1
|
Yao Y, Tian G, Zhang J, Zhang S, Liu X, Hou J. Integrating bulk and single-cell sequencing reveals metastasis-associated CAFs in head and neck squamous cell carcinoma. Life Sci 2024; 351:122768. [PMID: 38851417 DOI: 10.1016/j.lfs.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/18/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS Cancer-associated fibroblasts (CAFs) have been shown to promote the metastasis of head and neck squamous cell carcinoma (HNSCC), but the underlying mechanisms remain unclear. The purpose of this study is to identify gene in CAFs that are associated with metastasis and to preliminarily validate its impact on the metastasis of HNSCC. MATERIALS AND METHODS Scissor analysis was utilized to process single-cell and bulk RNA sequencing datasets, identifying genes associated with the metastasis of HNSCC through differential gene expression analysis. A risk model was constructed using LASSO regression analysis. Quantitative real time-PCR and Western blot were employed to measure mRNA and protein expressions, respectively. Multiplex immunohistochemistry (mIHC) was used to assess protein expression in CAFs. siRNA was utilized to achieve gene knockdown. CCK-8 and Transwell assays were employed to evaluate the biological characteristics of HNSCC cells. KEY FINDINGS Compare to the nonmetastatic primary CAFs (nmCAFs), tissue inhibitors of metalloproteinase-1 (TIMP1) was founded to be overexpressed in the cells and tissues of metastatic primary CAFs (mCAFs). Knocking down TIMP1 in CAFs can signifucantly inhibit the proliferation, invasion, and migration of HNSCC cells. SIGNIFICANCE CAFs facilitate HNSCC cell metastasis by upregulating TIMP1, highlighting TIMP1 as a potential therapeutic target in HNSCC metastasis management.
Collapse
Affiliation(s)
- Yihuan Yao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Guoli Tian
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Jiaqiang Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Shuaiyuan Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Xiaoyong Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China
| | - Jingsong Hou
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling-yuan west Street, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Zhong Shan Er Road 74, Guangzhou 510080, China.
| |
Collapse
|
2
|
Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med 2024; 28:e18009. [PMID: 37882107 PMCID: PMC10805493 DOI: 10.1111/jcmm.18009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The complex interplay between tumour cells and the tumour microenvironment (TME) underscores the necessity for gaining comprehensive insights into disease progression. This study centres on elucidating the elusive the elusive role of endothelial cells within the TME of head and neck squamous cell carcinoma (HNSCC). Despite their crucial involvement in angiogenesis and vascular function, the mechanistic diversity of endothelial cells among HNSCC patients remains largely uncharted. Leveraging advanced single-cell RNA sequencing (scRNA-Seq) technology and the Scissor algorithm, we aimed to bridge this knowledge gap and illuminate the intricate interplay between endothelial cells and patient prognosis within the context of HNSCC. Here, endothelial cells were categorized into Scissorhigh and Scissorlow subtypes. We identified Scissor+ endothelial cells exhibiting pro-tumorigenic profiles and constructed a prognostic risk model for HNSCC. Additionally, four biomarkers also were identified by analysing the gene expression profiles of patients with HNSCC and a prognostic risk prediction model was constructed based on these genes. Furthermore, the correlations between endothelial cells and prognosis of patients with HNSCC were analysed by integrating bulk and single-cell sequencing data, revealing a close association between SHSS and the overall survival (OS) of HNSCC patients with malignant endothelial cells. Finally, we validated the prognostic model by RT-qPCR and IHC analysis. These findings enhance our comprehension of TME heterogeneity at the single-cell level and provide a prognostic model for HNSCC.
