1
|
Jiang AJ, Wei HR, Chu S, Wang M, Yan J, Song XL, Xu TL, Zhang Z, Jin Y, Wang W. Upregulation of Acid-Sensing Ion Channel 1a in the Anterior Cingulate Cortex by TNF-α/NF-κB Pathway Contributes to Diabetes-Related Pain. Diabetes 2025; 74:1007-1020. [PMID: 40131336 DOI: 10.2337/db24-0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Effective treatment strategies for diabetes-related pain are limited because of its complex pathogenesis, particularly brain mechanisms underlying this disease. The acid-sensing ion channel 1a (ASIC1a) has emerged as a key player in the development and treatment of various types of pain. We investigated the role of ASIC1a in diabetes-related pain and its molecular mechanisms in the anterior cingulate cortex (ACC). Our findings demonstrate that the upregulation of ASIC1a expression drives enhanced activity of excitatory glutamatergic neurons in the ACC (ACCGlu), promoting the development of pain hypersensitivity in streptozotocin (STZ)-induced diabetic male mice. Pharmacologic inhibition and genetic knockout of ASIC1a in ACCGlu neurons significantly reduced neuronal activity and alleviated mechanical and thermal pain sensitizations in STZ-induced diabetes. Furthermore, increased levels of tumor necrosis factor-α (TNF-α) in the ACC upregulated ASIC1a by triggering nuclear factor-κB (NF-κB) pathways, which led to the development of diabetes-related pain. Notably, the clinically used medication, infliximab, exhibited therapeutic effects on diabetes-related pain via its influence on TNF-α/NF-κB/ASIC1a pathway in STZ-treated mice. Collectively, this study identifies ASIC1a as a potential therapeutic target for diabetes-related pain and shows the neutralization of TNF-α leads to pain relief through the TNF-α/NF-κB/ASIC1a pathway in the ACC. These findings hold promise for the development of new clinical therapeutic strategies for diabetes-related pain. ARTICLE HIGHLIGHTS Upregulation of acid-sensing ion channel 1a (ASIC1a) expression in anterior cingulate cortex (ACC) glutamatergic (ACCGlu) neurons drives diabetes-related pain hypersensitivity in mice, and pharmacologic inhibition and genetic knockout of ASIC1a in ACCGlu neurons significantly reduce neuronal hyperactivity and alleviate pain. Tumor necrosis factor-α/nuclear factor-κB signaling in the ACC elevates ASIC1a expression, mechanistically linking neuroinflammation to pain development in diabetic mice. ASIC1a is a potential therapeutic target for diabetes-related pain, offering a pathway-specific strategy for treatment development.
Collapse
Affiliation(s)
- Ai-Jun Jiang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of the Institute of Health and Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong-Rui Wei
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sijia Chu
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of the Institute of Health and Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyuan Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of the Institute of Health and Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinling Yan
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of the Institute of Health and Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xing-Lei Song
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anesthesiology, Songjiang Hospital and Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China
- Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology, Centre for Leading Medicine and Advanced Technologies of the Institute of Health and Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
2
|
Bilgin B, Hekim MG, Bulut F, Kelestemur MM, Adam M, Ozcan S, Canpolat S, Ayar A, Ozcan M. Humanin attenuates metabolic, toxic, and traumatic neuropathic pain in mice by protecting against oxidative stress and increasing inflammatory cytokine. Neuropharmacology 2025; 263:110207. [PMID: 39510375 DOI: 10.1016/j.neuropharm.2024.110207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/12/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Neuropathic pain is associated with diverse etiologies, including sciatica, diabetes, and the use of chemotherapeutic agents. Despite the varied origins, mitochondrial dysfunction, oxidative stress, and inflammatory cytokines are recognized as key contributing factors in both the