1
|
Teodoro RO, Ramos MR, Carvalho L. Contribution of mechanical forces to structural synaptic plasticity: insights from 3D cellular motility mechanisms. Neural Regen Res 2025; 20:1995-1996. [PMID: 39254555 PMCID: PMC11691457 DOI: 10.4103/nrr.nrr-d-24-00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Rita O. Teodoro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Mafalda Ribeiro Ramos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Lara Carvalho
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Morita M, Fujii R, Ryuno A, Morimoto M, Inoko A, Inoue T, Ikenouchi J, Atsuta Y, Hayashi Y, Teramoto T, Saito D. The yolk sac vasculature in early avian embryo provides a novel model for the analysis of cancer extravasation. Dev Biol 2025; 524:162-175. [PMID: 40381710 DOI: 10.1016/j.ydbio.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 04/21/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Hematogenous metastasis, a hallmark of cancer cells, involves a complex series of migration steps, including intravasation, circulation, arrest in blood vessels, and trans-endothelial migration (TEM)-the lattar two collectively referred to as extravasation. Among these steps, extravasation poses significant challenges for imaging in amniotes such as humans and mice due to its unpredictable timing and location, which limits our understanding of the underlying cellular and molecular mechanisms. Thus, the development of a novel cancer carrier model with high-resolution imaging capabilities in amniotes is essential. In this study, we investigated the yolk sac vasculature (YSV) of early avian embryos (chickens and quail) as an innovative model for studying extravasation, capitalizing on its superior imaging capabilities. We assessed the YSV structure and applied fluorescent labeling to improve visibility. Following this, cancer cells were introduced into the YSV, and their behavior was monitored, revealing distinct morphologies and dynamics associated with extravasation. Furthermore, the YSV model exhibited a high degree of quantitative precision for extravasation studies and demonstrated potential for drug screening applications. Our findings indicate that the YSV model holds promise as a novel platform for elucidating the cellular and molecular mechanisms involved in cancer metastasis through advanced imaging techniques.
Collapse
Affiliation(s)
- Mizuki Morita
- Graduate School of Systems Life Sciences, Kyushu University, Japan
| | - Ryo Fujii
- Graduate School of Systems Life Sciences, Kyushu University, Japan
| | - Asuka Ryuno
- Graduate School of Systems Life Sciences, Kyushu University, Japan
| | - Manami Morimoto
- Graduate School of Systems Life Sciences, Kyushu University, Japan
| | - Akihito Inoko
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan; Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Aichi, 464-8681, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Graduate School of Medicine, Mie University, Tsu, Mie, 514-8507, Japan
| | - Junichi Ikenouchi
- Graduate School of Systems Life Sciences, Kyushu University, Japan; Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Yuji Atsuta
- Graduate School of Systems Life Sciences, Kyushu University, Japan; Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Yoshiki Hayashi
- Graduate School of Systems Life Sciences, Kyushu University, Japan; Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Takayuki Teramoto
- Graduate School of Systems Life Sciences, Kyushu University, Japan; Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Daisuke Saito
- Graduate School of Systems Life Sciences, Kyushu University, Japan; Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Im GB, Melero-Martin JM. Mitochondrial transfer in endothelial cells and vascular health. Trends Cell Biol 2025:S0962-8924(25)00105-9. [PMID: 40368738 DOI: 10.1016/j.tcb.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/21/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Mitochondria play a vital role in cellular energy metabolism and vascular health, with their function directly influencing endothelial cell (EC) bioenergetics and integrity. Mitochondrial transfer has emerged as a key mechanism of intercellular communication, impacting angiogenesis, tissue repair, and cellular homeostasis. This review highlights recent findings on mitochondrial transfer, including natural mechanisms - such as tunneling nanotubes (TNTs) and extracellular vesicles (EVs) - and artificial approaches like mitochondrial transplantation. These processes enhance EC function and support vascularization under pathological conditions, including ischemia. While early clinical trials demonstrate therapeutic potential, challenges such as mitochondrial instability and scaling host-derived mitochondria persist. Continued research is essential to optimize mitochondrial transfer and advance its application as a therapeutic strategy for restoring vascular health.
