for physical correlation can be easily readjusted to accurately capture the XC functional in the limit of infinite correlations, demonstrating the versatility of MRF for building approximations for different correlation regimes. We describe the implementation of MRF using densities expanded on Gaussian basis sets, which improves the efficiency of previous grid-based MRF implementations.
Collapse
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Hilke Bahmann
- Physical and Theoretical Chemistry, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
10
|
Ng WP, Liang Q, Yang J. Low-Data Deep Quantum Chemical Learning for Accurate MP2 and Coupled-Cluster Correlations. J Chem Theory Comput 2023; 19:5439-5449. [PMID: 37506400 DOI: 10.1021/acs.jctc.3c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Accurate ab initio prediction of electronic energies is very expensive for macromolecules by explicitly solving post-Hartree-Fock equations. We here exploit the physically justified local correlation feature in a compact basis of small molecules and construct an expressive low-data deep neural network (dNN) model to obtain machine-learned electron correlation energies on par with MP2 and CCSD levels of theory for more complex molecules and different datasets that are not represented in the training set. We show that our dNN-powered model is data efficient and makes highly transferable predictions across alkanes of various lengths, organic molecules with non-covalent and biomolecular interactions, as well as water clusters of different sizes and morphologies. In particular, by training 800 (H2O)8 clusters with the local correlation descriptors, accurate MP2/cc-pVTZ correlation energies up to (H2O)128 can be predicted with a small random error within chemical accuracy from exact values, while a majority of prediction deviations are attributed to an intrinsically systematic error. Our results reveal that an extremely compact local correlation feature set, which is poor for any direct post-Hartree-Fock calculations, has however a prominent advantage in reserving important electron correlation patterns for making accurate transferable predictions across distinct molecular compositions, bond types, and geometries.
Collapse
Affiliation(s)
- Wai-Pan Ng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| | - Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Hong Kong Quantum AI Lab Limited, Hong Kong 999077, P. R. China
| |
Collapse
|
11
|
Low K, Coote ML, Izgorodina EI. Accurate Prediction of Three-Body Intermolecular Interactions via Electron Deformation Density-Based Machine Learning. J Chem Theory Comput 2023; 19:1466-1475. [PMID: 36787280 DOI: 10.1021/acs.jctc.2c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This work extends the electron deformation density-based descriptor, originally developed in the electron deformation density-based interaction energy machine learning (EDDIE-ML) algorithm to predict dimer interaction energies, to the prediction of three-body interactions in trimers. Using a sequential learning process to select the training data, the resulting Gaussian process regression (GPR) model predicts the three-body interaction energy within 0.2 kcal mol-1 of the SRS-MP2/cc-pVTZ reference values for the 3B69 and S22-3 trimer data sets. A hybrid kernel function is introduced, which combines contributions from the average and individual atomic environments, allowing the total trimer interaction energy to be predicted in addition to the three-body contribution using the same descriptor. To extend the range and diversity of trimer interaction energies available in the literature, a new data set based on a protein-ligand crystal structure is introduced, consisting of 509 structures of a central ligand with two protein fragments. Benchmark calculations are provided for the new data set, which contains significantly larger molecular interactions than current databases in the literature in addition to charged fragments. Compared to density funtional theory (DFT)- and wavefunction-based methods for calculating the three-body interaction energy, our model makes predictions in a significantly shorter time frame by reducing the number of required SCF calculations from 7 to 4 performed at the PBE0 level of theory, showcasing the utility and efficiency of our Δ-ML method particularly when applied to larger systems.