Collapse
Affiliation(s)
- Chunlong Yang
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Xiaoning Cheng
- Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangChina
| | - Shenglan Gao
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| | - Qingjun Pan
- Clinical Research CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangChina
| |
Collapse
|
3
|
Smirnov D, Konstantinovskiy N, Prokisch H. Integrative omics approaches to advance rare disease diagnostics. J Inherit Metab Dis 2023; 46:824-838. [PMID: 37553850 DOI: 10.1002/jimd.12663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
Over the past decade high-throughput DNA sequencing approaches, namely whole exome and whole genome sequencing became a standard procedure in Mendelian disease diagnostics. Implementation of these technologies greatly facilitated diagnostics and shifted the analysis paradigm from variant identification to prioritisation and evaluation. The diagnostic rates vary widely depending on the cohort size, heterogeneity and disease and range from around 30% to 50% leaving the majority of patients undiagnosed. Advances in omics technologies and computational analysis provide an opportunity to increase these unfavourable rates by providing evidence for disease-causing variant validation and prioritisation. This review aims to provide an overview of the current application of several omics technologies including RNA-sequencing, proteomics, metabolomics and DNA-methylation profiling for diagnostics of rare genetic diseases in general and inborn errors of metabolism in particular.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| | - Nikita Konstantinovskiy
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Computational Health Center, Helmholtz Munich, Neuherberg, Germany
| |
Collapse
|
4
|
Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C, Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, Gamerith G, Sykora M, Augustin F, Schmitz K, Finotello F, Rieder D, Perner S, Sopper S, Wolf D, Pircher A, Trajanoski Z. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 2022; 40:1503-1520.e8. [PMID: 36368318 PMCID: PMC9767679 DOI: 10.1016/j.ccell.2022.10.008] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2022]
Abstract
Non-small cell lung cancer (NSCLC) is characterized by molecular heterogeneity with diverse immune cell infiltration patterns, which has been linked to therapy sensitivity and resistance. However, full understanding of how immune cell phenotypes vary across different patient subgroups is lacking. Here, we dissect the NSCLC tumor microenvironment at high resolution by integrating 1,283,972 single cells from 556 samples and 318 patients across 29 datasets, including our dataset capturing cells with low mRNA content. We stratify patients into immune-deserted, B cell, T cell, and myeloid cell subtypes. Using bulk samples with genomic and clinical information, we identify cellular components associated with tumor histology and genotypes. We then focus on the analysis of tissue-resident neutrophils (TRNs) and uncover distinct subpopulations that acquire new functional properties in the tissue microenvironment, providing evidence for the plasticity of TRNs. Finally, we show that a TRN-derived gene signature is associated with anti-programmed cell death ligand 1 (PD-L1) treatment failure.
Collapse
Affiliation(s)
- Stefan Salcher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Lena Horvath
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gerold Untergasser
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Christiane Kuempers
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Georgios Fotakis
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisa Panizzolo
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Agnieszka Martowicz
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria; Tyrolpath Obrist Brunhuber GmbH, Zams, Austria
| | - Manuel Trebo
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Pall
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriele Gamerith
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Sykora
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Katja Schmitz
- Tyrolpath Obrist Brunhuber GmbH, Zams, Austria; INNPATH GmbH, Institute of Pathology, Innsbruck, Austria
| | - Francesca Finotello
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria; Digital Science Center, University of Innsbruck, Innsbruck, Austria
| | - Dietmar Rieder
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany; Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Lung Research (DZL), Luebeck and Borstel, Germany
| | - Sieghart Sopper
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Pircher
- Department of Internal Medicine V, Haematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI) and Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria.
