1
|
Wan NF, Fu L, Dainese M, Kiær LP, Hu YQ, Xin F, Goulson D, Woodcock BA, Vanbergen AJ, Spurgeon DJ, Shen S, Scherber C. Pesticides have negative effects on non-target organisms. Nat Commun 2025; 16:1360. [PMID: 39948065 PMCID: PMC11825942 DOI: 10.1038/s41467-025-56732-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Pesticides affect a diverse range of non-target species and may be linked to global biodiversity loss. The magnitude of this hazard remains only partially understood. We present a synthesis of pesticide (insecticide, herbicide and fungicide) impacts on multiple non-target organisms across trophic levels based on 20,212 effect sizes from 1,705 studies. For non-target plants, animals (invertebrate and vertebrates) and microorganisms (bacteria and fungi), we show negative responses of the growth, reproduction, behaviour and other physiological biomarkers within terrestrial and aquatic systems. Pesticides formulated for specific taxa negatively affected non-target groups, e.g. insecticidal neonicotinoids affecting amphibians. Negative effects were more pronounced in temperate than tropical regions but were consistent between aquatic and terrestrial environments, even after correcting for field-realistic terrestrial and environmentally relevant exposure scenarios. Our results question the sustainability of current pesticide use and support the need for enhanced risk assessments to reduce risks to biodiversity and ecosystems.
Collapse
Affiliation(s)
- Nian-Feng Wan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Liwan Fu
- Center for Non-communicable Disease Management, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Matteo Dainese
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Lars Pødenphant Kiær
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fengfei Xin
- Wetland Research Department, Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai, China
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Université de Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Siyuan Shen
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Christoph Scherber
- Centre for Biodiversity Monitoring and Conservation Science, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
- Institute of Organismic Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Oberlin A, Kim TG, Erlinger AP, Joshi A, Diawara H, Healy SA, Dicko A, Duffy PE, Hacker M, Wylie BJ. Effect of Indoor Residual Spraying on Malaria in Pregnancy and Pregnancy Outcomes: A Systematic Review. Am J Trop Med Hyg 2025; 112:253-265. [PMID: 39471507 PMCID: PMC11803663 DOI: 10.4269/ajtmh.24-0435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 11/01/2024] Open
Abstract
Malaria in pregnancy increases maternal and perinatal morbidity and mortality. Indoor residual spraying (IRS) is a core vector control strategy used to reduce transmission in endemic areas; however, its efficacy in reducing the sequelae of malaria in pregnancy is not well described. PubMed, Embase, Cochrane, and Web of Science were searched for all studies assessing IRS exposure during pregnancy. Abstracts and full texts were reviewed independently by two researchers, with discrepancies adjudicated by a third. Of 3,319 studies that met the search criteria, 17 met the inclusion criteria. Thirteen studies reported on the effect of IRS on malaria endpoints during pregnancy, five on birth outcomes, and one on a fetal anomaly. Twelve of the 13 studies exploring maternal malaria and 3 of 3 studies reporting on placental malaria demonstrated a reduction among those exposed to IRS during pregnancy. Results were more mixed for obstetric outcomes. Two of the best-quality studies showed reductions in preterm birth, low birthweight, and fetal/neonatal mortality; a third high-quality study did not demonstrate a reduction in perinatal mortality but did not evaluate preterm birth. One study found a significantly increased risk of preterm birth in those exposed to IRS, although the study was of lower quality. A final study demonstrated a small, although statistically significant, association between IRS and male urogenital birth defects. In malaria-endemic areas, the published literature suggests that IRS during pregnancy reduces the incidence of malaria parasitemia. However, without high-quality prospective studies directly examining IRS in pregnancy, the impact on birth outcomes is less clear.
