1
|
Shendrik P, Sorkin R, Golani G. Fusion of asymmetric membranes: the emergence of a preferred direction. Faraday Discuss 2025. [PMID: 40387629 DOI: 10.1039/d4fd00189c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The fusion of lipid membranes progresses through a series of intermediate steps with two significant energy barriers: hemifusion-stalk formation and fusion-pore expansion. The cell's ability to tune these energy barriers is crucial as they determine the rate of many biological processes involving membrane fusion. However, a mechanism that allows the cell to manipulate both barriers in the same direction remains elusive, since membrane properties that the cell could dynamically tune during its life cycle, such as the lipids' spontaneous curvatures and membrane tension, have an opposite effect on the two barriers: tension inhibits stalk formation while promoting fusion-pore expansion. In contrast, increasing the total membrane concentration of lipids with negative intrinsic curvatures, such as cholesterol, promotes hemifusion-stalk formation while inhibiting pore expansion, and vice versa for lipids with positive intrinsic curvatures. Therefore, changes in these membrane properties increase one energy barrier at the expense of the other, resulting in a mixed effect on the fusion reaction. A possible mechanism to change both barriers in the same direction is by inducing lipid composition asymmetry, which results in tension and spontaneous curvature differences between the monolayers. To test the feasibility of this mechanism, a continuum elastic model was used to simulate the fusion intermediates and calculate the changes in the energy barriers. The calculations showed that a reasonable lipid composition asymmetry could lead to a 10-20kBT difference in both energy barriers, depending on the direction from which fusion occurs. We further provide experimental support to the model predictions, demonstrating changes in the time to hemifusion upon asymmetry introduction. These results indicate that biological membranes, which are asymmetric, have a preferred direction for fusion.
Collapse
Affiliation(s)
- Petr Shendrik
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Raya Sorkin
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Gonen Golani
- Department of Physics, University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
2
|
Lee DS, Oster LF, Son S, Fletcher DA. Cell surface crowding is a tunable biophysical barrier to cell-cell fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628283. [PMID: 39713336 PMCID: PMC11661186 DOI: 10.1101/2024.12.12.628283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cell-cell fusion is fundamental to developmental processes such as muscle formation, as well as to viral infections that cause pathological syncytia. An essential step in fusion is close membrane apposition, but cell membranes are crowded with proteins, glycoproteins, and glycolipids, all of which must be cleared before a fusion pore can be nucleated. Here, we find that cell surface crowding drastically reduces fusogenicity in multiple systems, independent of the method for driving fusion. We estimate that cell surface crowding presents an energetic barrier to membrane apposition on the scale of ∼ 100 k B T , greater than that of bare membrane fusion. We show that increasing cell surface crowding reduces fusion efficiency of PEG-mediated and fusogen-mediated cell-cell fusion, as well as synthetic membranes under force. Interestingly, we find that differentiating myoblasts naturally decrease cell surface crowding prior to fusion. Cell surface crowding presents an underappreciated biophysical barrier that may be tuned developmentally and could be targeted externally to control tissue-specific cell-cell fusion.
Collapse
Affiliation(s)
- Daniel S.W. Lee
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Liya F. Oster
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, Berkeley, CA 94720
| | - Sungmin Son
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Daniel A. Fletcher
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Graduate Group in Biophysics, Berkeley, CA 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
3
|
Zhang C, Ye M, Melikov K, Yang D, Vale GDD, McDonald J, Eckert K, Lin MJ, Zeng X. CLSTN3B promotes lipid droplet maturation and lipid storage in mouse adipocytes. Nat Commun 2024; 15:9475. [PMID: 39488519 PMCID: PMC11531554 DOI: 10.1038/s41467-024-53750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload in mice of both sexes.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mengchen Ye
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Jeffrey McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kaitlyn Eckert
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Yong P, Zhang Z, Du S. Ectopic expression of Myomaker and Myomixer in slow muscle cells induces slow muscle fusion and myofiber death. J Genet Genomics 2024; 51:1187-1203. [PMID: 39209151 PMCID: PMC11570343 DOI: 10.1016/j.jgg.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish embryos possess two major types of myofibers, the slow and fast fibers, with distinct patterns of cell fusion. The fast muscle cells can fuse, while the slow muscle cells cannot. Here, we show that myomaker is expressed in both slow and fast muscle precursors, whereas myomixer is exclusive to fast muscle cells. The loss of Prdm1a, a regulator of slow muscle differentiation, results in strong myomaker and myomixer expression and slow muscle cell fusion. This abnormal fusion is further confirmed by the direct ectopic expression of myomaker or myomixer in slow muscle cells of transgenic models. Using the transgenic models, we show that the heterologous fusion between slow and fast muscle cells can alter slow muscle cell migration and gene expression. Furthermore, the overexpression of myomaker and myomixer also disrupts membrane integrity, resulting in muscle cell death. Collectively, this study identifies that the fiber-type-specific expression of fusogenic proteins is critical for preventing inappropriate fusion between slow and fast fibers in fish embryos, highlighting the need for precise regulation of fusogenic gene expression to maintain muscle fiber integrity and specificity.
Collapse
Affiliation(s)
- Pengzheng Yong
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Zhanxiong Zhang
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD 21202, United States of America.
| |
Collapse
|
5
|
Lin KH, Hibbert JE, Flynn CG, Lemens JL, Torbey MM, Steinert ND, Flejsierowicz PM, Melka KM, Lindley GT, Lares M, Setaluri V, Wagers AJ, Hornberger TA. Satellite cell-derived TRIM28 is pivotal for mechanical load- and injury-induced myogenesis. EMBO Rep 2024; 25:3812-3841. [PMID: 39143258 PMCID: PMC11387408 DOI: 10.1038/s44319-024-00227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/16/2024] Open
Abstract
Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discover that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Interestingly, different from the role reported in a previous study based on C2C12 myoblasts, multiple lines of both in vitro and in vivo evidence reveal that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 are not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discover that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jamie E Hibbert
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Corey Gk Flynn
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Jake L Lemens
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Melissa M Torbey
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Nathaniel D Steinert
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Philip M Flejsierowicz
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Kiley M Melka
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Garrison T Lindley
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Joslin Diabetes Center, Boston, MA, USA
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin - Madison, Madison, WI, USA.