Collapse
Affiliation(s)
- Kaycee Low
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
12
|
Duan C, Nandy A, Meyer R, Arunachalam N, Kulik HJ. A transferable recommender approach for selecting the best density functional approximations in chemical discovery. NATURE COMPUTATIONAL SCIENCE 2023; 3:38-47. [PMID: 38177951 DOI: 10.1038/s43588-022-00384-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2024]
Abstract
Approximate density functional theory has become indispensable owing to its balanced cost-accuracy trade-off, including in large-scale screening. To date, however, no density functional approximation (DFA) with universal accuracy has been identified, leading to uncertainty in the quality of data generated from density functional theory. With electron density fitting and Δ-learning, we build a DFA recommender that selects the DFA with the lowest expected error with respect to the gold standard (but cost-prohibitive) coupled cluster theory in a system-specific manner. We demonstrate this recommender approach on the evaluation of vertical spin splitting energies of transition metal complexes. Our recommender predicts top-performing DFAs and yields excellent accuracy (about 2 kcal mol-1) for chemical discovery, outperforming both individual Δ-learning models and the best conventional single-functional approach from a set of 48 DFAs. By demonstrating transferability to diverse synthesized compounds, our recommender potentially addresses the accuracy versus scope dilemma broadly encountered in computational chemistry.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ralf Meyer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Naveen Arunachalam
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Gibney D, Boyn JN, Mazziotti DA. Comparison of Density-Matrix Corrections to Density Functional Theory. J Chem Theory Comput 2022; 18:6600-6607. [DOI: 10.1021/acs.jctc.2c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Gibney
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 United States
| | - Jan-Niklas Boyn
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 United States
| | - David A. Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637 United States
| |
Collapse
|
14
|
Staacke CG, Wengert S, Kunkel C, Csányi G, Reuter K, Margraf JT. Kernel charge equilibration: efficient and accurate prediction of molecular dipole moments with a machine-learning enhanced electron density model. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac568d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
State-of-the-art machine learning (ML) interatomic potentials use local representations of atomic environments to ensure linear scaling and size-extensivity. This implies a neglect of long-range interactions, most prominently related to electrostatics. To overcome this limitation, we herein present a ML framework for predicting charge distributions and their interactions termed kernel charge equilibration (kQEq). This model is based on classical charge equilibration (QEq) models expanded with an environment-dependent electronegativity. In contrast to previously reported neural network models with a similar concept, kQEq takes advantage of the linearity of both QEq and Kernel Ridge Regression to obtain a closed-form linear algebra expression for training the models. Furthermore, we avoid the ambiguity of charge partitioning schemes by using dipole moments as reference data. As a first application, we show that kQEq can be used to generate accurate and highly data-efficient models for molecular dipole moments.
Collapse
|
15
|
Bystrom K, Kozinsky B. CIDER: An Expressive, Nonlocal Feature Set for Machine Learning Density Functionals with Exact Constraints. J Chem Theory Comput 2022; 18:2180-2192. [PMID: 35235322 DOI: 10.1021/acs.jctc.1c00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Machine learning (ML) has recently gained attention as a means to develop more accurate exchange-correlation (XC) functionals for density functional theory, but functionals developed thus far need to be improved on several metrics, including accuracy, numerical stability, and transferability across chemical space. In this work, we introduce a set of nonlocal features of the density called the CIDER formalism, which we use to train a Gaussian process model for the exchange energy that obeys the critical uniform scaling rule for exchange. The resulting CIDER exchange functional is significantly more accurate than any semilocal functional tested here, and it has good transferability across main-group molecules. This work therefore serves as an initial step toward more accurate exchange functionals, and it also introduces useful techniques for developing robust, physics-informed XC models via ML.
Collapse
Affiliation(s)
- Kyle Bystrom
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, , Cambridge, Massachusetts 02138, United States
| | - Boris Kozinsky
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Gedeon J, Schmidt J, Hodgson MJP, Wetherell J, Benavides-Riveros CL, Marques MAL. Machine learning the derivative discontinuity of density-functional theory. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac3149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Machine learning is a powerful tool to design accurate, highly non-local, exchange-correlation functionals for density functional theory. So far, most of those machine learned functionals are trained for systems with an integer number of particles. As such, they are unable to reproduce some crucial and fundamental aspects, such as the explicit dependency of the functionals on the particle number or the infamous derivative discontinuity at integer particle numbers. Here we propose a solution to these problems by training a neural network as the universal functional of density-functional theory that (a) depends explicitly on the number of particles with a piece-wise linearity between the integer numbers and (b) reproduces the derivative discontinuity of the exchange-correlation energy. This is achieved by using an ensemble formalism, a training set containing fractional densities, and an explicitly discontinuous formulation.