Collapse
Affiliation(s)
- Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, USA; Department of Surgery, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Yoshino J, Mali SS, Williams CR, Morita T, Emerson CE, Arp CJ, Miller SE, Yin C, Thé L, Hemmi C, Motoyoshi M, Ishii K, Emoto K, Bautista DM, Parrish JZ. Drosophila epidermal cells are intrinsically mechanosensitive and modulate nociceptive behavioral outputs. eLife 2025; 13:RP95379. [PMID: 40353351 PMCID: PMC12068870 DOI: 10.7554/elife.95379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Somatosensory neurons (SSNs) that detect and transduce mechanical, thermal, and chemical stimuli densely innervate an animal's skin. However, although epidermal cells provide the first point of contact for sensory stimuli, our understanding of roles that epidermal cells play in SSN function, particularly nociception, remains limited. Here, we show that stimulating Drosophila epidermal cells elicits activation of SSNs including nociceptors and triggers a variety of behavior outputs, including avoidance and escape. Further, we find that epidermal cells are intrinsically mechanosensitive and that epidermal mechanically evoked calcium responses require the store-operated calcium channel Orai. Epidermal cell stimulation augments larval responses to acute nociceptive stimuli and promotes prolonged hypersensitivity to subsequent mechanical stimuli. Hence, epidermal cells are key determinants of nociceptive sensitivity and sensitization, acting as primary sensors of noxious stimuli that tune nociceptor output and drive protective behaviors.
Collapse
Affiliation(s)
- Jiro Yoshino
- Department of Biology, University of WashingtonSeattleUnited States
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Sonali S Mali
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Claire R Williams
- Department of Biology, University of WashingtonSeattleUnited States
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Takeshi Morita
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Chloe E Emerson
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Christopher J Arp
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Sophie E Miller
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| | - Chang Yin
- Department of Biology, University of WashingtonSeattleUnited States
| | - Lydia Thé
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Chikayo Hemmi
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Mana Motoyoshi
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Diana M Bautista
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California at BerkeleyBerkeleyUnited States
| | - Jay Z Parrish
- Department of Biology, University of WashingtonSeattleUnited States
- Division of Education, Marine Biological LaboratoryWoods HoleUnited States
| |
Collapse
|
5
|
Shapiro IM, Risbud MV, Tang T, Landis WJ. Skeletal and dental tissue mineralization: The potential role of the endoplasmic reticulum/Golgi complex and the endolysosomal and autophagic transport systems. Bone 2025; 193:117390. [PMID: 39814250 DOI: 10.1016/j.bone.2025.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes. The cellular level of phosphate ions in these organelles is also high (millimolar). While the source of these ions for mineral formation has not been identified, there are sound reasons for considering that they may be liberated from mitochondria during the utilization of ATP for anabolic purposes, perhaps linked to matrix synthesis. Published studies indicate that calcium and phosphate ions or their clusters contained as cargo within the intracellular organelles noted above lead to formation of extracellular mineral. The mineral sequestered in mitochondria has been documented as an amorphous calcium phosphate. The ion-, ion cluster- or mineral-containing vesicles exit the cell in plasma membrane blebs, secretory lysosomes or possibly intraluminal vesicles. Such a cell-regulated process provides a means for the rapid transport of ions or mineral particles to the mineralization front of skeletal and dental tissues. Within the extracellular matrix, the ions or mineral may associate to form larger aggregates and potential mineral nuclei, and they may bind to collagen and other proteins. How cells of hard tissues perform their housekeeping and other biosynthetic functions while transporting the very large volumes of ions required for mineralization of the extracellular matrix is far from clear. Addressing this and related questions raised in this review suggests guidelines for further investigations of the intracellular processes promoting the mineralization of the skeletal and dental tissues.
Collapse
Affiliation(s)
- Irving M Shapiro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America.