initiation and maintenance of neuropathic pain. The effects of the mitochondrial-derived peptide humanin on neuropathic pain, however, remain unclear, despite its demonstrated influence on these mechanisms in numerous disease models. This study aimed to evaluate the effects of humanin on pain behavior in murine models of metabolic (streptozotocin/STZ), toxic (oxaliplatin/OXA), traumatic (sciatic nerve cuffing/cuff), and neuropathic pain. A secondary objective was to assess whether humanin modulates oxidative damage and inflammatory cytokine levels in these neuropathic pain models. Humanin (4 mg/kg) was administered intraperitoneally (i.p.) to BALB/c male mice with induced neuropathic pain over a period of 15 days, with pain thresholds assessed using hot plate, cold plate, and Von Frey tests. Serum levels of antioxidant enzymes, oxidative stress markers, and inflammatory/anti-inflammatory cytokines were measured via enzyme-linked immunosorbent assay (ELISA). In neuropathic pain-induced mice, humanin administration resulted in a statistically significant increase in pain threshold values in the STZ + Humanin, OXA + Humanin, and cuff + Humanin groups compared to their respective control groups (P < 0.05) over 15 days. Furthermore, humanin treatment significantly elevated antioxidant enzyme levels and anti-inflammatory cytokine concentrations, while reducing oxidative stress markers and pro-inflammatory cytokine levels compared to control groups (P < 0.01). These findings suggest that humanin exhibits therapeutic potential in the treatment of neuropathic pain induced by STZ, OXA, and cuff models. The ability of humanin to mitigate neuropathic pain through the suppression of oxidative stress and inflammatory cytokines indicates its promise as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Batuhan Bilgin
- Gaziantep Islam Science and Technology University Faculty of Medicine, Department of Biophysics, Gaziantep, Turkey.
| | | | - Ferah Bulut
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey.
| | | | - Muhammed Adam
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey.
| | - Sibel Ozcan
- Firat University Faculty of Medicine Department of Anesthesiology and Reanimation, Elazig, Turkey.
| | - Sinan Canpolat
- Firat University Faculty of Medicine, Department of Physiology, Elazig, Turkey.
| | - Ahmet Ayar
- Karadeniz Technical University, Faculty of Medicine, Department of Physiology, Trabzon, Turkey.
| | - Mete Ozcan
- Firat University Faculty of Medicine, Department of Biophysics, Elazig, Turkey.
| |
Collapse
|
3
|
Zhang Y, Liu Y, Chen K, Miao Q, Cao Q, Zhang X. Exploring the Effects of Opioid-Related Drugs on the Clinical Outcome of Prostate Cancer Patients Via Integrated Bioinformatics Analysis. Mol Biotechnol 2025:10.1007/s12033-024-01353-w. [PMID: 39832058 DOI: 10.1007/s12033-024-01353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 12/07/2024] [Indexed: 01/22/2025]
Abstract
Opioids are the primary regimens for perioperative analgesia with controversial effects on oncological survival. The underlying mechanism remains unexplored. This study developed survival-related gene co-expression networks based on RNA-seq and clinical characteristics from TCGA cohort. Two survival-related networks were identified, and drug-induced transcriptional profiles were predicted. Immune cell infiltration algorithm, least absolute shrinkage and selection operator (LASSO) regression, and cox proportional models were executed to explore the correlation between opioid-related drugs and prostate cancer patient prognosis. The opioid receptor agonists, represented by tramadol, were evidenced for anti-survival effects on prostate cancer by facilitating the DNA replication and cell cycle, and immune cell infiltration. Conversely, opioid receptor antagonists showed pro-survival effects. A novel prognostic model containing CNIH2, MCCC1, and Gleason scores was established and validated in two independent cohorts. This study revealed opioids' effect on prostate cancer progression, and provided a novel model to predict these regulations in clinical outcomes.
Collapse
Affiliation(s)
- Yunxuan Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kailei Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Miao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.