Collapse
Affiliation(s)
- Austin Oberlin
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Tesia G. Kim
- Department of Obstetrics and Gynecology, Mass General Brigham Medical Center, Boston, Massachusetts
| | | | - Avina Joshi
- Department of Obstetrics and Gynecology, Beth Israel Deaconness Medical Center, Boston, Massachusetts
| | - Halimatou Diawara
- Malaria Research and Training Centre, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alassane Dicko
- Malaria Research and Training Centre, University of Science Techniques and Technologies of Bamako, Bamako, Mali
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michele Hacker
- Department of Obstetrics and Gynecology, Beth Israel Deaconness Medical Center, Boston, Massachusetts
| | - Blair J. Wylie
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
3
|
Mwakalasya WN, Mamuya SH, Moen BE, Ngowi AV. Self-Reported Pesticide Exposure During Pregnancy and Pesticide-Handling Knowledge Among Small-Scale Horticulture Women Workers in Tanzania, a Descriptive Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 22:40. [PMID: 39857493 PMCID: PMC11765395 DOI: 10.3390/ijerph22010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025]
Abstract
Women constitute most of the global horticulture workforce, where pesticide use is prevalent. Protecting their health, particularly during pregnancy, is essential. However, knowledge about practices among pregnant employees that cause exposure to pesticides is limited. This study aims to identify such practices and assess the impact of pesticide-handling knowledge on exposure. A cross-sectional survey was conducted among 432 small-scale horticulture women workers in Tanzania from October 2022 to April 2023. The women were interviewed using a self-report questionnaire, with descriptive statistics, Pearson's chi-square tests, and T-tests used for data analysis. In total, 86% of participants worked in horticulture during pregnancy, with 47.5% continuing into the third trimester. Many engaged in weeding within 24 h of spraying (58.4%) and washing pesticide-contaminated clothes (51.7%). Most of the women (93.1%) had limited knowledge of pesticide handling, though some understood mixing (62.5%) and spraying (64.1%) instructions on labels. This study suggests that women working in horticulture are exposed to pesticides during pregnancy partly due to limited knowledge of safe pesticide handling. These exposures are largely shaped by the working conditions, which may place both pregnant women and their offspring at risk of hazardous pesticide exposure. Hence, there is a need for guidelines and policies towards protecting women working in agriculture.
Collapse
Affiliation(s)
- William Nelson Mwakalasya
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (W.N.M.); (S.H.M.); (A.V.N.)
| | - Simon Henry Mamuya
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (W.N.M.); (S.H.M.); (A.V.N.)
| | - Bente Elisabeth Moen
- Department of Global Public Health and Primary Care, Centre for International Health, University of Bergen, 5020 Bergen, Norway
| | - Aiwerasia Vera Ngowi
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam P.O. Box 65001, Tanzania; (W.N.M.); (S.H.M.); (A.V.N.)
| |
Collapse
|
4
|
Protano C, Valeriani F, Vitale K, Del Prete J, Liguori F, Liguori G, Gallè F. Exposure to Pollutants and Vaccines' Effectiveness: A Systematic Review. Vaccines (Basel) 2024; 12:1252. [PMID: 39591155 PMCID: PMC11599004 DOI: 10.3390/vaccines12111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Many human activities release harmful substances, contaminating the air, water, and soil. Since exposure to environmental pollutants is currently unavoidable, it is important to verify how these compounds may influence individual immune responses to vaccines. Methods: This review was conducted in accordance with the PRISMA statement. The protocol was registered on the PROSPERO platform with the following ID: CRD42024582592. We evaluated all observational, semi-experimental, and experimental studies written in both Italian and English that reported possible effects of exposure to environmental pollutants on the production of vaccine-induced antibodies. Results: Forty-two studies were included. The effects of pollutants were examined mainly in terms of antibody production in relation to mumps, measles and rubella, diphtheria and tetanus, hepatitis A and B, Haemophilus influenzae type B, influenza, tuberculosis, pertussis, Japanese encephalitis, poliomyelitis, and COVID-19 vaccines. Perfluorinated compounds were the most studied pollutants. Conclusions: Correlations between exposure to pollutants and reductions in antibody production were found in quite all the selected studies, suggesting that pollution control policies could contribute to increase the efficacy of vaccination campaigns. However, the heterogeneity of the examined studies did not allow us to perform a meta-analysis, and the literature on each type of vaccine or pollutant is still too limited to generate robust evidence. In order to confirm the findings of the present systematic review, and in the perspective of establishing possible exposure limit values for each type of pollutant, further research in this field is required.