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Feng L, Chen Z, Bian H. Skeletal muscle: molecular structure, myogenesis, biological functions, and diseases. MedComm (Beijing) 2024; 5:e649. [PMID: 38988494 PMCID: PMC11234433 DOI: 10.1002/mco2.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Skeletal muscle is an important motor organ with multinucleated myofibers as its smallest cellular units. Myofibers are formed after undergoing cell differentiation, cell-cell fusion, myonuclei migration, and myofibril crosslinking among other processes and undergo morphological and functional changes or lesions after being stimulated by internal or external factors. The above processes are collectively referred to as myogenesis. After myofibers mature, the function and behavior of skeletal muscle are closely related to the voluntary movement of the body. In this review, we systematically and comprehensively discuss the physiological and pathological processes associated with skeletal muscles from five perspectives: molecule basis, myogenesis, biological function, adaptive changes, and myopathy. In the molecular structure and myogenesis sections, we gave a brief overview, focusing on skeletal muscle-specific fusogens and nuclei-related behaviors including cell-cell fusion and myonuclei localization. Subsequently, we discussed the three biological functions of skeletal muscle (muscle contraction, thermogenesis, and myokines secretion) and its response to stimulation (atrophy, hypertrophy, and regeneration), and finally settled on myopathy. In general, the integration of these contents provides a holistic perspective, which helps to further elucidate the structure, characteristics, and functions of skeletal muscle.
Collapse
Affiliation(s)
- Lan‐Ting Feng
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Huijie Bian
- Department of Cell Biology & National Translational Science Center for Molecular MedicineNational Key Laboratory of New Drug Discovery and Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Mukhopadhyay U, Mandal T, Chakraborty M, Sinha B. The Plasma Membrane and Mechanoregulation in Cells. ACS OMEGA 2024; 9:21780-21797. [PMID: 38799362 PMCID: PMC11112598 DOI: 10.1021/acsomega.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Cells inhabit a mechanical microenvironment that they continuously sense and adapt to. The plasma membrane (PM), serving as the boundary of the cell, plays a pivotal role in this process of adaptation. In this Review, we begin by examining well-studied processes where mechanoregulation proves significant. Specifically, we highlight examples from the immune system and stem cells, besides discussing processes involving fibroblasts and other cell types. Subsequently, we discuss the common molecular players that facilitate the sensing of the mechanical signal and transform it into a chemical response covering integrins YAP/TAZ and Piezo. We then review how this understanding of molecular elements is leveraged in drug discovery and tissue engineering alongside a discussion of the methodologies used to measure mechanical properties. Focusing on the processes of endocytosis, we discuss how cells may respond to altered membrane mechanics using endo- and exocytosis. Through the process of depleting/adding the membrane area, these could also impact membrane mechanics. We compare pathways from studies illustrating the involvement of endocytosis in mechanoregulation, including clathrin-mediated endocytosis (CME) and the CLIC/GEEC (CG) pathway as central examples. Lastly, we review studies on cell-cell fusion during myogenesis, the mechanical integrity of muscle fibers, and the reported and anticipated roles of various molecular players and processes like endocytosis, thereby emphasizing the significance of mechanoregulation at the PM.
Collapse
Affiliation(s)
- Upasana Mukhopadhyay
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Tithi Mandal
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| | | | - Bidisha Sinha
- Department of Biological
Sciences, Indian Institute of Science Education
and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
8
|
Zhao P, Feng L, Jiang W, Wu P, Liu Y, Ren H, Jin X, Zhang L, Mi H, Zhou X. Unveiling the emerging role of curcumin to alleviate ochratoxin A-induced muscle toxicity in grass carp (Ctenopharyngodon idella): in vitro and in vivo studies. J Anim Sci Biotechnol 2024; 15:72. [PMID: 38734645 PMCID: PMC11088780 DOI: 10.1186/s40104-024-01023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/11/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.
Collapse
Affiliation(s)
- Piao Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Weidan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Hongmei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Xiaowan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China
| | - Lu Zhang
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Haifeng Mi
- Tongwei Co., Ltd., Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Xiaoqiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Higashihara T, Odawara M, Nishi H, Sugasawa T, Suzuki Y, Kametaka S, Inagi R, Nangaku M. Uremia Impedes Skeletal Myocyte Myomixer Expression and Fusogenic Activity: Implication for Uremic Sarcopenia. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:759-771. [PMID: 38637109 DOI: 10.1016/j.ajpath.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/10/2023] [Accepted: 01/10/2024] [Indexed: 04/20/2024]
Abstract
In patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice. In the cultured murine skeletal myocytes, stimulation with indoxyl sulfate (IS), a representative uremic toxin, morphologically jeopardized the differentiation, which was counteracted by L-ascorbic acid (L-AsA) treatment. Transcriptome analysis of cultured myocytes identified a set of genes whose expression was down-regulated by IS stimulation but up-regulated by L-AsA treatment. Gene silencing of myomixer, one of the genes in the set, impaired myocyte fusion during differentiation. By contrast, lentiviral overexpression of myomixer compensated for a hypomorphic phenotype caused by IS treatment. The split-luciferase technique demonstrated that IS stimulation negatively affected early myofusion activity that was rescued by L-AsA treatment. Lastly, in mice with CKD compared with control mice, myomixer expression in the muscle tissue in addition to the muscle weight after the injury was reduced, both of which were restored with L-AsA treatment. Collectively, data showed that the uremic milieu impairs the expression of myomixer and impedes the myofusion process. Considering frequent musculoskeletal injuries in uremic patients, defective myocyte fusion followed by delayed muscle damage recovery could underlie their muscle loss and weakness.