| |
Collapse
|
4
|
Chaves ADS, Magalhães NS, Insuela DBR, Silva PMRE, Martins MA, Carvalho VF. Captopril inhibits the overproduction of proopiomelanocortin and adrenocorticotropic hormone in the pituitary gland of male diabetic mice in close relationship with an increase in glucocorticoid receptor expression. Eur J Pharmacol 2024; 984:177057. [PMID: 39396750 DOI: 10.1016/j.ejphar.2024.177057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Prior investigation shows that diabetic patients present hypothalamus-pituitary-adrenal (HPA) axis hyperactivity related to impaired negative feedback. This study investigates the effect of Captopril on the overproduction of adrenocorticotropic hormone (ACTH) and its precursor proopiomelanocortin (POMC) in the pituitary gland of male diabetic mice. Diabetes was induced by intravenous injection of alloxan into fasted Swiss-webster mice, and the animals were treated with Captopril for 14 consecutive days, starting 7 days post-diabetes induction. Plasma corticosterone levels were evaluated by ELISA, while pituitary gland expressions of angiotensin-II type 1 receptor (AT1), angiotensin-II type 2 receptor (AT2), ACTH, Bax, Bcl-2, KI-67, POMC, and glucocorticoid receptor (GR) were evaluated using immunohistochemistry or Western blot. Diabetic mice showed pituitary gland overexpression of AT1, without altering AT2 levels, which were sensitive to Captopril treatment. Furthermore, diabetic mice presented hypercortisolism, along with an increase in the number of corticotroph cells, POMC and ACTH expression, and number of proliferative cells, and a decrease of GR expression in the pituitary gland. In addition, treatment with Captopril reduced systemic corticosterone levels, corticotroph and proliferative cell numbers, and Bcl-2, POMC, and ACTH expression in the pituitary gland of diabetic mice, besides increasing the expression of Bax and GR. In conclusion, these findings show that Captopril is a promising therapy for treating complications associated with HPA axis hyperactivity in diabetic patients, in a mechanism probably related to the downregulation of POMC production in the pituitary gland and subsequent reduction of systemic corticosterone levels.
Collapse
Affiliation(s)
- Amanda da Silva Chaves
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Nathalia Santos Magalhães
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Daniella Bianchi Reis Insuela
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Patrícia Machado Rodrigues E Silva
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil
| | - Vinicius Frias Carvalho
- Laboratório de Inflamação, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, nº 4036, Manguinhos, CEP 21040-361, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Brazil.
| |
Collapse
|
5
|
He SQ, Zhang C, Wang XW, Huang Q, Liu J, Lin Q, He H, Yang DZ, Tseng SC, Guan Y. HC-HA/PTX3 from Human Amniotic Membrane Induced Differential Gene Expressions in DRG Neurons: Insights into the Modulation of Pain. Cells 2024; 13:1887. [PMID: 39594635 PMCID: PMC11592720 DOI: 10.3390/cells13221887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The biologics derived from human amniotic membranes (AMs) demonstrate potential pain-inhibitory effects in clinical settings. However, the molecular basis underlying this therapeutic effect remains elusive. HC-HA/PTX3 is a unique water-soluble regenerative matrix that is purified from human AMs. We examined whether HC-HA/PTX3 can modulate the gene networks and transcriptional signatures in the dorsal root ganglia (DRG) neurons transmitting peripheral sensory inputs to the spinal cord. Methods: We conducted bulk RNA-sequencing (RNA-seq) of mouse DRG neurons after treating them with HC-HA/PTX3 (15 µg/mL) for 10 min and 24 h in culture. Differential gene expression analysis was performed using the limma package, and Gene Ontology (GO) and protein-protein interaction (PPI) analyses were conducted to identify the networks of pain-related genes. Western blotting and in vitro calcium imaging were used to examine the protein levels and signaling of pro-opiomelanocortin (POMC) in DRG neurons. Results: Compared to the vehicle-treated group, 24 h treatment with HC-HA/PTX3 induced 2047 differentially expressed genes (DEGs), which were centered on the ATPase activity, receptor-ligand activity, and extracellular matrix pathways. Importantly, PPI analysis revealed that over 50 of these DEGs are closely related to pain and analgesia. Notably, HC-HA/PTX3 increased the expression and signaling pathway of POMC, which may affect opioid analgesia. Conclusions: HC-HA/PTX3 induced profound changes in the gene expression in DRG neurons, centered around various neurochemical mechanisms associated with pain modulation. Our findings suggest that HC-HA/PTX3 may be an important biological active component in human AMs that partly underlies its pain inhibitory effect, presenting a new strategy for pain treatment.