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
5
|
Sipe LM, Chaib M, Korba EB, Jo H, Lovely MC, Counts BR, Tanveer U, Holt JR, Clements JC, John NA, Daria D, Marion TN, Bohm MS, Sekhri R, Pingili AK, Teng B, Carson JA, Hayes DN, Davis MJ, Cook KL, Pierre JF, Makowski L. Response to immune checkpoint blockade improved in pre-clinical model of breast cancer after bariatric surgery. eLife 2022; 11:79143. [PMID: 35775614 PMCID: PMC9342954 DOI: 10.7554/elife.79143] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022] Open
Abstract
Bariatric surgery is a sustainable weight loss approach, including vertical sleeve gastrectomy (VSG). Obesity exacerbates tumor growth, while diet-induced weight loss impairs progression. It remains unknown how bariatric surgery-induced weight loss impacts cancer progression or alters response to therapy. Using a pre-clinical model of obesity followed by VSG or diet-induced weight loss, breast cancer progression and immune checkpoint blockade therapy were investigated. Weight loss by VSG or weight-matched dietary intervention before tumor engraftment protected against obesity-exacerbated tumor progression. However, VSG was not as effective as diet in reducing tumor burden despite achieving similar weight and adiposity loss. Leptin did not associate with changes in tumor burden; however, circulating IL-6 was elevated in VSG mice. Uniquely, VSG tumors displayed elevated inflammation and immune checkpoint ligand PD-L1+ myeloid and non-immune cells. VSG tumors also had reduced T lymphocytes and markers of cytolysis, suggesting an ineffective anti-tumor microenvironment which prompted investigation of immune checkpoint blockade. While obese mice were resistant to immune checkpoint blockade, anti-PD-L1 potently impaired tumor progression after VSG through improved anti-tumor immunity. Thus, in formerly obese mice, surgical weight loss followed by immunotherapy reduced breast cancer burden. Finally, we compared transcriptomic changes in adipose tissue after bariatric surgery from patients and mouse models. A conserved bariatric surgery-associated weight loss signature (BSAS) was identified which significantly associated with decreased tumor volume. Findings demonstrate conserved impacts of obesity and bariatric surgery-induced weight loss pathways associated with breast cancer progression. As the number of people classified as obese rises globally, so do obesity-related health risks. Studies show that people diagnosed with obesity have inflammation that contributes to tumor growth and their immune system is worse at detecting cancer cells. But weight loss is not currently used as a strategy for preventing or treating cancer. Surgical procedures for weight loss, also known as ‘bariatric surgeries’, are becoming increasingly popular. Recent studies have shown that individuals who lose weight after these treatments have a reduced risk of developing tumors. But how bariatric surgery directly impacts cancer progression has not been well studied: does it slow tumor growth or boost the anti-tumor immune response? To answer these questions, Sipe et al. compared breast tumor growth in groups of laboratory mice that were obese due to being fed a high fat diet. The first group of mice lost weight after undergoing a bariatric surgery in which part of their stomach was removed. The second lost the same amount of weight but after receiving a restricted diet, and the third underwent a fake surgery and did not lose any weight. The experiments found that surgical weight loss cuts breast cancer tumor growth in half compared with obese mice. But mice who lost the same amount of weight through dietary restrictions had even less tumor growth than surgically treated mice. The surgically treated mice who lost weight had more inflammation than mice in the two other groups, and had increased amounts of proteins and cells that block the immune response to tumors. Giving the surgically treated mice a drug that enhances the immune system’s ability to detect and destroy cancer cells reduced inflammation and helped shrink the mice’s tumors. Finally, Sipe et al. identified 54 genes which were turned on or off after bariatric surgery in both mice and humans, 11 of which were linked with tumor size. These findings provide crucial new information about how bariatric surgery can impact cancer progression. Future studies could potentially use the conserved genes identified by Sipe et al. to develop new ways to stimulate the anti-cancer benefits of weight loss without surgery.