Collapse
|
17
|
Gupta AK, Raghavachari K. Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions. J Chem Theory Comput 2022; 18:2132-2143. [PMID: 35226496 DOI: 10.1021/acs.jctc.1c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep learning methods provide a novel way to establish a correlation between two quantities. In this context, computer vision techniques such as three-dimensional (3D)-convolutional neural networks become a natural choice to associate a molecular property with its structure due to the inherent 3D nature of a molecule. However, traditional 3D input data structures are intrinsically sparse in nature, which tend to induce instabilities during the learning process, which in turn may lead to underfitted results. To address this deficiency, in this project, we propose to use quantum-chemically derived molecular topological features, namely, localized orbital locator and electron localization function, as molecular descriptors, which provide a relatively denser input representation in a 3D space. Such topological features provide a detailed picture of the atomic and electronic configuration and interatomic interactions in the molecule and hence are ideal for predicting properties that are highly dependent on the physical or electronic structure of the molecule. Herein, we demonstrate the efficacy of our proposed model by applying it to the task of predicting atomization energies for the QM9-G4MP2 data set, which contains ∼134k molecules. Furthermore, we incorporated the Δ-machine learning approach into our model, which enabled us to reach beyond benchmark accuracy levels (∼1.0 kJ mol-1). As a result, we consistently obtain impressive mean absolute errors of the order 0.1 kcal mol-1 (∼0.42 kJ mol-1) versus the G4(MP2) theory using relatively modest models, which could potentially be improved further in a systematic manner using additional compute resources.
Collapse
Affiliation(s)
- Ankur Kumar Gupta
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Wang J, Zhang D, Xu RX, Yam C, Chen G, Zheng X. Improving Density Functional Prediction of Molecular Thermochemical Properties with a Machine-Learning-Corrected Generalized Gradient Approximation. J Phys Chem A 2022; 126:970-978. [PMID: 35113552 DOI: 10.1021/acs.jpca.1c10491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The past decade has seen an increasing interest in designing sophisticated density functional approximations (DFAs) by integrating the power of machine learning (ML) techniques. However, application of the ML-based DFAs is often confined to simple model systems. In this work, we construct an ML correction to the widely used Perdew-Burke-Ernzerhof (PBE) functional by establishing a semilocal mapping from the electron density and reduced gradient to the exchange-correlation energy density. The resulting ML-corrected PBE is immediately applicable to any real molecule and yields significantly improved heats of formation while preserving the accuracy for other thermochemical and kinetic properties. This work highlights the prospect of combining the power of data-driven ML methods with physics-inspired derivations for reaching the heaven of chemical accuracy.
Collapse
Affiliation(s)
- JingChun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - DaDi Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - ChiYung Yam
- Beijing Computational Science Research Center, Beijing 100193, China
| | - GuanHua Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics & CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
19
|
Low K, Coote ML, Izgorodina EI. Inclusion of More Physics Leads to Less Data: Learning the Interaction Energy as a Function of Electron Deformation Density with Limited Training Data. J Chem Theory Comput 2022; 18:1607-1618. [PMID: 35175045 DOI: 10.1021/acs.jctc.1c01264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Machine learning (ML) approaches to predicting quantum mechanical (QM) properties have made great strides toward achieving the computational chemist's holy grail of structure-based property prediction. In contrast to direct ML methods, which encode a molecule with only structural information, in this work, we show that QM descriptors improve ML predictions of dimer interaction energy, both in terms of accuracy and data efficiency, by incorporating electronic information into the descriptor. We present the electron deformation density interaction energy machine learning (EDDIE-ML) model, which predicts the interaction energy as a function of Hartree-Fock electron deformation density. We compare its performance with leading direct ML schemes and modern DFT methods for the prediction of interaction energies for dimers of varying charge type, size, and intermolecular separation. Under a low-data regime, EDDIE-ML outperforms other direct ML schemes and is the only model readily transferrable to larger, more complex systems including base pair trimers and porous cages. The underlying physical connection between the density and interaction energy enables EDDIE-ML to reach an accuracy comparable to modern DFT functionals in fewer training data points compared to other ML methods.