Collapse
Affiliation(s)
- Shao-Qiu He
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Xue-Wei Wang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qian Huang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
| | - Hua He
- BioTissue, Inc., Miami, FL 33126, USA; (H.H.); (S.C.T.)
| | - Da-Zhi Yang
- Acrogenic Technologies Inc., Rockville, MD 20847, USA;
| | | | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (S.-Q.H.); (C.Z.); (X.-W.W.); (Q.H.); (J.L.); (Q.L.)
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Zeng J, Gao WW, Yang H, Wang YN, Mei Y, Liu TT, Wang M, Tang L, Ma DC, Li W. Sodium tanshinone IIA sulfonate suppresses microglia polarization and neuroinflammation possibly via regulating miR-125b-5p/STAT3 axis to ameliorate neuropathic pain. Eur J Pharmacol 2024; 972:176523. [PMID: 38552937 DOI: 10.1016/j.ejphar.2024.176523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
The spinal cord microglia play a pivotal role in neuroinflammation and neuropathic pain (NP). Sodium tanshinone IIA sulfonate (STS), a derivative of tanshinone IIA, has anti-inflammatory and anti-hyperalgesic effects. However, its underlying mechanism in NP remains unclear. This study aimed to investigate the effect of STS and elucidate possible mechanisms in a rat model of spared nerve injury. In vivo experiments, STS and AG490 were administered intraperitoneally once daily for 14 consecutive days after surgery. The results showed that the expression of miR-125b-5p in the spinal dorsal horn was substantially reduced, whereas signal transducer and activator of transcription 3 (STAT3) signaling was increased. After treatment with STS, the mechanical thresholds, expression of miR-125b-5p, and microglial M2 marker such as Arg-1 in the spinal cord horn increased significantly, whereas multiple pro-inflammatory cytokines and apoptosis were significantly reduced. Moreover, STAT3 pathway-related proteins and expression of the microglial M1 marker, CD68, were appreciably inhibited. In vitro, lipopolysaccharide (LPS) was used to induce an inflammatory response in BV-2 microglial cells. STS pretreatment inhibited LPS-stimulated pro-inflammatory cytokine secretion, reduced STAT3 pathway related-proteins and apoptosis, increased miR-125b-5p and proopiomelanocortin expression, and enhanced microglia transformation from M1 to M2 phenotype in BV-2 cells. These effects were reversed after the inhibition of miR-125b-5p expression in BV-2 cells. A dual-luciferase reporter assay confirmed that STAT3 binds to miR-125b-5p. In summary, these results suggest that STS exerts anti-hyperalgesic and anti-neuroinflammatory effects in rats with NP possibly via the miR-125b-5p/STAT3 axis.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| | - Wei-Wei Gao
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Hao Yang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ya-Nang Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yang Mei
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Ting-Ting Liu
- Department of Pain Medicine, Affiliated Shapingba Hospital, Chongqing University, Chongqing, China
| | - Min Wang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Li Tang
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dong-Chuan Ma
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Wei Li
- Department of Pain Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.
| |
Collapse
|
7
|
Kuehn N, Schwarz A, Beretta CA, Schwarte Y, Schmitt F, Motsch M, Weidner N, Puttagunta R. Intermediate gray matter interneurons in the lumbar spinal cord play a critical and necessary role in coordinated locomotion. PLoS One 2023; 18:e0291740. [PMID: 37906544 PMCID: PMC10617729 DOI: 10.1371/journal.pone.0291740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/05/2023] [Indexed: 11/02/2023] Open
Abstract
Locomotion is a complex task involving excitatory and inhibitory circuitry in spinal gray matter. While genetic knockouts examine the function of individual spinal interneuron (SpIN) subtypes, the phenotype of combined SpIN loss remains to be explored. We modified a kainic acid lesion to damage intermediate gray matter (laminae V-VIII) in the lumbar spinal enlargement (spinal L2-L4) in female rats. A thorough, tailored behavioral evaluation revealed deficits in gross hindlimb function, skilled walking, coordination, balance and gait two weeks post-injury. Using a Random Forest algorithm, we combined these behavioral assessments into a highly predictive binary classification system that strongly correlated with structural deficits in the rostro-caudal axis. Machine-learning quantification confirmed interneuronal damage to laminae V-VIII in spinal L2-L4 correlates with hindlimb dysfunction. White matter alterations and lower motoneuron loss were not observed with this KA lesion. Animals did not regain lost sensorimotor function three months after injury, indicating that natural recovery mechanisms of the spinal cord cannot compensate for loss of laminae V-VIII neurons. As gray matter damage accounts for neurological/walking dysfunction in instances of spinal cord injury affecting the cervical or lumbar enlargement, this research lays the groundwork for new neuroregenerative therapies to replace these lost neuronal pools vital to sensorimotor function.