Collapse
Affiliation(s)
- Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (C.P.); (K.V.); (J.D.P.)
| | - Federica Valeriani
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy;
| | - Katia Vitale
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (C.P.); (K.V.); (J.D.P.)
| | - Jole Del Prete
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (C.P.); (K.V.); (J.D.P.)
| | - Fabrizio Liguori
- Department of Economics and Legal Studies, University of Naples “Parthenope”, Via Generale Parisi 13, 80132 Naples, Italy;
| | - Giorgio Liguori
- Department of Medical, Movement and Wellbeing Sciences, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Francesca Gallè
- Department of Medical, Movement and Wellbeing Sciences, University of Naples “Parthenope”, 80133 Naples, Italy;
| |
Collapse
|
5
|
Longoni V, Kandel Gambarte PC, Rueda L, Fuchs JS, Rovedatti MG, Wolansky MJ. Long-lasting developmental effects in rat offspring after maternal exposure to acetamiprid in the drinking water during gestation. Toxicol Sci 2024; 198:61-75. [PMID: 38011675 DOI: 10.1093/toxsci/kfad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Neonicotinoids (NNTs) are a class of insecticides proposed to be safe for pest control in urban, suburban, and agricultural applications. However, little is known about their developmental effects after repeated low-dose exposures during gestation. Here, we tested a dose considered subthreshold for maternal toxicity in rats (6 mg/kg/day) by assessing several morphological, biochemical, and neurobehavioral features in preterm fetuses and developing pups after maternal administration of the NTT acetamiprid (ACP) dissolved in the drinking water during gestational days (GD) 2-19. The exploratory evaluation included monitoring maternal body weight gain, fetal viability, body weight and sex ratio, cephalic length, neonatal body weight and sex ratio, metabolic enzymes in the placenta, maternal blood and fetal liver, and anogenital distance and surface righting response during infancy. We also used the circling training test to study the integrity of the associative-spatial-motor response in adolescence. Results showed no consistent findings indicating maternal, reproductive or developmental toxicity. However, we found ACP effects on maternal body weight gain, placental butyrylcholinesterase activity, and neurobehavioral responses, suggestive of a mild toxic action. Thus, our study showed a trend for developmental susceptibility at a dose so far considered subtoxic. Although the ACP concentration in environmental samples of surface water and groundwater has been mostly reported to be much lower than that used in our study, our results suggest that the ACP point of departure used in current guidelines aimed to prevent developmental effects may need to be verified by complementary sensitive multiple-endpoint testing in the offspring.
Collapse
Affiliation(s)
- Victoria Longoni
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), Buenos Aires C1428EGA, Argentina
| | - Paula Cristina Kandel Gambarte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN-CONICET) and FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Lis Rueda
- FCEyN, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Julio Silvio Fuchs
- Instituto IQUIBICEN-CONICET and Departamento Química Biológica, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - María Gabriela Rovedatti
- Departamentos Química Biológica and Biodiversidad y Biología Experimental, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| | - Marcelo Javier Wolansky
- Departamento Química Biológica, IQUIBICEN-CONICET, FCEyN, UBA, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
6
|
Fučić A, Knežević J, Krasić J, Polančec D, Sinčić N, Sindičić Dessardo N, Starčević M, Guszak V, Ceppi M, Bruzzone M. Interleukin-2 gene methylation levels and interleukin-2 levels associated with environmental exposure as risk biomarkers for preterm birth. Croat Med J 2023; 64:320-328. [PMID: 37927185 PMCID: PMC10668044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
AIM To compare interleukin-2 levels (IL-2) and IL-2 gene site 1 methylation levels between preterm newborns (PN) and full-term newborns (FN) and investigate their association with the environmental exposure of their mothers during pregnancy. METHODS IL-2 and IL-2 gene site 1 methylation levels were assessed in 50 PN and 56 FN. Newborns' mothers filled in questionnaires about their living and occupational environments, habits, diets, and hobbies. RESULTS The mothers of PN were significantly more frequently agrarian/rural residents than the mothers of FN. PN had significantly higher IL-2 levels, and significantly lower methylation of IL-2 gene site 1 levels than FN. CONCLUSION IL-2 levels, hypomethylation of the IL-2 gene site 1, and the mother's rural residence (probably due to pesticide exposure) were predictive biomarkers for preterm birth. For the first time, we present the reference values for the methylation of IL-2 gene site 1 in PN and FN, which can be used in the clinical setting and biomonitoring.
