1
|
Ai H, Lin W, Liu C, Chen N, Zhang P. Mesoscale functional organization and connectivity of color, disparity, and naturalistic texture in human second visual area. eLife 2025; 13:RP93171. [PMID: 40111254 PMCID: PMC11925451 DOI: 10.7554/elife.93171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Although parallel processing has been extensively studied in the low-level geniculostriate pathway and the high-level dorsal and ventral visual streams, less is known at the intermediate-level visual areas. In this study, we employed high-resolution fMRI at 7T to investigate the columnar and laminar organizations for color, disparity, and naturalistic texture in the human secondary visual cortex (V2), and their informational connectivity with lower- and higher-order visual areas. Although fMRI activations in V2 showed reproducible interdigitated color-selective thin and disparity-selective thick 'stripe' columns, we found no clear evidence of columnar organization for naturalistic textures. Cortical depth-dependent analyses revealed the strongest color-selectivity in the superficial layers of V2, along with both feedforward and feedback informational connectivity with V1 and V4. Disparity selectivity was similar across different cortical depths of V2, which showed significant feedforward and feedback connectivity with V1 and V3ab. Interestingly, the selectivity for naturalistic texture was strongest in the deep layers of V2, with significant feedback connectivity from V4. Thus, while local circuitry within cortical columns is crucial for processing color and disparity information, feedback signals from V4 are involved in generating the selectivity for naturalistic textures in area V2.
Collapse
Affiliation(s)
- Hailin Ai
- Department of Psychological and Cognitive Sciences, Tsinghua UniversityBeijingChina
| | - Weiru Lin
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChangshaChina
| | - Chengwen Liu
- Department of Psychology and Cognition and Human Behavior Key Laboratory of Hunan Province, Hunan Normal UniversityHunanChina
- Center for Mind & Brain Sciences, Hunan Normal UniversityChangshChina
| | - Nihong Chen
- Department of Psychological and Cognitive Sciences, Tsinghua UniversityBeijingChina
- THU-IDG/McGovern Institute for Brain Research, Tsinghua UniversityBeijingChina
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesChangshaChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
2
|
Korkian Y, Nakhla N, Pack CC. Feature selectivity of corticocortical feedback along the primate dorsal visual pathway. J Neurophysiol 2025; 133:799-814. [PMID: 39813398 DOI: 10.1152/jn.00278.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
Anatomical studies have revealed a prominent role for feedback projections in the primate visual cortex. Theoretical models suggest that these projections support important brain functions such as attention, prediction, and learning. However, these models make different predictions about the relationship between feedback connectivity and neuronal stimulus selectivity. We have therefore performed simultaneous recordings in different regions of the primate dorsal visual pathway. Specifically, we recorded neural activity from the medial superior temporal (MST) area, and one of its main feedback targets, the middle temporal (MT) area. We estimated functional connectivity from correlations in the single-neuron spike trains and performed electrical microstimulation in MST to determine its causal influence on MT. Both methods revealed that inhibitory feedback occurred more commonly when the source and target neurons had very different stimulus preferences. At the same time, the strength of feedback suppression was greater for neurons with similar preferences. Excitatory feedback projections, in contrast, showed no consistent relationship with stimulus preferences. These results suggest that corticocortical feedback could play a role in shaping sensory responses according to behavioral or environmental context.NEW & NOTEWORTHY Here, we show that corticocortical feedback influences are often determined by the selectivity of the individual neurons. A common motif is the occurrence of inhibitory feedback among neurons with very different stimulus preferences. This results in strong suppression of responses in area MT when MST is electrically stimulated. Interestingly, this feedback shows a complex interaction with ongoing visual stimulation, being powerfully suppressive when visual inputs are strong, yet excitatory when visual inputs are weak.