Collapse
Affiliation(s)
- Naëmi Kuehn
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Schwarz
- Laboratory for Experimental Neurorehabilitation, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Carlo Antonio Beretta
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Yvonne Schwarte
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Francesca Schmitt
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Motsch
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Radhika Puttagunta
- Laboratory for Experimental Neuroregeneration, Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
9
|
Han Z, Andrš M, Madhavan BK, Kaymak S, Sulaj A, Kender Z, Kopf S, Kihm L, Pepperkok R, Janscak P, Nawroth P, Kumar V. The importance of nuclear RAGE-Mcm2 axis in diabetes or cancer-associated replication stress. Nucleic Acids Res 2023; 51:2298-2318. [PMID: 36807739 PMCID: PMC10018352 DOI: 10.1093/nar/gkad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/23/2023] Open
Abstract
An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.
Collapse
Affiliation(s)
- Zhe Han
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Martin Andrš
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Bindhu K Madhavan
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Serap Kaymak
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Alba Sulaj
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Zoltan Kender
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Stefan Kopf
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Lars Kihm
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
| | - Rainer Pepperkok
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
| | - Pavel Janscak
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ-14300 Prague, Czech Republic
- Institute of Molecular Cancer Research, University of Zurich, 8057 Zurich, Switzerland
| | - Peter Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| | - Varun Kumar
- Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410, Heidelberg, Germany
- Institute for Immunology, University Hospital of Heidelberg, INF 305, Heidelberg, Germany
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility, Heidelberg, Germany
- German Center of Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
10
|
Myostatin Knockout Affects Mitochondrial Function by Inhibiting the AMPK/SIRT1/PGC1α Pathway in Skeletal Muscle. Int J Mol Sci 2022; 23:ijms232213703. [PMID: 36430183 PMCID: PMC9694677 DOI: 10.3390/ijms232213703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.
Collapse
|
11
|
Serum kisspeptin and proopiomelanocortin in cystic fibrosis: a single study. Sci Rep 2022; 12:17669. [PMID: 36271282 PMCID: PMC9586927 DOI: 10.1038/s41598-022-21851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 01/18/2023] Open
Abstract
The determination of hormonal biomarkers is of increasing interest in many diseases, including cystic fibrosis (CF). Hormones that have not been estimated and described so far in CF include kisspeptin (KISS) and proopiomelanocortin (POMC), which are involved in the regulation of many processes, including appetite and fertility. Therefore, the aim of our study was to estimate the level of KISS and POMC in sera from CF patients and to determine the correlation between these hormones and clinical parameters. For this purpose, we estimated the levels of KISS and POMC in 38 CF patients and 16 healthy participants with enzyme-linked immunosorbent assay. We found significantly reduced levels of KISS and POMC in people with CF compared to healthy subjects (1.76 ± 0.46 vs. 2.27 ± 0.56 ng/mL, p < 0.05 and 6.25 ± 4.36 vs. 14.74 ± 6.24 ng/mL, p < 0.001, respectively). Furthermore, the level of both hormones was negatively correlated with age. The hormones studied did not correlate with the results of spirometry and each other. Thus, decreased KISS and POMC levels may be associated with lower body weight and delayed puberty in patients with CF.