Collapse
Affiliation(s)
- Takaaki Higashihara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Motoki Odawara
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Nishi
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Takehito Sugasawa
- Laboratory of Clinical Examination/Sports Medicine, Department of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan; Department of Sports Medicine Analysis, Open Facility Network Office, Research Facility Center for Science and Technology, University of Tsukuba, Ibaraki, Japan
| | - Yumika Suzuki
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Satoshi Kametaka
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, Aichi, Japan
| | - Reiko Inagi
- Division of CKD Pathophysiology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Di Bartolo AL, Caparotta M, Polo LM, Masone D. Myomerger Induces Membrane Hemifusion and Regulates Fusion Pore Expansion. Biochemistry 2024; 63:815-826. [PMID: 38349279 DOI: 10.1021/acs.biochem.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Membrane fusion is a crucial mechanism in a wide variety of important events in cell biology from viral infection to exocytosis. However, despite many efforts and much progress, cell-cell fusion has remained elusive to our understanding. Along the life of the fusion pore, large conformational changes take place from the initial lipid bilayer bending, passing through the hemifusion intermediates, and ending with the formation of the first nascent fusion pore. In this sense, computer simulations are an ideal technique for describing such complex lipid remodeling at the molecular level. In this work, we studied the role played by the muscle-specific membrane protein Myomerger during the formation of the fusion pore. We have conducted μs length atomistic and coarse-grained molecular dynamics, together with free-energy calculations using ad hoc collective variables. Our results show that Myomerger favors the hemifusion diaphragm-stalk transition, reduces the nucleation-expansion energy difference, and promotes the formation of nonenlarging fusion pores.
Collapse
Affiliation(s)
- Ary Lautaro Di Bartolo
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), 5500 Mendoza, Argentina
| | - Marcelo Caparotta
- Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Luis Mariano Polo
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza (IHEM)─Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| |
Collapse
|
11
|
Wherley TJ, Thomas S, Millay DP, Saunders T, Roy S. Molecular regulation of myocyte fusion. Curr Top Dev Biol 2024; 158:53-82. [PMID: 38670716 PMCID: PMC11503471 DOI: 10.1016/bs.ctdb.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Myocyte fusion is a pivotal process in the development and regeneration of skeletal muscle. Failure during fusion can lead to a range of developmental as well as pathological consequences. This review aims to comprehensively explore the intricate processes underlying myocyte fusion, from the molecular to tissue scale. We shed light on key players, such as the muscle-specific fusogens - Myomaker and Myomixer, in addition to some lesser studied molecules contributing to myocyte fusion. Conserved across vertebrates, Myomaker and Myomixer play a crucial role in driving the merger of plasma membranes of fusing myocytes, ensuring the formation of functional muscle syncytia. Our multiscale approach also delves into broader cell and tissue dynamics that orchestrate the timing and positioning of fusion events. In addition, we explore the relevance of muscle fusogens to human health and disease. Mutations in fusogen genes have been linked to congenital myopathies, providing unique insights into the molecular basis of muscle diseases. We conclude with a discussion on potential therapeutic avenues that may emerge from manipulating the myocyte fusion process to remediate skeletal muscle disorders.
Collapse
Affiliation(s)
- Tanner J Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Serena Thomas
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Timothy Saunders
- Warwick Medical School, University of Warwick, Coventry, United Kingdom; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore.
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Department of Pediatrics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
12
|
Perpiñá-Clérigues C, Mellado S, Galiana-Roselló C, Fernández-Regueras M, Marcos M, García-García F, Pascual M. Novel insight into the lipid network of plasma extracellular vesicles reveal sex-based differences in the lipidomic profile of alcohol use disorder patients. Biol Sex Differ 2024; 15:10. [PMID: 38273378 PMCID: PMC10809459 DOI: 10.1186/s13293-024-00584-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) is one of the most common psychiatric disorders, with the consumption of alcohol considered a leading cause of preventable deaths worldwide. Lipids play a crucial functional role in cell membranes; however, we know little about the role of lipids in extracellular vesicles (EVs) as regulatory molecules and disease biomarkers. METHODS We employed a sensitive lipidomic strategy to characterize lipid species from the plasma EVs of AUD patients to evaluate functional roles and enzymatic activity networks to improve the knowledge of lipid metabolism after alcohol consumption. We analyzed plasma EV lipids from AUD females and males and healthy individuals to highlight lipids with differential abundance and biologically interpreted lipidomics data using LINEX2, which evaluates enzymatic dysregulation using an enrichment algorithm. RESULTS Our results show, for the first time, that AUD females exhibited more significant substrate-product changes in lysophosphatidylcholine/phosphatidylcholine lipids and phospholipase/acyltransferase activity, which are potentially linked to cancer progression and neuroinflammation. Conversely, AUD males suffer from dysregulated ceramide and sphingomyelin lipids involving sphingomyelinase, sphingomyelin phosphodiesterase, and sphingomyelin synthase activity, which relates to hepatotoxicity. Notably, the analysis of plasma EVs from AUD females and males demonstrates enrichment of lipid ontology terms associated with "negative intrinsic curvature" and "positive intrinsic curvature", respectively. CONCLUSIONS Our methodological developments support an improved understanding of lipid metabolism and regulatory mechanisms, which contribute to the identification of novel lipid targets and the discovery of sex-specific clinical biomarkers in AUD.
Collapse
Affiliation(s)
- Carla Perpiñá-Clérigues
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Susana Mellado
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain
| | - Cristina Galiana-Roselló
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, 46980, Paterna, Spain
| | - María Fernández-Regueras
- Hospital Universitario de Burgos, 09006, Burgos, Spain
- Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Miguel Marcos
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Francisco García-García
- Computational Biomedicine Laboratory, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - María Pascual
- Department of Physiology, School of Medicine and Dentistry, University of Valencia, Avda. Blasco Ibáñez, 15, 46010, Valencia, Spain.
| |
Collapse
|
13
|
Zhang C, Ye M, Melikov K, Yang D, Dias do Vale G, McDonald J, Eckert K, Lin MJ, Zeng X. CLSTN3B enhances adipocyte lipid droplet structure and function via endoplasmic reticulum contact. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576491. [PMID: 38293096 PMCID: PMC10827225 DOI: 10.1101/2024.01.20.576491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Interorganelle contacts facilitate material exchanges and sustain the structural and functional integrity of organelles. Lipid droplets (LDs) of adipocytes are responsible for energy storage and mobilization responding to body needs. LD biogenesis defects compromise the lipid-storing capacity of adipocytes, resulting in ectopic lipid deposition and metabolic disorders, yet how the uniquely large LDs in adipocytes attain structural and functional maturation is incompletely understood. Here we show that the mammalian adipocyte-specific protein CLSTN3B is crucial for adipocyte LD maturation. CLSTN3B employs an arginine-rich segment to promote extensive contact and hemifusion-like structure formation between the endoplasmic reticulum (ER) and LD, allowing ER-to-LD phospholipid diffusion during LD expansion. CLSTN3B ablation results in reduced LD surface phospholipid density, increased turnover of LD-surface proteins, and impaired LD functions. Our results establish the central role of CLSTN3B in the adipocyte-specific LD maturation pathway that enhances lipid storage and maintenance of metabolic health under caloric overload.