Collapse
Affiliation(s)
- Kaycee Low
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Gibney D, Boyn JN, Mazziotti DA. Density Functional Theory Transformed into a One-Electron Reduced-Density-Matrix Functional Theory for the Capture of Static Correlation. J Phys Chem Lett 2022; 13:1382-1388. [PMID: 35113577 DOI: 10.1021/acs.jpclett.2c00083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Density Functional Theory (DFT), the most widely adopted method in modern computational chemistry, fails to describe accurately the electronic structure of strongly correlated systems. Here we show that DFT can be formally and practically transformed into a one-electron reduced-density-matrix (1-RDM) functional theory, which can address the limitations of DFT while retaining favorable computational scaling compared to wave function based approaches. In addition to relaxing the idempotency restriction on the 1-RDM in the kinetic energy term, we add a quadratic 1-RDM-based term to DFT's density-based exchange-correlation functional. Our approach, which we implement by quadratic semidefinite programming at DFT's computational scaling of O(r3), yields substantial improvements over traditional DFT in the description of static correlation in chemical structures and processes such as singlet biradicals and bond dissociations.
Collapse
Affiliation(s)
- Daniel Gibney
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Jan-Niklas Boyn
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
21
|
Zhou C, Hermes MR, Wu D, Bao JJ, Pandharkar R, King DS, Zhang D, Scott TR, Lykhin AO, Gagliardi L, Truhlar DG. Electronic structure of strongly correlated systems: recent developments in multiconfiguration pair-density functional theory and multiconfiguration nonclassical-energy functional theory. Chem Sci 2022; 13:7685-7706. [PMID: 35865899 PMCID: PMC9261488 DOI: 10.1039/d2sc01022d] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical. Multiconfiguration pair-density functional theory (MC-PDFT) provides a way to blend multiconfiguration wave function theory and density functional theory to quantitatively treat both near-degeneracy correlation and dynamic correlation in strongly correlated systems; it is more affordable than multireference perturbation theory, multireference configuration interaction, or multireference coupled cluster theory and more accurate for many properties than Kohn–Sham density functional theory. This perspective article provides a brief introduction to strongly correlated systems and previously reviewed progress on MC-PDFT followed by a discussion of several recent developments and applications of MC-PDFT and related methods, including localized-active-space MC-PDFT, generalized active-space MC-PDFT, density-matrix-renormalization-group MC-PDFT, hybrid MC-PDFT, multistate MC-PDFT, spin–orbit coupling, analytic gradients, and dipole moments. We also review the more recently introduced multiconfiguration nonclassical-energy functional theory (MC-NEFT), which is like MC-PDFT but allows for other ingredients in the nonclassical-energy functional. We discuss two new kinds of MC-NEFT methods, namely multiconfiguration density coherence functional theory and machine-learned functionals. This feature article overviews recent work on active spaces, matrix product reference states, treatment of quasidegeneracy, hybrid theory, density-coherence functionals, machine-learned functionals, spin–orbit coupling, gradients, and dipole moments.![]()
Collapse
Affiliation(s)
- Chen Zhou
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Matthew R. Hermes
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dihua Wu
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Jie J. Bao
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Riddhish Pandharkar
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Daniel S. King
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dayou Zhang
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| | - Thais R. Scott
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Aleksandr O. Lykhin
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Donald G. Truhlar
- Department of Chemistry, Chemical Theory Center, Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA
| |
Collapse
|
22
|
King DS, Truhlar DG, Gagliardi L. Machine-Learned Energy Functionals for Multiconfigurational Wave Functions. J Phys Chem Lett 2021; 12:7761-7767. [PMID: 34374555 DOI: 10.1021/acs.jpclett.1c02042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce multiconfiguration data-driven functional methods (MC-DDFMs), a group of methods which aim to correct the total or classical energy of a qualitatively accurate multiconfigurational wave function using a machine-learned functional of some featurization of the wave function such as its density, on-top density, or both. On a data set of carbene singlet-triplet energy splittings, we show that MC-DDFMs are able to achieve near-benchmark performance on systems not used for training with a robust degree of active-space independence. Beyond demonstrating that the density and on-top density hold the information necessary to correct the singlet-triplet energy splittings of multiconfigurational wave functions, this approach shows great promise for the development of functionals for MC-PDFT because corrections to the classical energy appear to be more transferable to types of molecules not included in the training data than corrections to total energies such as those yielded by CASSCF or NEVPT2.