Collapse
Affiliation(s)
- Aleksandra Fučić
- Aleksandra Fučić, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10000 Zagreb, Croatia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Akgöl J, Kanat Pektaş M. Investigation of the Relationship between Spontaneous Abortion, Serum Pesticides, and Polychlorinated Biphenyl Levels. TOXICS 2023; 11:884. [PMID: 37999536 PMCID: PMC10675613 DOI: 10.3390/toxics11110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Occupational and environmental chemical exposure have been associated with adverse reproductive consequences. This study investigates the relationship between spontaneous abortion and blood pesticide and polychlorinated biphenyl (PCB) levels. A survey was conducted, and blood samples were collected from 200 patients, consisting of 100 cases with spontaneous abortion and 100 cases with normal deliveries. A total of 150 different pesticides, including organophosphates, organochlorines, carbamates, and pyrethroids, were screened in the collected blood samples and analyzed quantitatively using Tandem mass spectrometry-specifically in combination with liquid chromatography and gas chromatography-tandem mass spectrometry methods. Eight types of PCBs were analyzed with the gas chromatography-tandem mass spectrometry method. The groups were compared based on these analyses. The mean age of the participants was 28.09 ± 4.94 years. In 59% of the spontaneous abortion group, 5.05 ± 1.97 chemicals were detected in different amounts. (p < 0.05). Analysis of the samples identified the presence of β-Hexachlorocyclohexane (β-HCH), delta-hexachlorocyclohexane (δ HCH), Hexachlorobenzene (HCB), Pentachlorobiphenyl-28 (PCB-28), Pentachlorobiphenyl-52 (PCB-52), o,p'-Dichlorodiphenyldichloroethylene (o,p'-DDE), p,p'-Dichlorodiphenyldichloroethylene (p,p'DDE), o,p'-Dichlorodiphenyldichloroethane (o,p'-DDD), p,p'-Dichlorodiphenyldichloroethane (p,p'-DDD), Pentachlorobiphenyl-118 (PCB-118), Pentachlorobiphenyl-101 (PCB-101), Pentachlorobiphenyl-153 (PCB-153), Pentachlorobiphenyl-138 (PCB-138), Pentachlorobiphenyl-202 (PCB-202), Pentachlorobiphenyl-180 (PCB-180) as well as Fibronil, Buprimate, Acetoclor, Acemiprid, Pentimanthalin, and Triflokystrobin. The spontaneous abortion group had significantly higher exposure to PCB-101, PCB-52, PCB-138, and δ-HCH (p < 0.05). Women included in the study had high pesticide and PCB exposure rates. Many of the blood samples contained multiple pesticides with endocrine-disrupting effects. Higher exposure to organochlorine compounds in the serum was identified in the group with spontaneous abortions.
Collapse
Affiliation(s)
- Jale Akgöl
- Department of Medical Pharmacology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey
| | - Mine Kanat Pektaş
- Department of Obstetrics and Gynecology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03030, Turkey;
| |
Collapse
|
8
|
Rent S, Bauserman M, Laktabai J, Tshefu AK, Taylor SM. Malaria in Pregnancy: Key Points for the Neonatologist. Neoreviews 2023; 24:e539-e552. [PMID: 37653081 DOI: 10.1542/neo.24-9-e539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In malaria-endemic regions, infection with the malaria parasite Plasmodium during pregnancy has been identified as a key modifiable factor in preterm birth, the delivery of low-birthweight infants, and stillbirth. Compared with their nonpregnant peers, pregnant persons are at higher risk for malaria infection. Malaria infection can occur at any time during pregnancy, with negative effects for the pregnant person and the fetus, depending on the trimester in which the infection is contracted. Pregnant patients who are younger, in their first or second pregnancy, and those coinfected with human immunodeficiency virus are at increased risk for malaria. Common infection prevention measures during pregnancy include the use of insecticide-treated bed nets and the use of intermittent preventive treatment with monthly doses of antimalarials, beginning in the second trimester in pregnant patients in endemic areas. In all trimesters, artemisinin-combination therapies are the first-line treatment for uncomplicated falciparum malaria, similar to treatment in nonpregnant adults. The World Health Organization recently revised its recommendations, now listing the specific medication artemether-lumefantrine as first-line treatment for uncomplicated malaria in the first trimester. While strong prevention and detection methods exist, use of these techniques remains below global targets. Ongoing work on approaches to treatment and prevention of malaria during pregnancy remains at the forefront of global maternal child health research.