Collapse
|
12
|
Gu M, Zhou X, Zhu L, Gao Y, Gao L, Bai C, Yang L, Li G. Myostatin Mutation Promotes Glycolysis by Increasing Phosphorylation of Phosphofructokinase via Activation of PDE5A-cGMP-PKG in Cattle Heart. Front Cell Dev Biol 2022; 9:774185. [PMID: 35155444 PMCID: PMC8831326 DOI: 10.3389/fcell.2021.774185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
Myostatin (MSTN) is a primary negative regulator of skeletal muscle mass and causes multiple metabolic changes. However, whether MSTN mutation affects heart morphology and physiology remains unclear. Myostatin mutation (MT) had no effect on cattle cardiac muscle in histological examination, but in biochemical assays, glycolysis increased in cattle hearts with MT. Compared with wild-type cattle, there were no differences in mRNA and protein levels of rate-limiting enzymes, but phosphofructokinase (PFK) phosphorylation increased in cattle hearts with MT. Transcriptome analysis showed that phosphodiesterase-5A (PDE5A), a target for inhibiting cGMP-PKG signaling, was downregulated. For the mechanism, chromatin immunoprecipitation qPCR showed that the SMAD2/SMAD3 complex in the canonical downstream pathway for MSTN combined with the promoter of PDE5A. The cGMP-PKG pathway was activated, and PKG increased phosphorylation of PFK in cattle hearts with MT. In addition, activation of PKG and the increase in PFK phosphorylation promoted glycolysis. Knockdown of PKG resulted in the opposite phenomena. The results indicated that MT potentiated PFK phosphorylation via the PDE5A-cGMP-PKG pathway and thereby promoted glycolysis in the heart.
Collapse
Affiliation(s)
- Mingjuan Gu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xinyu Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lin Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Yajie Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Li Gao
- Baotou Teachers’ College, Baotou, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- School of Life Science, Inner Mongolia University, Hohhot, China
- *Correspondence: Lei Yang, ; Guangpeng Li,
| |
Collapse
|
13
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
14
|
Sun N, Yu L, Gao Y, Ma L, Ren J, Liu Y, Gao DS, Xie C, Wu Y, Wang L, Hong J, Yan M. MeCP2 Epigenetic Silencing of Oprm1 Gene in Primary Sensory Neurons Under Neuropathic Pain Conditions. Front Neurosci 2021; 15:743207. [PMID: 34803588 PMCID: PMC8602696 DOI: 10.3389/fnins.2021.743207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Opioids are the last option for the pharmacological treatment of neuropathic pain, but their antinociceptive effects are limited. Decreased mu opioid receptor (MOR) expression in the peripheral nervous system may contribute to this. Here, we showed that nerve injury induced hypermethylation of the Oprm1 gene promoter and an increased expression of methyl-CpG binding protein 2 (MeCP2) in injured dorsal root ganglion (DRG). The downregulation of MOR in the DRG is closely related to the augmentation of MeCP2, an epigenetic repressor, which could recruit HDAC1 and bind to the methylated regions of the Oprm1 gene promoter. MeCP2 knockdown restored the expression of MOR in injured DRG and enhanced the analgesic effect of morphine, while the mimicking of this increase via the intrathecal infusion of viral vector-mediated MeCP2 was sufficient to reduce MOR in the DRG. Moreover, HDAC1 inhibition with suberoylanilide hydroxamic acid, an HDAC inhibitor, also prevented MOR reduction in the DRG of neuropathic pain mice, contributing to the augmentation of morphine analgesia effects. Mechanistically, upregulated MeCP2 promotes the binding of a high level of HDCA1 to hypermethylated regions of the Oprm1 gene promoter, reduces the acetylation of histone H3 (acH3) levels of the Oprm1 gene promoter, and attenuates Oprm1 transcription in injured DRG. Thus, upregulated MeCP2 and HDAC1 in Oprm1 gene promoter sites, negatively regulates MOR expression in injured DRG, mitigating the analgesic effect of the opioids. Targeting MeCP2/HDAC1 may thus provide a new solution for improving the therapeutic effect of opioids in a clinical setting.