Collapse
Affiliation(s)
- Chuanhai Zhang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | - Mengchen Ye
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Dengbao Yang
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | | | - Jeffrey McDonald
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Kaitlyn Eckert
- Center for Human Nutrition, UT Southwestern Medical Center, Dallas, TX
| | - Mei-Jung Lin
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| | - Xing Zeng
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX
| |
Collapse
|
14
|
Bottacchiari M, Gallo M, Bussoletti M, Casciola CM. The local variation of the Gaussian modulus enables different pathways for fluid lipid vesicle fusion. Sci Rep 2024; 14:23. [PMID: 38168475 PMCID: PMC10762093 DOI: 10.1038/s41598-023-50922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Viral infections, fertilization, neurotransmission, and many other fundamental biological processes rely on membrane fusion. Straightforward calculations based on the celebrated Canham-Helfrich elastic model predict a large topological energy barrier that prevents the fusion process from being thermally activated. While such high energy is in accordance with the physical barrier function of lipid membranes, it is difficult to reconcile with the biological mechanisms involved in fusion processes. In this work, we use a Ginzburg-Landau type of free energy that recovers the Canham-Helfrich model in the limit of small width-to-vesicle-extension ratio, with the additional ability to handle topological transitions. We show that a local modification of the Gaussian modulus in the merging region both dramatically lowers the elastic energy barrier and substantially changes the minimal energy pathway for fusion, in accordance with experimental evidence. Therefore, we discuss biological examples in which such a modification might play a crucial role.
Collapse
Affiliation(s)
- Matteo Bottacchiari
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Mirko Gallo
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Marco Bussoletti
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy
| | - Carlo Massimo Casciola
- Department of Mechanical and Aerospace Engineering, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
15
|
Whitlock JM. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Results Probl Cell Differ 2024; 71:257-279. [PMID: 37996682 DOI: 10.1007/978-3-031-37936-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Skeletal muscle possesses a resident, multipotent stem cell population that is essential for its repair and maintenance throughout life. Here I highlight the role of this stem cell population in muscle repair and regeneration and review the genetic control of the process; the mechanistic steps of activation, migration, recognition, adhesion, and fusion of these cells; and discuss the novel recognition of the membrane signaling that coordinates myogenic cell-cell fusion, as well as the identification of a two-part fusogen system that facilitates it.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Section on Membrane Biology, Eunice Kennedy Shrive National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Lin KH, Hibbert JE, Lemens JL, Torbey MM, Steinert ND, Flejsierowicz PM, Melka KM, Lares M, Setaluri V, Hornberger TA. The role of satellite cell-derived TRIM28 in mechanical load- and injury-induced myogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572566. [PMID: 38187693 PMCID: PMC10769277 DOI: 10.1101/2023.12.20.572566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Satellite cells are skeletal muscle stem cells that contribute to postnatal muscle growth, and they endow skeletal muscle with the ability to regenerate after a severe injury. Here we discovered that this myogenic potential of satellite cells requires a protein called tripartite motif-containing 28 (TRIM28). Unexpectedly, multiple lines of both in vitro and in vivo evidence revealed that the myogenic function of TRIM28 is not dependent on changes in the phosphorylation of its serine 473 residue. Moreover, the functions of TRIM28 were not mediated through the regulation of satellite cell proliferation or differentiation. Instead, our findings indicate that TRIM28 regulates the ability of satellite cells to progress through the process of fusion. Specifically, we discovered that TRIM28 controls the expression of a fusogenic protein called myomixer and concomitant fusion pore formation. Collectively, the outcomes of this study expose the framework of a novel regulatory pathway that is essential for myogenesis.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jamie E. Hibbert
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Jake L. Lemens
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Melissa M. Torbey
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Nathaniel D. Steinert
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Philip M. Flejsierowicz
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Kiley M. Melka
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| | - Marcos Lares
- Department of Dermatology, University of Wisconsin - Madison, WI, USA
| | | | - Troy A. Hornberger
- Department of Comparative Biosciences, University of Wisconsin - Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin - Madison, WI, USA
| |
Collapse
|
17
|
Shendrik P, Golani G, Dharan R, Schwarz US, Sorkin R. Membrane Tension Inhibits Lipid Mixing by Increasing the Hemifusion Stalk Energy. ACS NANO 2023; 17:18942-18951. [PMID: 37669531 PMCID: PMC7615193 DOI: 10.1021/acsnano.3c04293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Fusion of biological membranes is fundamental in various physiological events. The fusion process involves several intermediate stages with energy barriers that are tightly dependent on the mechanical and physical properties of the system, one of which is membrane tension. As previously established, the late stages of fusion, including hemifusion diaphragm and pore expansions, are favored by membrane tension. However, a current understanding of how the energy barrier of earlier fusion stages is affected by membrane tension is lacking. Here, we apply a newly developed experimental approach combining micropipette-aspirated giant unilamellar vesicles and optically trapped membrane-coated beads, revealing that membrane tension inhibits lipid mixing. We show that lipid mixing is 6 times slower under a tension of 0.12 mN/m compared with tension-free membranes. Furthermore, using continuum elastic theory, we calculate the dependence of the hemifusion stalk formation energy on membrane tension and intermembrane distance and find the increase in the corresponding energy barrier to be 1.6 kBT in our setting, which can explain the increase in lipid mixing time delay. Finally, we show that tension can be a significant factor in the stalk energy if the pre-fusion intermembrane distance is on the order of several nanometers, while for membranes that are tightly docked, tension has a negligible effect.