Collapse
Affiliation(s)
- Sharla Rent
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | | | | | - Antoinette K Tshefu
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of the Congo
| | - Steve M Taylor
- Department of Medicine, Duke University School of Medicine, Durham, NC
| |
Collapse
|
9
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
10
|
Lee Y, Choi S, Kim KW. Dithianon exposure induces dopaminergic neurotoxicity in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114752. [PMID: 36924561 DOI: 10.1016/j.ecoenv.2023.114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/03/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Dithianon is a conventional broad-spectrum protectant fungicide widely used in agriculture, but its potential neurotoxic risk to animals remains largely unknown. In this study, neurotoxic effects of Dithianon and its underlying cellular and molecular mechanisms were investigated using the nematode, Caenorhabditis elegans, as a model system. Upon chronic exposure of C. elegans to Dithianon, dopaminergic neurons were found to be vulnerable, with significant degeneration in terms of structure and function in a concentration-dependent manner. In examining toxicity mechanisms, we observed significant Dithianon-induced increases in oxidative stress and mitochondrial fragmentation, both of which are often associated with cellular stress. The present study suggests that Dithianon exposure causes dopaminergic neurotoxicity in C. elegans, by inducing oxidative stress and mitochondrial dysfunction. These findings contribute to a better understanding of Dithianon's neurotoxic potential.
Collapse
Affiliation(s)
- Yuri Lee
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Sooji Choi
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea
| | - Kyung Won Kim
- Department of Life Science, Hallym University, Chuncheon 24252, South Korea; Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, South Korea.
| |
Collapse
|
11
|
Chen R, Yang H, Dai J, Zhang M, Lu G, Zhang M, Yu H, Zheng M, He Q. The biological functions of maternal-derived extracellular vesicles during pregnancy and lactation and its impact on offspring health. Clin Nutr 2023; 42:493-504. [PMID: 36857958 DOI: 10.1016/j.clnu.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/25/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
During pregnancy and lactation, mothers provide not only nutrients, but also many bioactive components for their offspring through placenta and breast milk, which are essential for offspring development. Extracellular vesicles (EVs) are nanovesicles containing a variety of biologically active molecules and participate in the intercellular communication. In the past decade, an increasing number of studies have reported that maternal-derived EVs play a crucial role in offspring growth, development, and immune system establishment. Hereby, we summarized the characteristics of EVs; biological functions of maternal-derived EVs during pregnancy, including implantation, decidualization, placentation, embryo development and birth of offspring; biological function of breast milk-derived EVs (BMEs) on infant oral and intestinal diseases, immune system, neurodevelopment, and metabolism. In summary, emerging studies have revealed that maternal-derived EVs play a pivotal role in offspring health. As such, maternal-derived EVs may be used as promising biomarkers in offspring disease diagnosis and treatment. However, existing research on maternal-derived EVs and offspring health is largely limited to animal and cellular studies. Evidence from human studies is needed.