Collapse
Affiliation(s)
- Laura M Sipe
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, United States
| | - Emily B Korba
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Heejoon Jo
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Mary Camille Lovely
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Brittany R Counts
- Integrative Muscle Biology Laboratory, University of Tennessee Health Science Center, Memphis, United States
| | - Ubaid Tanveer
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Jeremiah R Holt
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Jared C Clements
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Neena A John
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Deidre Daria
- Office of Vice Chancellor for Research, University of Tennessee Health Science Center, Memphis, United States
| | - Tony N Marion
- Office of Vice Chancellor for Research, University of Tennessee Health Science Center, Memphis, United States
| | - Margaret S Bohm
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, United States
| | - Radhika Sekhri
- Department of Pathology, University of Tennessee Health Science Center, Memphis, United States
| | - Ajeeth K Pingili
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Bin Teng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, University of Tennessee Health Science Center, Memphis, United States
| | - D Neil Hayes
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Matthew J Davis
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| | - Katherine L Cook
- Department of Surgery, Wake Forest University, Winston Salem, United States
| | - Joseph F Pierre
- Department of Microbiology, University of Tennessee Health Science Center, Memphis, United States
| | - Liza Makowski
- Department of Medicine, University of Tennessee Health Science Center, Memphis, United States
| |
Collapse
|
6
|
He H, Wang Z, Yu H, Zhang G, Wen Y, Cai Z. Prioritizing risk genes as novel stratification biomarkers for acute monocytic leukemia by integrative analysis. Discov Oncol 2022; 13:55. [PMID: 35771283 PMCID: PMC9247126 DOI: 10.1007/s12672-022-00516-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a blood cancer with high heterogeneity and stratified as M0-M7 subtypes in the French-American-British (FAB) diagnosis system. Improved diagnosis with leverage of key molecular inputs will assist precisive medicine. Through deep-analyzing the transcriptomic data and mutations of AML, we report that a modern clustering algorithm, t-distributed Stochastic Neighbor Embedding (t-SNE), successfully demarcates M2, M3 and M5 territories while M4 bias to M5 and M0 & M1 bias to M2, consistent with the traditional FAB classification. Combining with mutation profiles, the results show that top recurrent AML mutations were unbiasedly allocated into M2 and M5 territories, indicating the t-SNE instructed transcriptomic stratification profoundly outperforms mutation profiling in the FAB system. Further functional data mining prioritizes several myeloid-specific genes as potential regulators of AML progression and treatment by Venetoclax, a BCL2 inhibitor. Among them two encode membrane proteins, LILRB4 and LRRC25, which could be utilized as cell surface biomarkers for monocytic AML or for innovative immuno-therapy candidates in future. In summary, our deep functional data-mining analysis warrants several unappreciated immune signaling-encoding genes as novel diagnostic biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Hang He
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhiqin Wang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Hanzhi Yu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guorong Zhang
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Yuchen Wen
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Zhigang Cai
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Rheumatology, Tianjin Medical University General Hospital, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Pharmacology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Pingili AK, Chaib M, Sipe LM, Miller EJ, Teng B, Sharma R, Yarbro JR, Asemota S, Al Abdallah Q, Mims TS, Marion TN, Daria D, Sekhri R, Hamilton AM, Troester MA, Jo H, Choi HY, Hayes DN, Cook KL, Narayanan R, Pierre JF, Makowski L. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep 2021; 35:109285. [PMID: 34161764 PMCID: PMC8574993 DOI: 10.1016/j.celrep.2021.109285] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint blockade (ICB) has improved outcomes in some cancers. A major limitation of ICB is that most patients fail to respond, which is partly attributable to immunosuppression. Obesity appears to improve immune checkpoint therapies in some cancers, but impacts on breast cancer (BC) remain unknown. In lean and obese mice, tumor progression and immune reprogramming were quantified in BC tumors treated with anti-programmed death-1 (PD-1) or control. Obesity augments tumor incidence and progression. Anti-PD-1 induces regression in lean mice and potently abrogates progression in obese mice. BC primes systemic immunity to be highly responsive to obesity, leading to greater immunosuppression, which may explain greater anti-PD-1 efficacy. Anti-PD-1 significantly reinvigorates antitumor immunity despite persistent obesity. Laminin subunit beta-2 (Lamb2), downregulated by anti-PD-1, significantly predicts patient survival. Lastly, a microbial signature associated with anti-PD-1 efficacy is identified. Thus, anti-PD-1 is highly efficacious in obese mice by reinvigorating durable antitumor immunity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ajeeth K Pingili
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Laura M Sipe
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Emily J Miller
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bin Teng
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Rahul Sharma
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Johnathan R Yarbro
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarah Asemota
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tahliyah S Mims
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tony N Marion
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Deidre Daria
- Office of Vice Chancellor for Research, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhika Sekhri
