1
|
Yu L, Wang X, Lei Q, Liu Y, Li Z, Dai X, Song Z, He Y, Gao S, Yu C, Li L. Tongmai Yangxin pill alleviates myocardial ischemia/reperfusion injury by regulating mitochondrial fusion and fission through the estrogen receptor alpha/peroxisome proliferator-activated receptor gamma coactivator-1 alpha signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119639. [PMID: 40096900 DOI: 10.1016/j.jep.2025.119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Tongmai Yangxin Pill (TMYX) is derived from the Zhigancao decoction recorded in Treatise on Cold Damage Disorders (Shang Han Lun) by Zhang Zhongjing during the Han dynasty. The prescription of TMYX reflects a therapeutic rationale and efficacy unique to traditional Chinese medicine. TMYX is clinically effective in alleviating myocardial ischemia-reperfusion injury (MI/RI). However, the precise active ingredients and underlying mechanisms remain unclear. AIM OF THE STUDY The primary objective of this study was to investigate the potential of TMYX in addressing MI/RI by activating the estrogen receptor ERα. We hypothesized that this action upregulates PGC-1α activity, subsequently promoting a balanced regulation of mitochondrial fusion and fission. MATERIALS AND METHODS UPLC-Q-TOF-MS/MS was used to identify the active components of TMYX. Subsequently, a network pharmacology approach was used to uncover the therapeutic targets and underlying pharmacological mechanisms through which TMYX mitigates MI/RI. Lastly, the anticipated outcomes were confirmed through in vivo and in vitro experimental validations. RESULTS Using UPLC-Q-TOF-MS/MS, we successfully identified 53 distinct compounds in TMYX. Network pharmacology analysis revealed 20 key TMYX targets associated with MI/RI. Enrichment studies using GO and KEGG analyses revealed that these targets were mainly associated with mitochondrial processes and estrogen signaling pathways. Both in vivo and in vitro studies confirmed that TMYX markedly improved mitochondrial function through the ERα/PGC-1α signaling cascade, leading to a reduction in the size of myocardial infarctions and the incidence of apoptosis. Notably, combining TMYX with siERα abolished the protective effect of TMYX on the mitochondria. CONCLUSION TMYX therapy can improve cardiac function in MI/RI. This effect is likely mediated by the ERα/PGC-1α signaling pathway. However, given the complex multi-component composition of traditional Chinese medicine formulas, additional studies are necessary to confirm the findings of this research.
Collapse
Affiliation(s)
- Lu Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Xu Wang
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Qina Lei
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yutong Liu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Zhu Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China
| | - Xiangdong Dai
- Pharmaron Beijing Co., Ltd. (China), BDA, 6 Taihe Road, Beijing, 100176, China
| | - Zhihui Song
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Yuanyuan He
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Shan Gao
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Chunquan Yu
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
| | - Lin Li
- Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
2
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
3
|
Chen L, Wang W, Zhao Y, Zhang S, Zhou X. Circular RNA CHACR is involved in the pathogenesis of cardiac hypertrophy. Theranostics 2025; 15:3627-3642. [PMID: 40093901 PMCID: PMC11905130 DOI: 10.7150/thno.104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Circular RNAs (circRNAs) exhibit differential expression in cardiac hypertrophy; however, their functions and mechanisms remain largely unexplored. This study aimed to determine the involvement of circRNAs in the pathogenesis of myocardial hypertrophy. Methods: A mouse model of cardiac hypertrophy was established using transverse aortic constriction (TAC) and differentially expressed circRNAs were identified via high-throughput sequencing. To facilitate gene overexpression or knockdown, related viruses were injected into myocardial tissues of the mice. Cardiomyocyte hypertrophy was assessed using quantitative real-time PCR and immunofluorescence staining. RNA immunoprecipitation, RNA pull-down assay and fluorescence in situ hybridization were conducted to confirm the interaction between circRNAs and proteins. Protein expression and degradation were evaluated using cycloheximide-chase assay, immunoprecipitation, and western blotting. Results: Cardiac hypertrophy-associated circRNA (CHACR) was significantly downregulated in myocardial tissues from TAC mice. CHACR can attenuate cardiac hypertrophy through upregulating carnitine palmitoyltransferase-1b (CPT1b) expression. Mechanistically, CHACR directly interacted with CPT1b and decreased its protein degradation by inhibiting the ubiquitin-proteasome pathway to increase its expression in cardiomyocytes. Moreover, CPT1b overexpression decreased L-carnitine levels and inhibited the Jak2/Stat3 signaling pathway, which was associated with the pathogenesis of myocardial hypertrophy. Conclusions: CHACR attenuated cardiomyocyte hypertrophy by facilitating the expression of CPT1b, which plays a role in regulating the Jak2/Stat3 pathway via L-carnitine. CHACR may thus be a potential therapeutic target for pathological myocardial hypertrophy.