Collapse
Affiliation(s)
- Rui Chen
- School of Public Health, Wuhan University, Wuhan, China
| | | | - Jie Dai
- School of Public Health, Wuhan University, Wuhan, China
| | - Minzhe Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Gaolei Lu
- School of Public Health, Wuhan University, Wuhan, China
| | - Minjie Zhang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hongjie Yu
- School of Public Health, Wuhan University, Wuhan, China
| | - Miaobing Zheng
- School of Nutrition and Exercise, Deakin University, Melbourne, Australia
| | - Qiqiang He
- School of Public Health, Wuhan University, Wuhan, China; Wuhan University Shenzhen Research Institute, Shenzhen, China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Unified Method for Target and Non-Target Monitoring of Pesticide Residues in Fruits and Fruit Juices by Gas Chromatography-High Resolution Mass Spectrometry. Foods 2023; 12:foods12040739. [PMID: 36832813 PMCID: PMC9955418 DOI: 10.3390/foods12040739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A new polyvalent wide-scope analytical method, valid for both raw and processed (juices) fruits, combining target and non-target strategies, has been developed and validated to determine low concentrations of 260 pesticides, as well as many potential non-target substances and metabolites. The target approach has been validated according to SANTE Guide requirements. Trueness, precision, linearity, and robustness values were validated in raw fruit (apple) and juice (apple juice) as representative solid and liquid food commodities. Recoveries were between 70-120% and two ranges of linearity were observed: 0.5-20 μg kg-1 (0.5-20 μg L-1 apple juice) and 20-100 μg kg-1 (20-100 μg L-1 apple juice). The limits of quantification (LOQs) reached were lower than 0.2 μg kg-1 in apple (0.2 μg L-1 apple juice) in most cases. The developed method, based on QuEChERS extraction followed by gas chromatography-high resolution mass spectrometry (GC-HRMS), achieves part-per-trillions lower limits, which allowed the detection of 18 pesticides in commercial samples. The non-target approach is based on a retrospective analysis of suspect compounds, which has been optimized to detect up to 25 additional compounds, increasing the scope of the method. This made it possible to confirm the presence of two pesticide metabolites which were not considered in the target screening, phtamlimide and tetrahydrophthalimide.
Collapse
|
13
|
Chenge S, Ngure H, Kanoi BN, Sferruzzi-Perri AN, Kobia FM. Infectious and environmental placental insults: from underlying biological pathways to diagnostics and treatments. Pathog Dis 2023; 81:ftad024. [PMID: 37727973 DOI: 10.1093/femspd/ftad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023] Open
Abstract
Because the placenta is bathed in maternal blood, it is exposed to infectious agents and chemicals that may be present in the mother's circulation. Such exposures, which do not necessarily equate with transmission to the fetus, may primarily cause placental injury, thereby impairing placental function. Recent research has improved our understanding of the mechanisms by which some infectious agents are transmitted to the fetus, as well as the mechanisms underlying their impact on fetal outcomes. However, less is known about the impact of placental infection on placental structure and function, or the mechanisms underlying infection-driven placental pathogenesis. Moreover, recent studies indicate that noninfectious environmental agents accumulate in the placenta, but their impacts on placental function and fetal outcomes are unknown. Critically, diagnosing placental insults during pregnancy is very difficult and currently, this is possible only through postpartum placental examination. Here, with emphasis on humans, we discuss what is known about the impact of infectious and chemical agents on placental physiology and function, particularly in the absence of maternal-fetal transmission, and highlight knowledge gaps with potential implications for diagnosis and intervention against placental pathologies.
Collapse
Affiliation(s)
- Samuel Chenge
- Department of Medical Microbiology and Laboratory Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, off Thika road, P. O. Box 62000-00200 Nairobi, Kenya
| | - Harrison Ngure
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Bernard N Kanoi
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Francis M Kobia
- Directorate of Research and Innovation, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
- Centre for Malaria Elimination, Mount Kenya University, General Kago road, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
14
|
Yang Q, Zhao S, Li H, Li F. Acidic pH and thiol-driven homogeneous cathodic electrochemiluminescence strategy for determining the residue of organophosphorus pesticide in Chinese cabbage. Food Chem 2022; 393:133349. [PMID: 35691064 DOI: 10.1016/j.foodchem.2022.133349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
Abstract
Electrochemiluminescent (ECL) sensors for organophosphorus pesticides (OPs) have received considerable attention, whereas complicated electrode's immobilization, response to single hydrolysate and anodic emission correlated with ECL assays restrict their potential utilization. Herein, we developed a homogeneous dual-response cathodic ECL system for highly sensitive and reliable analysis of OP using CdTe QDs as emitters. CdTe QDs, emitting red light, were fabricated through a hydrothermal reaction and generated anodic and cathodic ECL emission upon stimulation of tripropyl amine and K2S2O8, respectively. Notably, CdTe QDs-K2S2O8 showed a simultaneous response to thiol and acidic pH, and were regarded as a ECL sensor for methidathion with limit of detection of 0.016 ng/mL based on hydrolysis of acetylthiocholine into thiocholine and CH3COOH by acetylcholinesterase (AChE) and OPs' inhibition on AChE activity. This sensor also exhibited good practicability to detect methidathion in Chinese cabbage. Overall, the sensor will supply more useful information for ensuring OPs-related food safety.