Collapse
Affiliation(s)
- Daniel S King
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States
| | - Donald G Truhlar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
23
|
Schäfer T, Daelman N, López N. Cerium Oxides without U: The Role of Many-Electron Correlation. J Phys Chem Lett 2021; 12:6277-6283. [PMID: 34212726 PMCID: PMC8397342 DOI: 10.1021/acs.jpclett.1c01589] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/29/2021] [Indexed: 05/14/2023]
Abstract
Electron transfer with changing occupation in the 4f subshell poses a considerable challenge for quantitative predictions in quantum chemistry. Using the example of cerium oxide, we identify the main deficiencies of common parameter-dependent one-electron approaches, such as density functional theory (DFT) with a Hubbard correction, or hybrid functionals. As a response, we present the first benchmark of ab initio many-electron theory for electron transfer energies and lattice parameters under periodic boundary conditions. We show that the direct random phase approximation clearly outperforms all DFT variations. From this foundation, we, then, systematically improve even further. Periodic second-order Møller-Plesset perturbation theory meanwhile manages to recover standard hybrid functional values. Using these approaches to eliminate parameter bias allows for highly accurate benchmarks of strongly correlated materials, the reliable assessment of various density functionals, and functional fitting via machine-learning.
Collapse
Affiliation(s)
- Tobias Schäfer
- Institute
for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, 1040 Vienna, Austria
| | - Nathan Daelman
- Institute
of Chemical Research of Catalonia, The Barcelona
Institute of Science and Technology, 43007 Tarragona, Spain
| | - Núria López
- Institute
of Chemical Research of Catalonia, The Barcelona
Institute of Science and Technology, 43007 Tarragona, Spain
| |
Collapse
|
24
|
Han R, Luber S. Fast Estimation of Møller-Plesset Correlation Energies Based on Atomic Contributions. J Phys Chem Lett 2021; 12:5324-5331. [PMID: 34061529 DOI: 10.1021/acs.jpclett.1c00900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dynamic correlation plays an important role in the accurate calculation of chemical compounds such as the description of equilibrium structures in chemical systems. A model for the fast estimation of dynamic correlation energy is introduced in this work. This model is based on the idea of decomposition of the contribution of dynamic correlation energy calculated by nth order Møller-Plesset perturbation (MPn) theory with respect to atomic regions. Multiple levels of theory, including MP2, MP2.5, and MP4, are used as the reference, and the corresponding correlation energy densities are calculated. The proposed model is concise, fast, and promising for practical use, such as the prediction of reaction energies. It can also work as a baseline model or pretrained model for follow-up studies of machine learning.
Collapse
Affiliation(s)
- R Han
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - S Luber
- Department of Chemistry A, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
25
|
Koutsoukos S, Philippi F, Malaret F, Welton T. A review on machine learning algorithms for the ionic liquid chemical space. Chem Sci 2021; 12:6820-6843. [PMID: 34123314 PMCID: PMC8153233 DOI: 10.1039/d1sc01000j] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
There are thousands of papers published every year investigating the properties and possible applications of ionic liquids. Industrial use of these exceptional fluids requires adequate understanding of their physical properties, in order to create the ionic liquid that will optimally suit the application. Computational property prediction arose from the urgent need to minimise the time and cost that would be required to experimentally test different combinations of ions. This review discusses the use of machine learning algorithms as property prediction tools for ionic liquids (either as standalone methods or in conjunction with molecular dynamics simulations), presents common problems of training datasets and proposes ways that could lead to more accurate and efficient models.
Collapse
Affiliation(s)
- Spyridon Koutsoukos
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Frederik Philippi
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| | - Francisco Malaret
- Department of Chemical Engineering, Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Tom Welton
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London White City Campus London W12 0BZ UK
| |
Collapse
|