Collapse
Affiliation(s)
- Petr Shendrik
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gonen Golani
- Institute
for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Raviv Dharan
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Ulrich S. Schwarz
- Institute
for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, 69120, Heidelberg, Germany
| | - Raya Sorkin
- School
of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center
of Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
18
|
Cai S, Wang X, Xu R, Liang Z, Zhu Q, Chen M, Lin Z, Li C, Duo T, Tong X, Li E, He Z, Liu X, Chen Y, Mo D. KLF4 regulates skeletal muscle development and regeneration by directly targeting P57 and Myomixer. Cell Death Dis 2023; 14:612. [PMID: 37723138 PMCID: PMC10507053 DOI: 10.1038/s41419-023-06136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023]
Abstract
Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration. Specific knockout of KLF4 in skeletal muscle impaired muscle formation further affecting physical activity and also defected skeletal muscle regeneration. In vitro, KLF4 was highly expressed in proliferating myoblasts and early differentiated cells. KLF4 knockdown promoted myoblast proliferation and inhibited myoblast fusion, while its overexpression showed opposite results. Mechanically, in proliferating myoblasts, KLF4 inhibits myoblast proliferation through regulating cell cycle arrest protein P57 by directly targeting its promoter; while in differentiated myoblasts, KLF4 promotes myoblast fusion by transcriptionally activating Myomixer. Our study provides mechanistic information for skeletal muscle development, reduced muscle strength and impaired regeneration after injury and unveiling the mechanism of KLF4 in myogenic regulation.
Collapse
Affiliation(s)
- Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaoyu Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Rong Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Ziyun Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Qi Zhu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Meilin Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Zhuhu Lin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Chenggan Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Tianqi Duo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xian Tong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Enru Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
19
|
Golani G, Schwarz US. High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory. Biophys J 2023; 122:1868-1882. [PMID: 37077047 PMCID: PMC10209146 DOI: 10.1016/j.bpj.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kBT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kBT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kBT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kBT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kBT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.
Collapse
Affiliation(s)
- Gonen Golani
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
20
|
Witcher PC, Sun C, Millay DP. Expression of Myomaker and Myomerger in myofibers causes muscle pathology. Skelet Muscle 2023; 13:8. [PMID: 37127758 PMCID: PMC10150476 DOI: 10.1186/s13395-023-00317-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Skeletal muscle development and regeneration depend on cellular fusion of myogenic progenitors to generate multinucleated myofibers. These progenitors utilize two muscle-specific fusogens, Myomaker and Myomerger, which function by remodeling cell membranes to fuse to each other or to existing myofibers. Myomaker and Myomerger expression is restricted to differentiating progenitor cells as they are not detected in adult myofibers. However, Myomaker remains expressed in myofibers from mice with muscular dystrophy. Ablation of Myomaker from dystrophic myofibers results in reduced membrane damage, leading to a model where persistent fusogen expression in myofibers, in contrast to myoblasts, is harmful. METHODS Dox-inducible transgenic mice were developed to ectopically express Myomaker or Myomerger in the myofiber compartment of skeletal muscle. We quantified indices of myofiber membrane damage, such as serum creatine kinase and IgM+ myofibers, and assessed general muscle histology, including central nucleation, myofiber size, and fibrosis. RESULTS Myomaker or Myomerger expression in myofibers independently caused membrane damage at acute time points. This damage led to muscle pathology, manifesting with centrally nucleated myofibers and muscle atrophy. Dual expression of both Myomaker and Myomerger in myofibers exacerbated several aspects of muscle pathology compared to expression of either fusogen by itself. CONCLUSIONS These data reveal that while myofibers can tolerate some level of Myomaker and Myomerger, expression of a single fusogen above a threshold or co-expression of both fusogens is damaging to myofibers. These results explain the paradigm that their expression in myofibers can have deleterious consequences in muscle pathologies and highlight the need for their highly restricted expression during myogenesis and fusion.
Collapse
Affiliation(s)
- Phillip C Witcher
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Winter SL, Golani G, Lolicato F, Vallbracht M, Thiyagarajah K, Ahmed SS, Lüchtenborg C, Fackler OT, Brügger B, Hoenen T, Nickel W, Schwarz US, Chlanda P. The Ebola virus VP40 matrix layer undergoes endosomal disassembly essential for membrane fusion. EMBO J 2023:e113578. [PMID: 37082863 DOI: 10.15252/embj.2023113578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Ebola viruses (EBOVs) assemble into filamentous virions, whose shape and stability are determined by the matrix viral protein 40 (VP40). Virus entry into host cells occurs via membrane fusion in late endosomes; however, the mechanism of how the remarkably long virions undergo uncoating, including virion disassembly and nucleocapsid release into the cytosol, remains unknown. Here, we investigate the structural architecture of EBOVs entering host cells and discover that the VP40 matrix disassembles prior to membrane fusion. We reveal that VP40 disassembly is caused by the weakening of VP40-lipid interactions driven by low endosomal pH that equilibrates passively across the viral envelope without a dedicated ion channel. We further show that viral membrane fusion depends on VP40 matrix integrity, and its disassembly reduces the energy barrier for fusion stalk formation. Thus, pH-driven structural remodeling of the VP40 matrix acts as a molecular switch coupling viral matrix uncoating to membrane fusion during EBOV entry.
Collapse
Affiliation(s)
- Sophie L Winter
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Gonen Golani
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Melina Vallbracht
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Keerthihan Thiyagarajah
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Samy Sid Ahmed
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Oliver T Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Insitut, Greifswald-Insel Riems, Greifswald, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Groups, Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
- BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
22
|
Klein S, Golani G, Lolicato F, Lahr C, Beyer D, Herrmann A, Wachsmuth-Melm M, Reddmann N, Brecht R, Hosseinzadeh M, Kolovou A, Makroczyova J, Peterl S, Schorb M, Schwab Y, Brügger B, Nickel W, Schwarz US, Chlanda P. IFITM3 blocks influenza virus entry by sorting lipids and stabilizing hemifusion. Cell Host Microbe 2023; 31:616-633.e20. [PMID: 37003257 DOI: 10.1016/j.chom.2023.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 04/03/2023]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.