- Department of Pathology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Heejoon Jo
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hyo Young Choi
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - D Neil Hayes
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Katherine L Cook
- Department of Surgery, Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA
| | - Ramesh Narayanan
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joseph F Pierre
- Department of Pediatrics, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Liza Makowski
- Department of Medicine, Division of Hematology and Oncology, Department of Medicine, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA; UTHSC Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
8
|
Carrot-Zhang J, Yao X, Devarakonda S, Deshpande A, Damrauer JS, Silva TC, Wong CK, Choi HY, Felau I, Robertson AG, Castro MAA, Bao L, Rheinbay E, Liu EM, Trieu T, Haan D, Yau C, Hinoue T, Liu Y, Shapira O, Kumar K, Mungall KL, Zhang H, Lee JJK, Berger A, Gao GF, Zhitomirsky B, Liang WW, Zhou M, Moorthi S, Berger AH, Collisson EA, Zody MC, Ding L, Cherniack AD, Getz G, Elemento O, Benz CC, Stuart J, Zenklusen JC, Beroukhim R, Chang JC, Campbell JD, Hayes DN, Yang L, Laird PW, Weinstein JN, Kwiatkowski DJ, Tsao MS, Travis WD, Khurana E, Berman BP, Hoadley KA, Robine N, Meyerson M, Govindan R, Imielinski M. Whole-genome characterization of lung adenocarcinomas lacking the RTK/RAS/RAF pathway. Cell Rep 2021; 34:108707. [PMID: 33535033 PMCID: PMC8009291 DOI: 10.1016/j.celrep.2021.108707] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/08/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
RTK/RAS/RAF pathway alterations (RPAs) are a hallmark of lung adenocarcinoma (LUAD). In this study, we use whole-genome sequencing (WGS) of 85 cases found to be RPA(-) by previous studies from The Cancer Genome Atlas (TCGA) to characterize the minority of LUADs lacking apparent alterations in this pathway. We show that WGS analysis uncovers RPA(+) in 28 (33%) of the 85 samples. Among the remaining 57 cases, we observe focal deletions targeting the promoter or transcription start site of STK11 (n = 7) or KEAP1 (n = 3), and promoter mutations associated with the increased expression of ILF2 (n = 6). We also identify complex structural variations associated with high-level copy number amplifications. Moreover, an enrichment of focal deletions is found in TP53 mutant cases. Our results indicate that RPA(-) cases demonstrate tumor suppressor deletions and genome instability, but lack unique or recurrent genetic lesions compensating for the lack of RPAs. Larger WGS studies of RPA(-) cases are required to understand this important LUAD subset.
Collapse
Affiliation(s)
- Jian Carrot-Zhang
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Xiaotong Yao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Tri-institutional Ph.D. Program in Computational Biology and Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Siddhartha Devarakonda
- Section of Medical Oncology, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Aditya Deshpande
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Tri-institutional Ph.D. Program in Computational Biology and Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey S Damrauer
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tiago Chedraoui Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher K Wong
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Hyo Young Choi
- University of Tennessee Health Science Center, UTHSC Center for Cancer Research, TN, USA
| | - Ina Felau
- National Cancer Institute, Bethesda, MD, USA
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lisui Bao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Esther Rheinbay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Eric Minwei Liu
- Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tuan Trieu
- Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - David Haan
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Christina Yau
- University of California, San Francisco, San Francisco, CA, USA; Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Yuexin Liu
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ofer Shapira
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kiran Kumar
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - Hailei Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Ashton Berger
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Galen F Gao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Binyamin Zhitomirsky
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Wen-Wei Liang
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Meng Zhou
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Alice H Berger
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | | | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew D Cherniack
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Olivier Elemento
- Tri-institutional Ph.D. Program in Computational Biology and Medicine, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Josh Stuart
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Rameen Beroukhim
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jason C Chang
- Thoracic Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua D Campbell
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - D Neil Hayes
- University of Tennessee Health Science Center, UTHSC Center for Cancer Research, TN, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | | | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Ming S Tsao
- Department of Pathology, University Health Network, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - William D Travis
- Thoracic Pathology, Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ekta Khurana
- Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin P Berman
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem, Israel
| | - Katherine A Hoadley
- Department of Genetics, Computational Medicine Program, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Ramaswamy Govindan
- Section of Medical Oncology, Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Marcin Imielinski
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; New York Genome Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|