Collapse
Affiliation(s)
- Lili Chen
- Central Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjing Wang
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiheng Zhao
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Li Y, Dai Z, Cheng Z, He J, Yin Y, Liu X, Zhang J, Hu G, Chen Y, Wang X, Shao Y. LINC00870 promotes imatinib resistance in gastrointestinal stromal tumor via inhibiting PIGR glycosylation modifications. Heliyon 2025; 11:e41934. [PMID: 39968132 PMCID: PMC11834037 DOI: 10.1016/j.heliyon.2025.e41934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 02/20/2025] Open
Abstract
Imatinib is the first-line targeted therapy for gastrointestinal stromal tumor (GIST), but resistance frequently occurs during treatment, limiting its efficacy and clinical application. We performed high-throughput sequencing of tissue specimens from imatinib-resistant GIST patients, and identified significantly high expression of polymeric immunoglobulin receptor (PIGR) in imatinib-resistant cell lines. Further investigation revealed that PIGR binds specifically to LINC00870. The findings from in vitro cell functional experiments provide evidence of a strong association between LINC00870 and PIGR and the processes of proliferation and metastasis in GIST. Overexpression of LINC00870 in GIST significantly inhibits the glycosylation modification and secretion of the extracellular region of PIGR, leading to immune dysregulation. The inhibition of PIGR or LINC00870 effectively surmounts imatinib resistance. Our study identified PIGR as a critical molecule in regulating GIST imatinib resistance and elucidated the mechanism by which PIGR promotes imatinib resistance through LINC00870 inhibition of PIGR glycosylation modifications. These findings provide a new theoretical basis for blocking drug resistance and improving prognosis in GIST.
Collapse
Affiliation(s)
- Yuan Li
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Zhiqiang Dai
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zewei Cheng
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junyi He
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yirui Yin
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xinyou Liu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guohua Hu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Yueda Chen
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| | - Xuefei Wang
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Clinical Research Center for Precision medicine of abdominal tumor of Fujian Province, Xiamen, 361015, China
| | - Yebo Shao
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, 361015, China
| |
Collapse
|
5
|
Chen RY, Xie H, Zhuang SY, Liu XW, Wu HY, Yuan XD, Zhang M, Zhong C, Li DW. LncRNA-AC006129.1 Aggravates kidney hypoxia-ischemia injury by promoting CXCL2-dependent inflammatory response. Int Immunopharmacol 2025; 147:113920. [PMID: 39799734 DOI: 10.1016/j.intimp.2024.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/28/2024] [Accepted: 12/18/2024] [Indexed: 01/15/2025]
Abstract
PURPOSE Hypoxia ischemia (HI) injury is an inevitable risk factor in kidney transplantation. The inflammatory response is crucial in HI. Long non-coding RNAs (lncRNAs) are known to regulate inflammation and immunity, but their role in HI remains unclear. METHODS HI gene expression analysis was conducted using Gene Expression Omnibus datasets, followed by experiments on patient tissues and cell lines. Subsequently, loss-of-function assays characterized AC006129.1 in HK2 cells, while RIP, RNA pull-down, and mRNA degradation assays explored its relationship with CXCL2 mRNA. Rescue experiments assessed the impact of these interactions on cell proliferation, apoptosis, and inflammation in vitro. Additionally, ChIP and dual-luciferase reporter assays were conducted to investigate the mechanism behind AC006129.1 upregulation. RESULTS Among the 469 dysregulated long non-coding RNAs (lncRNAs), AC006129.1 exhibited a significant upregulation in cases of kidney HI. This finding was corroborated in clinical specimens and cell lines. AC006129.1 expression inhibits proliferation, induces apoptosis, and triggers the inflammatory response due to HI. Mechanistically, AC006129.1 facilitated the interaction between CXCL2 mRNA and the RNA-binding protein HuR, thereby stabilizing CXCL2 mRNA. Rescue experiments further demonstrated that AC006129.1 modulated HI injury through its influence on CXCL2. Additionally, ERG1 was found to specifically interact with the promoter region of AC006129.1, thereby activating its transcription. CONCLUSIONS Our findings indicate that AC006129.1 plays a pathogenic role in the HI process by enhancing the inflammatory response, which exacerbates kidney cell damage. This suggests that AC006129.1 is a critical factor in the development of HI and represents a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ruo-Yang Chen