Collapse
Affiliation(s)
- Steffen Klein
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Gonen Golani
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland
| | - Carmen Lahr
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Daniel Beyer
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexia Herrmann
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Moritz Wachsmuth-Melm
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Nina Reddmann
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Romy Brecht
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Mehdi Hosseinzadeh
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Androniki Kolovou
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Jana Makroczyova
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Sarah Peterl
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Schorb
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Petr Chlanda
- Schaller Research Group, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; BioQuant Center for Quantitative Biology, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Rice A, Zimmerberg J, Pastor RW. Initiation and evolution of pores formed by influenza fusion peptides probed by lysolipid inclusion. Biophys J 2023; 122:1018-1032. [PMID: 36575795 PMCID: PMC10111278 DOI: 10.1016/j.bpj.2022.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The fusion peptide (FP) domain is necessary for the fusogenic activity of spike proteins in a variety of enveloped viruses, allowing the virus to infect the host cell, and is the only part of the protein that interacts directly with the target membrane lipid tails during fusion. There are consistent findings of poration by this domain in experimental model membrane systems, and, in certain conditions, the isolated FPs can generate pores. Here, we use molecular dynamics simulations to investigate the specifics of how these FP-induced pores form in membranes with different compositions of lysolipid and POPC. The simulations show that pores form spontaneously at high lysolipid concentrations via hybrid intermediates, where FP aggregates in the cis leaflet tilt to form a funnel-like structure that spans the leaflet and locally reduces the hydrophobic thickness that must be traversed by water to form a pore. By restraining a single FP within an FP aggregate to this tilted conformation, pores can be formed in lower-lysolipid-content membranes, including pure POPC, on the 100-ns timescale, much more rapidly than in unbiased simulations in bilayers with the same composition. The pore formation pathway is similar to the spontaneous formation in high lysolipid concentrations. Depending on the membrane composition, the pores can be metastable (as seen in POPC) or lead to membrane rupture.
Collapse
Affiliation(s)
- Amy Rice
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
24
|
Cell surface-bound La protein regulates the cell fusion stage of osteoclastogenesis. Nat Commun 2023; 14:616. [PMID: 36739273 PMCID: PMC9899215 DOI: 10.1038/s41467-023-36168-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/16/2023] [Indexed: 02/06/2023] Open
Abstract
Multinucleated osteoclasts, essential for skeletal remodeling in health and disease, are formed by the fusion of osteoclast precursors, where each fusion event raises their bone-resorbing activity. Here we show that the nuclear RNA chaperone, La protein has an additional function as an osteoclast fusion regulator. Monocyte-to-osteoclast differentiation starts with a drastic decrease in La levels. As fusion begins, La reappears as a low molecular weight species at the osteoclast surface, where it promotes fusion. La's role in promoting osteoclast fusion is independent of canonical La-RNA interactions and involves direct interactions between La and Annexin A5, which anchors La to transiently exposed phosphatidylserine at the surface of fusing osteoclasts. Disappearance of cell-surface La, and the return of full length La to the nuclei of mature, multinucleated osteoclasts, acts as an off switch of their fusion activity. Targeting surface La in a novel explant model of fibrous dysplasia inhibits excessive osteoclast formation characteristic of this disease, highlighting La's potential as a therapeutic target.
Collapse
|
25
|
Tran V, Nahlé S, Robert A, Desanlis I, Killoran R, Ehresmann S, Thibault MP, Barford D, Ravichandran KS, Sauvageau M, Smith MJ, Kmita M, Côté JF. Biasing the conformation of ELMO2 reveals that myoblast fusion can be exploited to improve muscle regeneration. Nat Commun 2022; 13:7077. [PMID: 36400788 PMCID: PMC9674853 DOI: 10.1038/s41467-022-34806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Myoblast fusion is fundamental for the development of multinucleated myofibers. Evolutionarily conserved proteins required for myoblast fusion include RAC1 and its activator DOCK1. In the current study we analyzed the contribution of the DOCK1-interacting ELMO scaffold proteins to myoblast fusion. When Elmo1-/- mice underwent muscle-specific Elmo2 genetic ablation, they exhibited severe myoblast fusion defects. A mutation in the Elmo2 gene that reduced signaling resulted in a decrease in myoblast fusion. Conversely, a mutation in Elmo2 coding for a protein with an open conformation increased myoblast fusion during development and in muscle regeneration. Finally, we showed that the dystrophic features of the Dysferlin-null mice, a model of limb-girdle muscular dystrophy type 2B, were reversed when expressing ELMO2 in an open conformation. These data provide direct evidence that the myoblast fusion process could be exploited for regenerative purposes and improve the outcome of muscle diseases.
Collapse
Affiliation(s)
- Viviane Tran
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Sarah Nahlé
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Amélie Robert
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
| | - Inès Desanlis
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Ryan Killoran
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
| | - Sophie Ehresmann
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | | | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 OQH, UK
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, 22908, VA, USA
- VIB/UGent Inflammation Research Centre, Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Martin Sauvageau
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada
| | - Matthew J Smith
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3T 1J4, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Marie Kmita
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montréal, QC, H3G 2M1, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, QC, H2W 1R7, Canada.
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Molecular Biology Programs, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
- Department of Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada.
| |
Collapse
|
26
|
Chakraborty M, Sivan A, Biswas A, Sinha B. Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts. Front Physiol 2022; 13. [PMID: 36277221 PMCID: PMC7613732 DOI: 10.3389/fphys.2022.976715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we study the time-dependent regulation of fluctuation–tension during myogenesis and the role of the fusogen, myomerger. We measure nanometric height fluctuations of the basal membrane of C2C12 cells after triggering differentiation. Fusion of cells increases fluctuation–tension but prefers a transient lowering of tension (at ∼2–24 h). Cells fail to fuse if early tension is continuously enhanced by methyl-β-cyclodextrin (MβCD). Perturbing tension regulation also reduces fusion. During this pre-fusion window, cells that finally differentiate usually display lower tension than other non-fusing cells, validating early tension states to be linked to fate decision. Early tension reduction is accompanied by low but gradually increasing level of the surface myomerger. Locally too, regions with higher myomerger intensity display lower tension. However, this negative correlation is lost in the early phase by MβCD-based cholesterol depletion or later as differentiation progresses. We find that with tension and surface-myomerger’s enrichment under these conditions, myomerger clusters become pronouncedly diffused. We, therefore, propose that low tension aided by clustered surface-myomerger at the early phase is crucial for fusion and can be disrupted by cholesterol-reducing molecules, implying the potential to affect muscle health.