Collapse
Affiliation(s)
- Yavar Korkian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Quantitative Life Sciences PhD Program, McGill University, Montreal, Quebec, Canada
| | - Nardin Nakhla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher C Pack
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Dai W, Wang T, Li Y, Yang Y, Zhang Y, Wu Y, Zhou T, Yu H, Li L, Wang Y, Wang G, Xing D. Cortical direction selectivity increases from the input to the output layers of visual cortex. PLoS Biol 2025; 23:e3002947. [PMID: 39777916 PMCID: PMC11709279 DOI: 10.1371/journal.pbio.3002947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Sensitivity to motion direction is a feature of visual neurons that is essential for motion perception. Recent studies have suggested that direction selectivity is re-established at multiple stages throughout the visual hierarchy, which contradicts the traditional assumption that direction selectivity in later stages largely derives from that in earlier stages. By recording laminar responses in areas 17 and 18 of anesthetized cats of both sexes, we aimed to understand how direction selectivity is processed and relayed across 2 successive stages: the input layers and the output layers within the early visual cortices. We found a strong relationship between the strength of direction selectivity in the output layers and the input layers, as well as the preservation of preferred directions across the input and output layers. Moreover, direction selectivity was enhanced in the output layers compared to the input layers, with the response strength maintained in the preferred direction but reduced in other directions and under blank stimuli. We identified a direction-tuned gain mechanism for interlaminar signal transmission, which likely originated from both feedforward connections across the input and output layers and recurrent connections within the output layers. This direction-tuned gain, coupled with nonlinearity, contributed to the enhanced direction selectivity in the output layers. Our findings suggest that direction selectivity in later cortical stages partially inherits characteristics from earlier cortical stages and is further refined by intracortical connections.
Collapse
Affiliation(s)
- Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yi Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yange Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Tingting Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Hongbo Yu
- School of Life Sciences, State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liang Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yizheng Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Gang Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
4
|
Dias RF, Rajan R, Baeta M, Belbut B, Marques T, Petreanu L. Visual experience reduces the spatial redundancy between cortical feedback inputs and primary visual cortex neurons. Neuron 2024; 112:3329-3342.e7. [PMID: 39137776 DOI: 10.1016/j.neuron.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/11/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024]
Abstract
The role of experience in the organization of cortical feedback (FB) remains unknown. We measured the effects of manipulating visual experience on the retinotopic specificity of supragranular and infragranular projections from the lateromedial (LM) visual area to layer (L)1 of the mouse primary visual cortex (V1). LM inputs were, on average, retinotopically matched with V1 neurons in normally and dark-reared mice, but visual exposure reduced the fraction of spatially overlapping inputs to V1. FB inputs from L5 conveyed more surround information to V1 than those from L2/3. The organization of LM inputs from L5 depended on their orientation preference and was disrupted by dark rearing. These observations were recapitulated by a model where visual experience minimizes receptive field overlap between LM inputs and V1 neurons. Our results provide a mechanism for the dependency of surround modulations on visual experience and suggest how expected interarea coactivation patterns are learned in cortical circuits.
Collapse
Affiliation(s)
- Rodrigo F Dias
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Radhika Rajan
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Margarida Baeta
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Beatriz Belbut
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Tiago Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | - Leopoldo Petreanu
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal.
| |
Collapse
|
5
|
Zhu S, Oh YJ, Trepka EB, Chen X, Moore T. Dependence of Contextual Modulation in Macaque V1 on Interlaminar Signal Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590176. [PMID: 38659877 PMCID: PMC11042257 DOI: 10.1101/2024.04.18.590176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In visual cortex, neural correlates of subjective perception can be generated by modulation of activity from beyond the classical receptive field (CRF). In macaque V1, activity generated by nonclassical receptive field (nCRF) stimulation involves different intracortical circuitry than activity generated by CRF stimulation, suggesting that interactions between neurons across V1 layers differ under CRF and nCRF stimulus conditions. Using Neuropixels probes, we measured border ownership modulation within large, local populations of V1 neurons. We found that neurons in single columns preferred the same side of objects located outside of the CRF. In addition, we found that cross-correlations between pairs of neurons situated across feedback/horizontal and input layers differed between CRF and nCRF stimulation. Furthermore, independent of the comparison with CRF stimulation, we observed that the magnitude of border ownership modulation increased with the proportion of information flow from feedback/horizontal layers to input layers. These results demonstrate that the flow of signals between layers covaries with the degree to which neurons integrate information from beyond the CRF.