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hui Xie
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Shao-Yong Zhuang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiao-Wen Liu
- Department of Institute of Molecular Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hao-Yu Wu
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Xiao-Dong Yuan
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Chen Zhong
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| | - Da-Wei Li
- Department of Urology, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Li S, Luo D, Liang Y, Zou Y, Pu H, Zheng M, Wang Y, Sun X, Zhu H, Zhu Y, Zhao L, Xiao J. BCLAF1 Regulates Osteoarthritic Cartilage Degradation Through Interaction with LAMTOR2. Int J Biol Sci 2025; 21:1666-1685. [PMID: 39990659 PMCID: PMC11844276 DOI: 10.7150/ijbs.100396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disorder with cartilage degradation as the primary cause of joint pain and loss of joint function. B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) is a key regulator of apoptosis and serves as a signal transducer of the NFκB and Hif-1α pathways, both of which are involved in osteoarthritic cartilage degradation. However, whether BCLAF1 contributes to the pathogenesis of OA remains unclear. The present study aims to elucidate the role of BCLAF1 in osteoarthritic cartilage degradation and the underlying mechanisms. We found that BCLAF1 levels were increased in cartilage tissue from OA patients, elder and surgery-induced OA mice, and primary chondrocytes treated with inflammatory cytokines. Knockdown of Bclaf1 in chondrocytes inhibited the expression of catabolic factors and apoptosis rate, while promoting the expression of anabolic factors and enhancing chondrocyte functions such as viability and migration. Conversely, overexpression of Bclaf1 produced the opposite effects. Furthermore, intra-articular injection of adenovirus containing shRNA targeting Bclaf1 attenuated cartilage degradation and osteophytosis in a mouse OA model, while overexpression of BCLAF1 further aggravated cartilage degradation and osteophytosis in vivo. Through immunoprecipitation and protein mass spectrometry, we identified LAMTOR2 as a key mediator of BCLAF1 by regulating the translocation of BCLAF1 into the nucleus. Our findings reveal the critical role and key mechanisms of BCLAF1 in regulating cartilage degradation, representing a novel molecular target for the therapeutic development of OA.
Collapse
Affiliation(s)
- Song Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danni Luo
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yulin Liang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi Zou
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongxu Pu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meng Zheng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuting Wang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xuying Sun
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Zhu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanli Zhu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jun Xiao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Wang XQ, Fan AQ, Hong L. LncRNA MIR210HG promotes the proliferation of colon cancer cells by inhibiting ferroptosis through binding to PCBP1. Sci Rep 2025; 15:871. [PMID: 39757305 PMCID: PMC11701131 DOI: 10.1038/s41598-025-85321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/01/2025] [Indexed: 01/07/2025] Open
Abstract