Collapse
Affiliation(s)
- Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Longfei Ma
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dave Schwinn Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Xie
- Department of Anesthesiology, The First People's Hospital of Huzhou, Huzhou, China
| | - Ying Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lieju Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Juncong Hong
- Department of Anesthesiology, Yuhang First People's Hospital, Hangzhou, China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Hovhannisyan AH, Son H, Mecklenburg J, Barba-Escobedo PA, Tram M, Gomez R, Shannonhouse J, Zou Y, Weldon K, Ruparel S, Lai Z, Tumanov AV, Kim YS, Akopian AN. Pituitary hormones are specifically expressed in trigeminal sensory neurons and contribute to pain responses in the trigeminal system. Sci Rep 2021; 11:17813. [PMID: 34497285 PMCID: PMC8426369 DOI: 10.1038/s41598-021-97084-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Trigeminal (TG), dorsal root (DRG), and nodose/jugular (NG/JG) ganglia each possess specialized and distinct functions. We used RNA sequencing of two-cycle sorted Pirt-positive neurons to identify genes exclusively expressing in L3-L5 DRG, T10-L1 DRG, NG/JG, and TG mouse ganglion neurons. Transcription factor Phox2b and Efcab6 are specifically expressed in NG/JG while Hoxa7 is exclusively present in both T10-L1 and L3-L5 DRG neurons. Cyp2f2, Krt18, and Ptgds, along with pituitary hormone prolactin (Prl), growth hormone (Gh), and proopiomelanocortin (Pomc) encoding genes are almost exclusively in TG neurons. Immunohistochemistry confirmed selective expression of these hormones in TG neurons and dural nerves; and showed GH expression in subsets of TRPV1+ and CGRP+ TG neurons. We next examined GH roles in hypersensitivity in the spinal versus trigeminal systems. Exogenous GH produced mechanical hypersensitivity when injected intrathecally, but not intraplantarly. GH-induced thermal hypersensitivity was not detected in the spinal system. GH dose-dependently generated orofacial and headache-like periorbital mechanical hypersensitivity after administration into masseter muscle and dura, respectively. Periorbital mechanical hypersensitivity was reversed by a GH receptor antagonist, pegvisomant. Overall, pituitary hormone genes are selective for TG versus other ganglia somatotypes; and GH has distinctive functional significance in the trigeminal versus spinal systems.
Collapse
Affiliation(s)
- Anahit H Hovhannisyan
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Hyeonwi Son
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Jennifer Mecklenburg
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Priscilla Ann Barba-Escobedo
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Meilinn Tram
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Ruben Gomez
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - John Shannonhouse
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Yi Zou
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Shivani Ruparel
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Departments of Molecular Medicine, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Greehey Children's Cancer Research Institute, UTHSCSA, San Antonio, TX, 78229, USA
| | - Alexei V Tumanov
- Departments of Microbiology, Immunology and Molecular Genetics, Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Yu Shin Kim
- Departments of Oral and Maxillofacial Surgery, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Armen N Akopian
- Departments of Endodontics, The School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
- Programs in Integrated Biomedical Sciences and Translational Sciences, The School of Medicine, UTHSCSA, San Antonio, TX, 78229, USA.
| |
Collapse
|
16
|
Jakob MO, Kofoed-Branzk M, Deshpande D, Murugan S, Klose CSN. An Integrated View on Neuronal Subsets in the Peripheral Nervous System and Their Role in Immunoregulation. Front Immunol 2021; 12:679055. [PMID: 34322118 PMCID: PMC8312561 DOI: 10.3389/fimmu.2021.679055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The peripheral nervous system consists of sensory circuits that respond to external and internal stimuli and effector circuits that adapt physiologic functions to environmental challenges. Identifying neurotransmitters and neuropeptides and the corresponding receptors on immune cells implies an essential role for the nervous system in regulating immune reactions. Vice versa, neurons express functional cytokine receptors to respond to inflammatory signals directly. Recent advances in single-cell and single-nuclei sequencing have provided an unprecedented depth in neuronal analysis and allowed to refine the classification of distinct neuronal subsets of the peripheral nervous system. Delineating the sensory and immunoregulatory capacity of different neuronal subsets could inform a better understanding of the response happening in tissues that coordinate physiologic functions, tissue homeostasis and immunity. Here, we summarize current subsets of peripheral neurons and discuss neuronal regulation of immune responses, focusing on neuro-immune interactions in the gastrointestinal tract. The nervous system as a central coordinator of immune reactions and tissue homeostasis may predispose for novel promising therapeutic approaches for a large variety of diseases including but not limited to chronic inflammation.
Collapse
Affiliation(s)
- Manuel O Jakob
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Kofoed-Branzk
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Divija Deshpande
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Shaira Murugan
- Department of BioMedical Research, Group of Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Christoph S N Klose
- Department of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|