Collapse
|
27
|
Zucker B, Golani G, Kozlov MM. Model for ring closure in ER tubular network dynamics. Biophys J 2022:S0006-3495(22)00825-6. [DOI: 10.1016/j.bpj.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
|
28
|
Gamage DG, Melikov K, Munoz-Tello P, Wherley TJ, Focke LC, Leikina E, Huffman E, Diao J, Kojetin DJ, Prasad V, Chernomordik LV, Millay DP. Phosphatidylserine orchestrates Myomerger membrane insertions to drive myoblast fusion. Proc Natl Acad Sci U S A 2022; 119:e2202490119. [PMID: 36095199 PMCID: PMC9499509 DOI: 10.1073/pnas.2202490119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle cell fusion is a multistep process where the final step of the reaction drives progression beyond early hemifusion events to complete fusion. This step requires activity of the muscle-specific fusogen Myomerger, a single-pass transmembrane protein containing 84 amino acids with an ectodomain that includes two α-helices. Previous studies have demonstrated that Myomerger acts by destabilizing membranes through generation of elastic stresses in the outer leaflet of the plasma membrane. An obvious question is how such destabilizing activity might be regulated to avoid membrane and cellular damage, and how the two juxtaposed helices cooperate in fusion. Using cellular fusion assays and in vitro liposome assays, we report that the two helices possess unique characteristics, both of which are needed for full activity of the protein. We demonstrate that externalized phosphatidylserine (PS), a lipid previously implicated in myoblast fusion, has a determinant role in the regulation of Myomerger activity. The membrane-proximal, amphipathic Helix-1 is normally disordered and its α-helical structure is induced by PS, making membrane interactions more efficacious. The distal, more hydrophobic Helix-2 is intrinsically ordered, possesses an ability to insert into membranes, and augments the membrane-stressing effects of Helix-1. These data reveal that Myomerger fusogenic activity is an exquisitely orchestrated event involving its two ectodomain helices, which are controlled by membrane lipid composition, providing an explanation as to how its membrane-stressing activity is spatially and temporally regulated during the final step of myoblast fusion.
Collapse
Affiliation(s)
- Dilani G. Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Paola Munoz-Tello
- Department of Integrative Structural and Computational Biology, University of Florida (UF) Scripps Biomedical Research, Jupiter, FL 33458
| | - Tanner J. Wherley
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Leah C. Focke
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Elliana Huffman
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Douglas J. Kojetin
- Department of Integrative Structural and Computational Biology, University of Florida (UF) Scripps Biomedical Research, Jupiter, FL 33458
- Department of Molecular Medicine, UF Scripps Biomedical Research, Jupiter, FL 33458
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| |
Collapse
|
29
|
ISOBE M, SUZUKI Y, SUGIURA H, SHIBATA M, OHSAKI Y, KAMETAKA S. Novel cell-based system to assay cell-cell fusion during myotube formation. Biomed Res 2022; 43:107-114. [DOI: 10.2220/biomedres.43.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mari ISOBE
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University
| | - Yumika SUZUKI
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University
| | - Hideshi SUGIURA
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University
| | - Masahiro SHIBATA
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Yuki OHSAKI
- Department of Anatomy I, Sapporo Medical University School of Medicine
| | - Satoshi KAMETAKA
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University
| |
Collapse
|
30
|
Millay DP. Regulation of the myoblast fusion reaction for muscle development, regeneration, and adaptations. Exp Cell Res 2022; 415:113134. [PMID: 35367215 PMCID: PMC9058940 DOI: 10.1016/j.yexcr.2022.113134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
Fusion of plasma membranes is essential for skeletal muscle development, regeneration, exercise-induced adaptations, and results in a cell that contains hundreds to thousands of nuclei within a shared cytoplasm. The differentiation process in myocytes culminates in their fusion to form a new myofiber or fusion to an existing myofiber thereby contributing more synthetic material to the syncytium. The choice for two cells to fuse and become one could be a dangerous event if the two cells are not committed to an allied function. Thus, fusion events are highly regulated with positive and negative factors to fine-tune the process, and requires muscle-specific fusogens (Myomaker and Myomerger) as well as general cellular machinery to achieve the union of membranes. While a unified vertebrate myoblast fusion pathway is not yet established, recent discoveries should make this pursuit attainable. Not only does myocyte fusion impact the normal biology of skeletal muscle, but new evidence indicates dysregulation of the process impacts pathologies of skeletal muscle. Here, I will highlight the molecular players and biochemical mechanisms that drive fusion events in muscle, and discuss how this key myogenic process impacts skeletal muscle diseases.
Collapse
Affiliation(s)
- Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
31
|
Satouh Y, Inoue N. Involvement of cellular protrusions in gamete interactions. Semin Cell Dev Biol 2022; 129:93-102. [PMID: 35370088 DOI: 10.1016/j.semcdb.2022.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022]
Abstract
Gamete fusion is of considerable importance in reproductive events, as it determines the gamete pairs or chromosomes that the next generation will inherit. To preserve species specificity with an appropriate karyotype, the fusion between gametes requires regulatory mechanisms to ensure limited fusion competency. In many organisms, gamete surfaces are not smooth, but present constitutive or transient cellular protrusions suggested to be involved in gamete fusion. However, the molecular mechanisms and the factors essential for the membrane-membrane fusion process and cellular protrusion involvement have remained unclear. Recent advances in the identification and functional analysis of the essential factors for gamete interaction have revealed the molecular mechanisms underlying their activity regulation and dynamics. In homogametic fertilization, dynamic regulation of the fusion core machinery on cellular protrusions was precisely uncovered. In heterogametic fertilization, oocyte fusion competency was suggested to correlate with the compartmentalization of the fusion essential factor and protrusion formation. These findings shed light on the significance of cellular protrusions in gamete fusion as a physically and functionally specialized site for cellular fusion. In this review, we consider the developments in gamete interaction research in various species with different fertilization modes, highlighting the commonalities in the relationship between gamete fusion and cellular protrusions.