This study aimed to investigate the role of the MIR210 host gene (MIR210HG), a long noncoding RNA (lncRNA), in the proliferation of colon cancer cells and its potential mechanism involving the ferroptosis pathway. We assessed MIR210HG expression in colon cancer cell lines and tissues, and examined the effects of its overexpression and knockdown on cell proliferation. Proteomic analysis was conducted to explore the interaction between MIR210HG and ferroptosis pathway components. The binding of MIR210HG to poly(rC) binding protein 1 (PCBP1) was predicted using catRAPID and confirmed through RNA pull-down and RNA immunoprecipitation (RIP) experiments. MIR210HG was significantly upregulated in colon cancer cells and tissues. Its overexpression promoted, while its knockdown inhibited, colon cancer cell proliferation. MIR210HG was found to be associated with ferroptosis pathway components and to bind to PCBP1, which was experimentally validated. The inhibition of ferroptosis by MIR210HG through PCBP1 binding was confirmed, highlighting its role in promoting cell proliferation. MIR210HG promotes colon cancer cell proliferation by binding to PCBP1 and inhibiting ferroptosis. These findings suggest MIR210HG as a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - A-Qiang Fan
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China
| | - Liu Hong
- Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
8
|
Zhao X, Wang Z, Wang L, Jiang T, Dong D, Sun M. The PINK1/Parkin signaling pathway-mediated mitophagy: a forgotten protagonist in myocardial ischemia/reperfusion injury. Pharmacol Res 2024; 209:107466. [PMID: 39419133 DOI: 10.1016/j.phrs.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Myocardial ischemia causes extensive damage, further exacerbated by reperfusion, a phenomenon called myocardial ischemia/reperfusion injury (MIRI). Nowadays, the pathological mechanisms of MIRI have received extensive attention. Oxidative stress, multiple programmed cell deaths, inflammation and others are all essential pathological mechanisms contributing to MIRI. Mitochondria are the energy supply centers of cells. Numerous studies have found that abnormal mitochondrial function is an essential "culprit" of MIRI, and mitophagy mediated by the phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1)/Parkin signaling pathway is an integral part of maintaining mitochondrial function. Therefore, exploring the association between the PINK1/Parkin signaling pathway-mediated mitophagy and MIRI is crucial. This review will mainly summarize the crucial role of the PINK1/Parkin signaling pathway-mediated mitophagy in MIR-induced several pathological mechanisms and various potential interventions that affect the PINK1/Parkin signaling pathway-mediated mitophagy, thus ameliorating MIRI.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| | - Zheng Wang
- School of Medicine, Qilu Institute of Technology, Jinan 250200, China.
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110033, China.
| | - Tao Jiang
- Rehabilitation Medicine Center, The Second Hospital of Shandong University, Jinan 250033, China.
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China.
| |
Collapse
|
9
|
Qu HQ, Wang JF, Rosa-Campos A, Hakonarson H, Feldman AM. The Role of BAG3 Protein Interactions in Cardiomyopathies. Int J Mol Sci 2024; 25:11308. [PMID: 39457090 PMCID: PMC11605229 DOI: 10.3390/ijms252011308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Bcl-2-associated athanogene 3 (BAG3) plays an important function in cellular protein quality control (PQC) maintaining proteome stability. Mutations in the BAG3 gene result in cardiomyopathies. Due to its roles in cardiomyopathies and the complexity of BAG3-protein interactions, it is important to understand these protein interactions given the importance of the multifunctional cochaperone BAG3 in cardiomyocytes, using an in vitro cardiomyocyte model. The experimental assay was conducted using high pressure liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the human AC16 cardiomyocyte cell line with BioID technology. Proteins with BAG3-interaction were identified in all the 28 hallmark gene sets enriched in idiopathic cardiomyopathies and/or ischemic disease. Among the 24 hallmark gene sets enriched in both idiopathic cardiomyopathies and ischemic disease, 15 gene sets had at least 3 proteins with BAG3-interaction. This study highlights BAG3 protein interactions, unveiling the key gene sets affected in cardiomyopathies, which help to explain the molecular mechanisms of the cardioprotective effects of BAG3. In addition, this study also highlighted the complexity of proteins with BAG3 interactions, implying unwanted effects of BAG3.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Ju-Fang Wang
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| | - Alexandre Rosa-Campos
- Proteomics Facility, Sanford-Burnham-Presby Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 102 Reykjavík, Iceland
| | - Arthur M. Feldman
- Department of Medicine, Division of Cardiology, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA; (J.-F.W.); (A.M.F.)