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Tengteng Tang
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States of America
| | - William J Landis
- Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
6
|
Zmuda M, Sedlackova E, Pravdova B, Cizkova M, Dalecka M, Cerny O, Allsop TR, Grousl T, Malcova I, Kamanova J. The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis. mBio 2024; 15:e0192524. [PMID: 39570047 PMCID: PMC11633230 DOI: 10.1128/mbio.01925-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough in humans, a disease that has recently experienced a resurgence. In contrast, Bordetella bronchiseptica infects the respiratory tract of various mammalian species, causing a range of symptoms from asymptomatic chronic carriage to acute illness. Both pathogens utilize type III secretion system (T3SS) to deliver the effector protein BteA into host cells. Once injected, BteA triggers a cascade of events leading to caspase 1-independent necrosis through a mechanism that remains incompletely understood. We demonstrate that BteA-induced cell death is characterized by the fragmentation of the cellular endoplasmic reticulum and mitochondria, the formation of necrotic balloon-like protrusions, and plasma membrane permeabilization. Importantly, genome-wide CRISPR-Cas9 screen targeting 19,050 genes failed to identify any host factors required for BteA cytotoxicity, suggesting that BteA does not require a single nonessential host factor for its cytotoxicity. We further reveal that BteA triggers a rapid and sustained influx of calcium ions, which is associated with organelle fragmentation and plasma membrane permeabilization. The sustained elevation of cytosolic Ca2+ levels results in mitochondrial calcium overload, mitochondrial swelling, cristolysis, and loss of mitochondrial membrane potential. Inhibition of calcium channels with 2-APB delays both the Ca2+ influx and BteA-induced cell death. Our findings indicate that BteA exploits essential host processes and/or redundant pathways to disrupt calcium homeostasis and mitochondrial function, ultimately leading to host cell death.IMPORTANCEThe respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica exhibit cytotoxicity toward a variety of mammalian cells, which depends on the type III secretion effector BteA. Moreover, the increased virulence of B. bronchiseptica is associated with enhanced expression of T3SS and BteA. However, the molecular mechanism underlying BteA cytotoxicity is elusive. In this study, we performed a CRISPR-Cas9 screen, revealing that BteA-induced cell death depends on essential or redundant host processes. Additionally, we demonstrate that BteA disrupts calcium homeostasis, which leads to mitochondrial dysfunction and cell death. These findings contribute to closing the gap in our understanding of the signaling cascades targeted by BteA.
Collapse
Affiliation(s)
- Martin Zmuda
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Sedlackova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Barbora Pravdova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Monika Cizkova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Dalecka
- Electron Microscopy Core Facility, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondrej Cerny
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tania Romero Allsop
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Grousl
- Laboratory of Cell Signalling, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Malcova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Kamanova
- Laboratory of Infection Biology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
García-Arcos JM, Jha A, Waterman CM, Piel M. Blebology: principles of bleb-based migration. Trends Cell Biol 2024; 34:838-853. [PMID: 38538441 PMCID: PMC11424778 DOI: 10.1016/j.tcb.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 09/27/2024]
Abstract
Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.
Collapse
Affiliation(s)
| | - Ankita Jha
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clare M Waterman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France; Institut Pierre Gilles de Gennes, PSL University, Paris, France.