Collapse
|
6
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Burkhalter A, Ji W, Meier AM, D’Souza RD. Modular horizontal network within mouse primary visual cortex. Front Neuroanat 2024; 18:1364675. [PMID: 38650594 PMCID: PMC11033472 DOI: 10.3389/fnana.2024.1364675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/04/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between feedback connections from higher cortical areas and local horizontal connections within primary visual cortex (V1) were shown to play a role in contextual processing in different behavioral states. Layer 1 (L1) is an important part of the underlying network. This cell-sparse layer is a target of feedback and local inputs, and nexus for contacts onto apical dendrites of projection neurons in the layers below. Importantly, L1 is a site for coupling inputs from the outside world with internal information. To determine whether all of these circuit elements overlap in L1, we labeled the horizontal network within mouse V1 with anterograde and retrograde viral tracers. We found two types of local horizontal connections: short ones that were tangentially limited to the representation of the point image, and long ones which reached beyond the receptive field center, deep into its surround. The long connections were patchy and terminated preferentially in M2 muscarinic acetylcholine receptor-negative (M2-) interpatches. Anterogradely labeled inputs overlapped in M2-interpatches with apical dendrites of retrogradely labeled L2/3 and L5 cells, forming module-selective loops between topographically distant locations. Previous work showed that L1 of M2-interpatches receive inputs from the lateral posterior thalamic nucleus (LP) and from a feedback network from areas of the medial dorsal stream, including the secondary motor cortex. Together, these findings suggest that interactions in M2-interpatches play a role in processing visual inputs produced by object-and self-motion.
Collapse
Affiliation(s)
- Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew M. Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Speech, Language and Hearing Sciences, College of Engineering, Boston University, Boston, MA, United States
| | - Rinaldo D. D’Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Ye Z, Ding J, Tu Y, Zhang Q, Chen S, Yu H, Sun Q, Hua T. Suppression of top-down influence decreases both behavioral and V1 neuronal response sensitivity to stimulus orientations in cats. Front Behav Neurosci 2023; 17:1061980. [PMID: 36844652 PMCID: PMC9944033 DOI: 10.3389/fnbeh.2023.1061980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
How top-down influence affects behavioral detection of visual signals and neuronal response sensitivity in the primary visual cortex (V1) remains poorly understood. This study examined both behavioral performance in stimulus orientation identification and neuronal response sensitivity to stimulus orientations in the V1 of cat before and after top-down influence of area 7 (A7) was modulated by non-invasive transcranial direct current stimulation (tDCS). Our results showed that cathode (c) but not sham (s) tDCS in A7 significantly increased the behavioral threshold in identifying stimulus orientation difference, which effect recovered after the tDCS effect vanished. Consistently, c-tDCS but not s-tDCS in A7 significantly decreased the response selectivity bias of V1 neurons for stimulus orientations, which effect could recover after withdrawal of the tDCS effect. Further analysis showed that c-tDCS induced reduction of V1 neurons in response selectivity was not resulted from alterations of neuronal preferred orientation, nor of spontaneous activity. Instead, c-tDCS in A7 significantly lowered the visually-evoked response, especially the maximum response of V1 neurons, which caused a decrease in response selectivity and signal-to-noise ratio. By contrast, s-tDCS exerted no significant effect on the responses of V1 neurons. These results indicate that top-down influence of A7 may enhance behavioral identification of stimulus orientations by increasing neuronal visually-evoked response and response selectivity in the V1.