Collapse
Affiliation(s)
- Yuhkoh Satouh
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan.
| | - Naokazu Inoue
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan.
| |
Collapse
|
32
|
Bonilauri B, Dallagiovanna B. Microproteins in skeletal muscle: hidden keys in muscle physiology. J Cachexia Sarcopenia Muscle 2022; 13:100-113. [PMID: 34850602 PMCID: PMC8818594 DOI: 10.1002/jcsm.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in the transcriptomics, translatomics, and proteomics have led us to the exciting new world of functional endogenous microproteins. These microproteins have a small size and are derived from small open reading frames (smORFs) of RNAs previously annotated as non-coding (e.g. lncRNAs and circRNAs) as well as from untranslated regions and canonical mRNAs. The presence of these microproteins reveals a much larger translatable portion of the genome, shifting previously defined dogmas and paradigms. These findings affect our view of organisms as a whole, including skeletal muscle tissue. Emerging evidence demonstrates that several smORF-derived microproteins play crucial roles during muscle development (myogenesis), maintenance, and regeneration, as well as lipid and glucose metabolism and skeletal muscle bioenergetics. These microproteins are also involved in processes including physical activity capacity, cellular stress, and muscular-related diseases (i.e. myopathy, cachexia, atrophy, and muscle wasting). Given the role of these small proteins as important key regulators of several skeletal muscle processes, there are rich prospects for the discovery of new microproteins and possible therapies using synthetic microproteins.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| |
Collapse
|
33
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
34
|
Hammers DW, Hart CC, Matheny MK, Heimsath EG, Lee YI, Hammer JA, Cheney RE, Sweeney HL. Filopodia powered by class x myosin promote fusion of mammalian myoblasts. eLife 2021; 10:e72419. [PMID: 34519272 PMCID: PMC8500716 DOI: 10.7554/elife.72419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle fibers are multinucleated cellular giants formed by the fusion of mononuclear myoblasts. Several molecules involved in myoblast fusion have been discovered, and finger-like projections coincident with myoblast fusion have also been implicated in the fusion process. The role of these cellular projections in muscle cell fusion was investigated herein. We demonstrate that these projections are filopodia generated by class X myosin (Myo10), an unconventional myosin motor protein specialized for filopodia. We further show that Myo10 is highly expressed by differentiating myoblasts, and Myo10 ablation inhibits both filopodia formation and myoblast fusion in vitro. In vivo, Myo10 labels regenerating muscle fibers associated with Duchenne muscular dystrophy and acute muscle injury. In mice, conditional loss of Myo10 from muscle-resident stem cells, known as satellite cells, severely impairs postnatal muscle regeneration. Furthermore, the muscle fusion proteins Myomaker and Myomixer are detected in myoblast filopodia. These data demonstrate that Myo10-driven filopodia facilitate multinucleated mammalian muscle formation.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Fusion
- Cell Line
- Cell Proliferation
- Disease Models, Animal
- Humans
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Knockout
- Muscle Development
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Myoblasts, Skeletal/metabolism
- Myoblasts, Skeletal/pathology
- Myosins/genetics
- Myosins/metabolism
- Pseudopodia/genetics
- Pseudopodia/metabolism
- Regeneration
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/pathology
- Time Factors
- Mice
Collapse
Affiliation(s)
- David W Hammers
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Cora C Hart
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Michael K Matheny
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - Ernest G Heimsath
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - Young il Lee
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| | - John A Hammer
- Cell Biology and Physiology Center, National Heart, Lung and Blood InstituteBethesdaUnited States
| | - Richard E Cheney
- Department of Cell Biology & Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of MedicineChapel HillUnited States
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics, University of Florida College of MedicineGainesvilleUnited States
- University of Florida Myology InstituteGainesvilleUnited States
| |
Collapse
|
35
|
Abstract
Fertilization is a multistep process that culminates in the fusion of sperm and egg, thus marking the beginning of a new organism in sexually reproducing species. Despite its importance for reproduction, the molecular mechanisms that regulate this singular event, particularly sperm-egg fusion, have remained mysterious for many decades. Here, we summarize our current molecular understanding of sperm-egg interaction, focusing mainly on mammalian fertilization. Given the fundamental importance of sperm-egg fusion yet the lack of knowledge of this process in vertebrates, we discuss hallmarks and emerging themes of cell fusion by drawing from well-studied examples such as viral entry, placenta formation, and muscle development. We conclude by identifying open questions and exciting avenues for future studies in gamete fusion. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Victoria E Deneke
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; ,
| |
Collapse
|
36
|
Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 2021; 296:100411. [PMID: 33581114 PMCID: PMC8005811 DOI: 10.1016/j.jbc.2021.100411] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Formations of myofibers, osteoclasts, syncytiotrophoblasts, and fertilized zygotes share a common step, cell–cell fusion. Recent years have brought about considerable progress in identifying some of the proteins involved in these and other cell-fusion processes. However, even for the best-characterized cell fusions, we still do not know the mechanisms that regulate the timing of cell-fusion events. Are they fully controlled by the expression of fusogenic proteins or do they also depend on some triggering signal that activates these proteins? The latter scenario would be analogous to the mechanisms that control the timing of exocytosis initiated by Ca2+ influx and virus-cell fusion initiated by low pH- or receptor interaction. Diverse cell fusions are accompanied by the nonapoptotic exposure of phosphatidylserine at the surface of fusing cells. Here we review data on the dependence of membrane remodeling in cell fusion on phosphatidylserine and phosphatidylserine-recognizing proteins and discuss the hypothesis that cell surface phosphatidylserine serves as a conserved “fuse me” signal regulating the time and place of cell-fusion processes.
Collapse
|