| |
Collapse
|
8
|
Tanaka T, Matsumoto A, Klymchenko AS, Tsurumaki E, Ikenouchi J, Konishi G. Fluorescent Solvatochromic Probes for Long-Term Imaging of Lipid Order in Living Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309721. [PMID: 38468355 PMCID: PMC11077641 DOI: 10.1002/advs.202309721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/28/2024] [Indexed: 03/13/2024]
Abstract
High-resolution spatio-temporal monitoring of the cell membrane lipid order provides visual insights into the complex and sophisticated systems that control cellular physiological functions. Solvatochromic fluorescent probes are highly promising noninvasive visualization tools for identifying the ordering of the microenvironment of plasma membrane microdomains. However, conventional probes, although capable of structural analysis, lack the necessary long-term photostability required for live imaging at the cellular level. Here, an ultra-high-light-resistant solvatochromic fluorescence probe, 2-N,N-diethylamino-7-(4-methoxycarbonylphenyl)-9,9-dimethylfluorene (FπCM) is reported, which enables live lipid order imaging of cell division. This probe and its derivatives exhibit sufficient fluorescence wavelengths, brightness, polarity responsiveness, low phototoxicity, and remarkable photostability under physiological conditions compared to conventional solvatochromic probes. Therefore, these probes have the potential to overcome the limitations of fluorescence microscopy, particularly those associated with photobleaching. FπCM probes can serve as valuable tools for elucidating mechanisms of cellular processes at the bio-membrane level.
Collapse
Affiliation(s)
- Takuya Tanaka
- Department of Chemical Science and EngineeringTokyo Institute of TechnologyTokyo152‐8552Japan
| | - Atsushi Matsumoto
- Department of BiologyFaculty of SciencesKyushu UniversityFukuoka819‐0395Japan
| | - Andery S. Klymchenko
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSUniversité de Strasbourg74 route du RhinIllkirch67401France
| | - Eiji Tsurumaki
- Department of ChemistryTokyo Institute of TechnologyTokyo152‐8552Japan
| | - Junichi Ikenouchi
- Department of BiologyFaculty of SciencesKyushu UniversityFukuoka819‐0395Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and EngineeringTokyo Institute of TechnologyTokyo152‐8552Japan
| |
Collapse
|
9
|
Thirumurugan S, Ramanathan S, Muthiah KS, Lin YC, Hsiao M, Dhawan U, Wang AN, Liu WC, Liu X, Liao MY, Chung RJ. Inorganic nanoparticles for photothermal treatment of cancer. J Mater Chem B 2024; 12:3569-3593. [PMID: 38494982 DOI: 10.1039/d3tb02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Kayalvizhi Samuvel Muthiah
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - An-Ni Wang
- Scrona AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Wai-Ching Liu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| |
Collapse
|
10
|
Fujii Y, Ikenouchi J. Cytoplasmic zoning in membrane blebs. J Biochem 2024; 175:133-140. [PMID: 37943501 DOI: 10.1093/jb/mvad084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
Blebs are membrane structures formed by the detachment of the plasma membrane from the underlying actin cytoskeleton. It is now clear that a wide variety of cells, including cancer cells, actively form blebs for cell migration and cell survival. The expansion of blebs has been regarded as the passive ballooning of the plasma membrane by an abrupt increase in intracellular pressure. However, recent studies revealed the importance of 'cytoplasmic zoning', i.e. local changes in the hydrodynamic properties and the ionic and protein content of the cytoplasm. In this review, we summarize the current understanding of the molecular mechanisms behind cytoplasmic zoning and its role in bleb expansion.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Nishi-Ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Saldanha O, Schiller L, Hauser K. Calcium-induced compaction and clustering of vesicles tracked with molecular resolution. Biophys J 2023; 122:2646-2654. [PMID: 37218132 PMCID: PMC10397570 DOI: 10.1016/j.bpj.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Theory and simulations predict the complex nature of calcium interaction with the lipid membrane. By maintaining the calcium concentrations at physiological conditions, herein we demonstrate experimentally the effect of Ca2+ in a minimalistic cell-like model. For this purpose, giant unilamellar vesicles (GUVs) with a neutral lipid DOPC are generated, and the ion-lipid interaction is observed with attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy providing molecular resolution. Firstly, Ca2+ encapsulated within the vesicle binds to the phosphate head groups of the inner leaflets and triggers vesicle compaction. This is tracked by changes in vibrational modes of the lipid groups. As the calcium concentration within the GUV increases, IR intensities change indicating vesicle dehydration and lateral compression of the membrane. Secondly, by inducing a calcium gradient across the membrane up to a ratio of 1:20, interaction between several vesicles occurs as Ca2+ can bind to the outer leaflets leading to vesicle clustering. It is observed that larger calcium gradients induce stronger interactions. These findings with an exemplary biomimetic model reveal that divalent calcium ions not only cause local changes to the lipid packing but also have macroscopic implications to initiate vesicle-vesicle interaction.