Collapse
Affiliation(s)
- Zheng Ye
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jian Ding
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,School of Basic Medical, Wannan Medical College, Wuhu, Anhui, China
| | - Yanni Tu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qiuyu Zhang
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Shunshun Chen
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Hao Yu
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qingyan Sun
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Tianmiao Hua
- College of Life sciences, Anhui Normal University, Wuhu, Anhui, China,*Correspondence: Tianmiao Hua,
| |
Collapse
|
9
|
Dual counterstream architecture may support separation between vision and predictions. Conscious Cogn 2022; 103:103375. [DOI: 10.1016/j.concog.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 12/03/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
|
10
|
Functionally specific and sparse domain-based micro-networks in monkey V1 and V2. Curr Biol 2022; 32:2797-2809.e3. [PMID: 35623347 DOI: 10.1016/j.cub.2022.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022]
Abstract
The cerebral cortices of human and nonhuman primate brains are characterized by submillimeter functional domains. However, little is known about the connections of single functional domains. Here, in macaque monkey visual cortex, we have developed a targeted focal electrical stimulation method, coupled with functional optical imaging, to map cortical networks with submillimeter precision in vivo. We find that single functional domains are a part of highly specific and sparse intra-areal and inter-areal micro-networks. Across color-related and orientation-related functionalities, these micro-networks exhibit parallel connection patterns, suggesting a common domain-based architecture. Moreover, these micro-networks shift topographically at a submillimeter scale, suggesting that they serve as a fundamental unit for cortical information processing. Our findings establish a domain-based connectional architecture in the primate brain and present new constraints for cortical map representation.
Collapse
|
11
|
Rockland KS. Notes on Visual Cortical Feedback and Feedforward Connections. Front Syst Neurosci 2022; 16:784310. [PMID: 35153685 PMCID: PMC8831541 DOI: 10.3389/fnsys.2022.784310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
|
12
|
Ding J, Ye Z, Xu F, Hu X, Yu H, Zhang S, Tu Y, Zhang Q, Sun Q, Hua T, Lu ZL. Effects of top-down influence suppression on behavioral and V1 neuronal contrast sensitivity functions in cats. iScience 2022; 25:103683. [PMID: 35059603 PMCID: PMC8760559 DOI: 10.1016/j.isci.2021.103683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023] Open
Abstract
To explore the relative contributions of higher-order and primary visual cortex (V1) to visual perception, we compared cats' behavioral and V1 neuronal contrast sensitivity functions (CSF) and threshold versus external noise contrast (TvC) functions before and after top-down influence of area 7 (A7) was modulated with transcranial direct current stimulation (tDCS). We found that suppressing top-down influence of A7 with cathode-tDCS, but not sham-tDCS, reduced behavioral and neuronal contrast sensitivity in the same range of spatial frequencies and increased behavioral and neuronal contrast thresholds in the same range of external noise levels. The neuronal CSF and TvC functions were highly correlated with their behavioral counterparts both before and after the top-down suppression. Analysis of TvC functions using the Perceptual Template Model (PTM) indicated that top-down influence of A7 increased both behavioral and V1 neuronal contrast sensitivity by reducing internal additive noise and the impact of external noise. Top-down suppression lowers both behavioral and V1 neuronal CSF functions Top-down suppression raises both behavioral and V1 neuronal TvC functions The neuronal CSFs and TvCs are highly correlated with their behavioral counterparts Top-down influence lowers internal additive noise and impact of external noise in V1
Collapse
Affiliation(s)
- Jian Ding
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zheng Ye
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fei Xu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiangmei Hu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hao Yu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shen Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yanni Tu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiuyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qingyan Sun
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Tianmiao Hua
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Zhong-Lin Lu
- Divison of Arts and Sciences, NYU Shanghai, Shanghai 200122, China.,Center for Neural Science and Department of Psychology, New York University, New York, NY 10003, USA.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai 200062, China
| |
Collapse
|
13
|
Zeng H, Chen S, Fink GR, Weidner R. Information Exchange between Cortical Areas: The Visual System as a Model. Neuroscientist 2022; 29:370-384. [PMID: 35057664 DOI: 10.1177/10738584211069061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As nearly all brain functions, perception, motion, and higher-order cognitive functions require coordinated neural information processing within distributed cortical networks. Over the past decades, new theories and techniques emerged that advanced our understanding of how information is transferred between cortical areas. This review surveys critical aspects of interareal information exchange. We begin by examining the brain’s structural connectivity, which provides the basic framework for interareal communication. We then illustrate information exchange between cortical areas using the visual system as an example. Next, well-studied and newly proposed theories that may underlie principles of neural communication are reviewed, highlighting recent work that offers new perspectives on interareal information exchange. We finally discuss open questions in the study of the neural mechanisms underlying interareal information exchange.