Collapse
Affiliation(s)
- Qiaoting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
15
|
Pesticide detection with covalent-organic-framework nanofilms at terahertz band. Biosens Bioelectron 2022; 209:114274. [DOI: 10.1016/j.bios.2022.114274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
|
16
|
Jin X, Kaw HY, Zhao J, Zou Y, He M, Li Z, Li D. NLow matrix effect pretreatment method based on gas-liquid micro-extraction technique for determining multi-class pesticides in crops. J Chromatogr A 2022; 1675:463178. [DOI: 10.1016/j.chroma.2022.463178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
|
17
|
Wei X, Liu C, Li Z, Zhang D, Zhang W, Li Y, Shi J, Wang X, Zhai X, Gong Y, Zou X. A cell-based electrochemical sensor for assessing immunomodulatory effects by atrazine and its metabolites. Biosens Bioelectron 2022; 203:114015. [DOI: 10.1016/j.bios.2022.114015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/28/2021] [Accepted: 01/15/2022] [Indexed: 12/22/2022]
|
18
|
Franza L, Cianci R. Pollution, Inflammation, and Vaccines: A Complex Crosstalk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126330. [PMID: 34208042 PMCID: PMC8296132 DOI: 10.3390/ijerph18126330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/21/2022]
Abstract
The importance of pollution in determining human health is becoming increasingly clear, also given the dramatic consequences it has had on recent geopolitical events. Yet, the consequences of contamination are not always straightforward. In this paper, we will discuss the effects of different pollutants on different aspects of human health, in particular on the immune system and inflammation. Different environmental pollutants can have different effects on the immune system, which can then promote complex pathologies, such as autoimmune disorders and cancer. The interaction with the microbiota also further helps to determine the consequences of contamination on wellbeing. The pollution can affect vaccination efficacy, given the widespread effects of vaccination on immunity. At the same time, some vaccinations also can exert protective effects against some forms of pollution.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy;
| | - Rossella Cianci
- Dipartimento di Medicina e Chirurgia Traslazionale, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 8-00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-7597; Fax: +39-06-3550-2775
| |
Collapse
|
19
|
Qi H, Li H, Li F. Aptamer Recognition-Driven Homogeneous Electrochemical Strategy for Simultaneous Analysis of Multiple Pesticides without Interference of Color and Fluorescence. Anal Chem 2021; 93:7739-7745. [PMID: 34009937 DOI: 10.1021/acs.analchem.1c01252] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Credible and simultaneous determination of multiple pesticides is highly desirable for guaranteeing food safety. However, the current methods are limited to significant interference of color and fluorescence or electrode's modification and mainly focus on the analysis of a single pesticide. Herein, we proposed a novel aptamer-based homogeneous electrochemical system for highly sensitive and simultaneous analysis of multiple pesticides based on target pesticide-switched exonuclease III (Exo III)-assisted signal amplification. The recognition of hairpin probes by target pesticides impels the production of pesticide-DNA complexes, which hybridize with electroactive dye-labeled DNA to form double-stranded DNA, subsequently initiating an Exo III-assisted digestion reaction to generate abundant electroactive dye-tagged mononucleotides. In comparison with pesticide deficiency, two higher differential pulse voltammetry (DPV) currents are measured, which rely on the amount of target pesticides. Therefore, simultaneous analysis of two pesticides is realized with limits of detection of 0.0048 and 0.0089 nM, respectively, comparable or superior to those of known methods that focused on a single pesticide. Moreover, the proposed system is successfully employed to simultaneously evaluate the residual level of acetamiprid and profenofos in Brassica chinensis and thus will find more useful applications for pesticide-related food safety.
Collapse
Affiliation(s)
- Hongjie Qi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China.,College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|