Collapse
Affiliation(s)
- Oliva Saldanha
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Laura Schiller
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
12
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Lee AR, Park CY. Orai1 is an Entotic Ca 2+ Channel for Non-Apoptotic Cell Death, Entosis in Cancer Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205913. [PMID: 36960682 DOI: 10.1002/advs.202205913] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
Entosis is a non-apoptotic cell death process that forms characteristic cell-in-cell structures in cancers, killing invading cells. Intracellular Ca2+ dynamics are essential for cellular processes, including actomyosin contractility, migration, and autophagy. However, the significance of Ca2+ and Ca2+ channels participating in entosis is unclear. Here, it is shown that intracellular Ca2+ signaling regulates entosis via SEPTIN-Orai1-Ca2+ /CaM-MLCK-actomyosin axis. Intracellular Ca2+ oscillations in entotic cells show spatiotemporal variations during engulfment, mediated by Orai1 Ca2+ channels in plasma membranes. SEPTIN controlled polarized distribution of Orai1 for local MLCK activation, resulting in MLC phosphorylation and actomyosin contraction, leads to internalization of invasive cells. Ca2+ chelators and SEPTIN, Orai1, and MLCK inhibitors suppress entosis. This study identifies potential targets for treating entosis-associated tumors, showing that Orai1 is an entotic Ca2+ channel that provides essential Ca2+ signaling and sheds light on the molecular mechanism underlying entosis that involves SEPTIN filaments, Orai1, and MLCK.
Collapse
Affiliation(s)
- Ah Reum Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Chan Young Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
14
|
Ikenouchi J, Aoki K. A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS J 2022; 289:7907-7917. [PMID: 34614290 DOI: 10.1111/febs.16220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
When the plasma membrane (PM) detaches from the underlying actin cortex, the PM expands according to intracellular pressure and a spherical membrane protrusion called a bleb is formed. This bleb retracts when the actin cortex is reassembled underneath the PM. Whereas this phenomenon seems simple at first glance, there are many interesting, unresolved cell biological questions in each process. For example, what is the membrane source to enlarge the surface area of the PM during rapid bleb expansion? What signals induce actin reassembly for bleb retraction, and how is cytoplasmic fluidity regulated to allow rapid membrane deformation during bleb expansion? Furthermore, emerging evidence indicates that cancer cells use blebs for invasion, but little is known about how molecules that are involved in bleb formation, expansion, and retraction are coordinated for directional amoeboid migration. In this review, we discuss the molecular mechanisms involved in the regulation of blebs, which have been revealed by various experimental systems.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Aoki
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Taslimi A, Fields KM, Dahl KD, Liu Q, Tucker CL. Spatiotemporal control of necroptotic cell death and plasma membrane recruitment using engineered MLKL domains. Cell Death Dis 2022; 8:469. [PMID: 36446770 PMCID: PMC9709077 DOI: 10.1038/s41420-022-01258-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Necroptosis is a form of programmed necrotic cell death in which a signaling cascade induces oligomerization of mixed lineage kinase domain-like (MLKL) protein, leading to plasma membrane rupture. Necroptotic cell death is recognized as important for protection against viral infection and has roles in a variety of diseases, including cancer and diabetes. Despite its relevance to health and disease states, many questions remain about the precise mechanism of necroptotic cell death, cellular factors that can protect cells from necroptosis, and the role of necroptosis in disease models. In this study, we engineered a light-activated version of MLKL that rapidly oligomerizes and is recruited to the plasma membrane in cells exposed to light, inducing rapid cell death. We demonstrate this tool can be controlled spatially and temporally, used in a chemical genetic screen to identify chemicals and pathways that protect cells from MLKL-induced cell death, and used to study signaling responses of non-dying bystander cells. In additional studies, we re-engineered MLKL to block its cell-killing capacity but retain light-mediated membrane recruitment, developing a new single-component optogenetic tool that allows modulation of protein function at the plasma membrane.