Collapse
Affiliation(s)
- Hang Zeng
- Center for Educational Science and Technology, Beijing Normal University, Zhuhai, China
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| | - Siyi Chen
- Ludwig-Maximilians-Universität München, München, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
- Department of Neurology, University Hospital Cologne, Cologne University, Cologne, Germany
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, Jülich, Germany
| |
Collapse
|
14
|
Siu C, Balsor J, Merlin S, Federer F, Angelucci A. A direct interareal feedback-to-feedforward circuit in primate visual cortex. Nat Commun 2021; 12:4911. [PMID: 34389710 PMCID: PMC8363744 DOI: 10.1038/s41467-021-24928-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/08/2021] [Indexed: 11/15/2022] Open
Abstract
The mammalian sensory neocortex consists of hierarchically organized areas reciprocally connected via feedforward (FF) and feedback (FB) circuits. Several theories of hierarchical computation ascribe the bulk of the computational work of the cortex to looped FF-FB circuits between pairs of cortical areas. However, whether such corticocortical loops exist remains unclear. In higher mammals, individual FF-projection neurons send afferents almost exclusively to a single higher-level area. However, it is unclear whether FB-projection neurons show similar area-specificity, and whether they influence FF-projection neurons directly or indirectly. Using viral-mediated monosynaptic circuit tracing in macaque primary visual cortex (V1), we show that V1 neurons sending FF projections to area V2 receive monosynaptic FB inputs from V2, but not other V1-projecting areas. We also find monosynaptic FB-to-FB neuron contacts as a second motif of FB connectivity. Our results support the existence of FF-FB loops in primate cortex, and suggest that FB can rapidly and selectively influence the activity of incoming FF signals.
Collapse
Affiliation(s)
- Caitlin Siu
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Justin Balsor
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam Merlin
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
- Medical Science, School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Frederick Federer
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA
| | - Alessandra Angelucci
- Department of Ophthalmology and Visual Science, Moran Eye Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
15
|
Quinn KR, Seillier L, Butts DA, Nienborg H. Decision-related feedback in visual cortex lacks spatial selectivity. Nat Commun 2021; 12:4473. [PMID: 34294703 PMCID: PMC8298450 DOI: 10.1038/s41467-021-24629-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/22/2021] [Indexed: 11/21/2022] Open
Abstract
Feedback in the brain is thought to convey contextual information that underlies our flexibility to perform different tasks. Empirical and computational work on the visual system suggests this is achieved by targeting task-relevant neuronal subpopulations. We combine two tasks, each resulting in selective modulation by feedback, to test whether the feedback reflected the combination of both selectivities. We used visual feature-discrimination specified at one of two possible locations and uncoupled the decision formation from motor plans to report it, while recording in macaque mid-level visual areas. Here we show that although the behavior is spatially selective, using only task-relevant information, modulation by decision-related feedback is spatially unselective. Population responses reveal similar stimulus-choice alignments irrespective of stimulus relevance. The results suggest a common mechanism across tasks, independent of the spatial selectivity these tasks demand. This may reflect biological constraints and facilitate generalization across tasks. Our findings also support a previously hypothesized link between feature-based attention and decision-related activity. Feedback modulates visual neurons, thought to help achieve flexible task performance. Here, the authors show decision-related feedback is not only relayed to task-relevant neurons, suggesting a broader mechanism and supporting a previously hypothesized link to feature-based attention.