Collapse
Affiliation(s)
- Amir Taslimi
- grid.430503.10000 0001 0703 675XDepartment of Pharmacology, Box 8303, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kaiah M. Fields
- grid.430503.10000 0001 0703 675XDepartment of Pharmacology, Box 8303, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Kristin D. Dahl
- grid.430503.10000 0001 0703 675XDepartment of Pharmacology, Box 8303, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Qi Liu
- grid.430503.10000 0001 0703 675XDepartment of Pharmacology, Box 8303, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Chandra L. Tucker
- grid.430503.10000 0001 0703 675XDepartment of Pharmacology, Box 8303, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
16
|
Hashimura H, Morimoto YV, Hirayama Y, Ueda M. Calcium responses to external mechanical stimuli in the multicellular stage of Dictyostelium discoideum. Sci Rep 2022; 12:12428. [PMID: 35859163 PMCID: PMC9300675 DOI: 10.1038/s41598-022-16774-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Calcium acts as a second messenger to regulate many cellular functions, including cell motility. In Dictyostelium discoideum, the cytosolic calcium level oscillates synchronously, and calcium waves propagate through the cell population during the early stages of development, including aggregation. In the unicellular phase, the calcium response through Piezo channels also functions in mechanosensing. However, calcium dynamics during multicellular morphogenesis are still unclear. Here, live imaging of cytosolic calcium revealed that calcium wave propagation, depending on cAMP relay, disappeared at the onset of multicellular body (slug) formation. Later, other forms of occasional calcium bursts and their propagation were observed in both anterior and posterior regions of migrating slugs. This calcium signaling also occurred in response to mechanical stimuli. Two pathways—calcium release from the endoplasmic reticulum via IP3 receptor and calcium influx from outside the cell—were involved in calcium signals induced by mechanical stimuli. These data suggest that calcium signaling is involved in mechanosensing in both the unicellular and multicellular phases of Dictyostelium development using different molecular mechanisms.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yusuke V Morimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan. .,Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yusei Hirayama
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
17
|
Schick J, Raz E. Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Front Cell Dev Biol 2022; 10:926394. [PMID: 35912094 PMCID: PMC9337749 DOI: 10.3389/fcell.2022.926394] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
In the context of development, tissue homeostasis, immune surveillance, and pathological conditions such as cancer metastasis and inflammation, migrating amoeboid cells commonly form protrusions called blebs. For these spherical protrusions to inflate, the force for pushing the membrane forward depends on actomyosin contraction rather than active actin assembly. Accordingly, blebs exhibit distinct dynamics and regulation. In this review, we first examine the mechanisms that control the inflation of blebs and bias their formation in the direction of the cell’s leading edge and present current views concerning the role blebs play in promoting cell locomotion. While certain motile amoeboid cells exclusively form blebs, others form blebs as well as other protrusion types. We describe factors in the environment and cell-intrinsic activities that determine the proportion of the different forms of protrusions cells produce.
Collapse
|
18
|
Convergent selective signaling impairment exposes the pathogenicity of latrophilin-3 missense variants linked to inheritable ADHD susceptibility. Mol Psychiatry 2022; 27:2425-2438. [PMID: 35393556 PMCID: PMC9135631 DOI: 10.1038/s41380-022-01537-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
Latrophilin-3 (Lphn3; also known as ADGRL3) is a member of the adhesion G Protein Coupled Receptor subfamily, which participates in the stabilization and maintenance of neuronal networks by mediating intercellular adhesion through heterophilic interactions with transmembrane ligands. Polymorphisms modifying the Lphn3 gene are associated with attention-deficit/hyperactivity disorder (ADHD) in children and its persistence into adulthood. How these genetic alterations affect receptor function remains unknown. Here, we conducted the functional validation of distinct ADHD-related Lphn3 variants bearing mutations in the receptor's adhesion motif-containing extracellular region. We found that all variants tested disrupted the ability of Lphn3 to stabilize intercellular adhesion in a manner that was distinct between ligands classes, but which did not depend on ligand-receptor interaction parameters, thus pointing to altered intrinsic receptor signaling properties. Using G protein signaling biosensors, we determined that Lphn3 couples to Gαi1, Gαi2, Gαs, Gαq, and Gα13. However, all ADHD-related receptor variants consistently lacked intrinsic as well as ligand-dependent Gα13 coupling efficiency while maintaining unaltered coupling to Gαi, Gαs, and Gαq. Consistent with these alterations, actin remodeling functions as well as actin-relevant RhoA signaling normally displayed by the constitutively active Lphn3 receptor were impeded by select receptor variants, thus supporting additional signaling defects. Taken together, our data point to Gα13 selective signaling impairments as representing a disease-relevant pathogenicity pathway that can be inherited through Lphn3 gene polymorphisms. This study highlights the intricate interplay between Lphn3 GPCR functions and the actin cytoskeleton in modulating neurodevelopmental cues related to ADHD etiology.
Collapse
|
19
|
Modulation of membrane-cytoskeleton interactions: ezrin as key player. Trends Cell Biol 2021; 32:94-97. [PMID: 34625363 DOI: 10.1016/j.tcb.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 01/10/2023]
Abstract
Membrane-cytoskeleton interactions (MCIs) are mediated by actin-binding proteins (ABPs). Ezrin is a crucial ABP that links membranes to actin filaments during lamellipodia formation, cell polarization, and migration. We discuss the concept of MCI and the potential of ezrin as a druggable target for treating inflammatory diseases and cancers.
Collapse
|
20
|
Adams G, López MP, Cartagena-Rivera AX, Waterman CM. Survey of cancer cell anatomy in nonadhesive confinement reveals a role for filamin-A and fascin-1 in leader bleb-based migration. Mol Biol Cell 2021; 32:1772-1791. [PMID: 34260278 PMCID: PMC8684732 DOI: 10.1091/mbc.e21-04-0174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cancer cells migrating in confined microenvironments exhibit plasticity of migration modes. Confinement of contractile cells in a nonadhesive environment drives “leader bleb–based migration” (LBBM), morphologically characterized by a long bleb that points in the direction of movement separated from a cell body by a contractile neck. Although cells undergoing LBBM have been visualized within tumors, the organization of organelles and actin regulatory proteins mediating LBBM is unknown. We analyzed the localization of fluorescent organelle-specific markers and actin-associated proteins in human melanoma and osteosarcoma cells undergoing LBBM. We found that organelles from the endolysosomal, secretory, and metabolic systems as well as the vimentin and microtubule cytoskeletons localized primarily in the cell body, with some endoplasmic reticulum, microtubules, and mitochondria extending into the leader bleb. Overexpression of fluorescently tagged actin regulatory proteins showed that actin assembly factors localized toward the leader bleb tip, contractility regulators and cross-linkers in the cell body cortex and neck, and cross-linkers additionally throughout the leader bleb. Quantitative analysis showed that excess filamin-A and fascin-1 increased migration speed and persistence, while their depletion by small interfering RNA indicates a requirement in promoting cortical tension and pressure to drive LBBM. This indicates a critical role of specific actin crosslinkers in LBBM.
Collapse
Affiliation(s)
- Gregory Adams
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| | | | - Alexander X Cartagena-Rivera
- Section on Mechanobiology, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Clare M Waterman
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, and
| |
Collapse
|
21
|
Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, Kesharwani P. Recent advances in nanoparticles mediated photothermal therapy induced tumor regression. Int J Pharm 2021; 606:120848. [PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022]
Abstract
Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
Collapse
Affiliation(s)
- Achalla Vaishnav Pavan Kumar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sunil K Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow 226002, India
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|