Collapse
Affiliation(s)
| | | | - Daniel A Butts
- Department of Biology and Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Abbatecola C, Gerardin P, Beneyton K, Kennedy H, Knoblauch K. The Role of Unimodal Feedback Pathways in Gender Perception During Activation of Voice and Face Areas. Front Syst Neurosci 2021; 15:669256. [PMID: 34122023 PMCID: PMC8194406 DOI: 10.3389/fnsys.2021.669256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022] Open
Abstract
Cross-modal effects provide a model framework for investigating hierarchical inter-areal processing, particularly, under conditions where unimodal cortical areas receive contextual feedback from other modalities. Here, using complementary behavioral and brain imaging techniques, we investigated the functional networks participating in face and voice processing during gender perception, a high-level feature of voice and face perception. Within the framework of a signal detection decision model, Maximum likelihood conjoint measurement (MLCM) was used to estimate the contributions of the face and voice to gender comparisons between pairs of audio-visual stimuli in which the face and voice were independently modulated. Top–down contributions were varied by instructing participants to make judgments based on the gender of either the face, the voice or both modalities (N = 12 for each task). Estimated face and voice contributions to the judgments of the stimulus pairs were not independent; both contributed to all tasks, but their respective weights varied over a 40-fold range due to top–down influences. Models that best described the modal contributions required the inclusion of two different top–down interactions: (i) an interaction that depended on gender congruence across modalities (i.e., difference between face and voice modalities for each stimulus); (ii) an interaction that depended on the within modalities’ gender magnitude. The significance of these interactions was task dependent. Specifically, gender congruence interaction was significant for the face and voice tasks while the gender magnitude interaction was significant for the face and stimulus tasks. Subsequently, we used the same stimuli and related tasks in a functional magnetic resonance imaging (fMRI) paradigm (N = 12) to explore the neural correlates of these perceptual processes, analyzed with Dynamic Causal Modeling (DCM) and Bayesian Model Selection. Results revealed changes in effective connectivity between the unimodal Fusiform Face Area (FFA) and Temporal Voice Area (TVA) in a fashion that paralleled the face and voice behavioral interactions observed in the psychophysical data. These findings explore the role in perception of multiple unimodal parallel feedback pathways.
Collapse
Affiliation(s)
- Clement Abbatecola
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France.,Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Peggy Gerardin
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Kim Beneyton
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Henry Kennedy
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France.,Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Key Laboratory of Primate Neurobiology, Shanghai, China
| | - Kenneth Knoblauch
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM, Stem Cell and Brain Research Institute U1208, Bron, France.,National Centre for Optics, Vision and Eye Care, Faculty of Health and Social Sciences, University of South-Eastern Norway, Kongsberg, Norway
| |
Collapse
|
17
|
Morimoto MM, Uchishiba E, Saleem AB. Organization of feedback projections to mouse primary visual cortex. iScience 2021; 24:102450. [PMID: 34113813 PMCID: PMC8169797 DOI: 10.1016/j.isci.2021.102450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down, context-dependent modulation of visual processing has been a topic of wide interest, including in mouse primary visual cortex (V1). However, the organization of feedback projections to V1 is relatively unknown. Here, we investigated inputs to mouse V1 by injecting retrograde tracers. We developed a software pipeline that maps labeled cell bodies to corresponding brain areas in the Allen Reference Atlas. We identified more than 24 brain areas that provide inputs to V1 and quantified the relative strength of their projections. We also assessed the organization of the projections, based on either the organization of cell bodies in the source area (topography) or the distribution of projections across V1 (bias). Projections from most higher visual and some nonvisual areas to V1 showed both topography and bias. Such organization of feedback projections to V1 suggests that parts of the visual field are differentially modulated by context, which can be ethologically relevant for a navigating animal.
Collapse
Affiliation(s)
- Mai M. Morimoto
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Emi Uchishiba
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|