| |
Collapse
|
10
|
Yu Z, Xia Y, Li J, Jiang J, Li Y, Li Y, Wang L. METTL3 mediates m6A modification of lncRNA CRNDE to promote ATG10 expression and improve brain ischemia/reperfusion injury through YTHDC1. Biol Direct 2024; 19:92. [PMID: 39407279 PMCID: PMC11481594 DOI: 10.1186/s13062-024-00536-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a severe brain disorder with currently limited effective treatments. This study aims to explore the role of N6-methyladenosine (m6A) modification and associated regulatory factors in I/R to identify potential therapeutic targets. METHODS We utilized a middle cerebral artery occlusion (MCAO) rat model and SH-SY5Y cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to assess m6A levels and investigate the impact of METTL3 overexpression on long non-coding RNA (lncRNA) CRNDE expression. The effects of silencing lncRNA CRNDE on the interaction between YTHDC1 and ATG10 mRNA, as well as the stability of ATG10 mRNA, were evaluated. Additionally, apoptosis rates, pro-inflammatory and anti-inflammatory factor levels, ATG10 expression, and autophagic activity were analyzed to determine the effects of METTL3. The reverse effects of YTHDC1 overexpression were also examined. RESULTS MCAO rats and OGD/R-treated SH-SY5Y cells exhibited reduced m6A levels. METTL3 overexpression significantly inhibited lncRNA CRNDE expression. Silencing lncRNA CRNDE mitigated OGD/R-induced apoptosis and inflammation in SH-SY5Y cells, while enhancing autophagy and stabilizing ATG10 mRNA. METTL3 overexpression decreased cell apoptosis, reduced the levels of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and increased IL-10 secretion. Furthermore, METTL3 overexpression upregulated ATG10 expression and promoted autophagy. Conversely, lncRNA CRNDE overexpression negated these effects. CONCLUSION The inhibition of lncRNA CRNDE affects the interaction between YTHDC1 and ATG10 mRNA and stabilizes ATG10 mRNA, mediated by METTL3 overexpression. These findings suggest that targeting lncRNA CRNDE to reduce apoptosis, inhibit inflammation, increase ATG10 expression, and enhance autophagy could offer new therapeutic strategies for I/R injury.
Collapse
Affiliation(s)
- Zhengtao Yu
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Ying Xia
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Jiameng Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Junwen Jiang
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - You Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China
| | - Youjun Li
- Department of Neurosurgery, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China.
| | - Liu Wang
- Phase I Clinical Trial Center, Haikou People's Hospital and Haikou Affiliated Hospital of Xiangya School of Medicine, Central South University, Haikou, Hainan, China.
| |
Collapse
|
11
|
Liu Y, Wang S, Zhang J, Sun Q, Xiao Y, Chen J, Yao M, Zhang G, Huang Q, Zhao T, Huang Q, Shi X, Feng C, Ai K, Bai Y. Reprogramming the myocardial infarction microenvironment with melanin-based composite nanomedicines in mice. Nat Commun 2024; 15:6651. [PMID: 39103330 PMCID: PMC11300711 DOI: 10.1038/s41467-024-50854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Myocardial infarction (MI) has a 5-year mortality rate of more than 50% due to the lack of effective treatments. Interactions between cardiomyocytes and the MI microenvironment (MIM) can determine the progression and fate of infarcted myocardial tissue. Here, a specially designed Melanin-based composite nanomedicines (MCN) is developed to effectively treat MI by reprogramming the MIM. MCN is a nanocomposite composed of polydopamine (P), Prussian blue (PB) and cerium oxide (CexOy) with a Mayuan-like structure, which reprogramming the MIM by the efficient conversion of detrimental substances (H+, reactive oxygen species, and hypoxia) into beneficial status (O2 and H2O). In coronary artery ligation and ischemia reperfusion models of male mice, intravenously injecting MCN specifically targets the damaged area, resulting in restoration of cardiac function. With its promising therapeutic effects, MCN constitutes a new agent for MI treatment and demonstrates potential for clinical application.
Collapse
Affiliation(s)
- Yamei Liu
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Shuya Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Jiaxiong Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Quan Sun
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yi Xiao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Jing Chen
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Meilian Yao
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guogang Zhang
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, P.R. China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Xiaojing Shi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Can Feng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, P.R. China.
| | - Yongping Bai
- Department of Geriatric Medicine, Coronary Circulation Center, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China.
| |
Collapse
|
12
|
Yu T, Gao Q, Zhang G, Li T, Liu X, Li C, Zheng L, Sun X, Wu J, Cao H, Bi F, Wang R, Liang H, Li X, Zhou Y, Lv L, Shan H. lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α-mitochondrial complex IV axis. Front Med 2024; 18:664-677. [PMID: 38926249 DOI: 10.1007/s11684-024-1065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 06/28/2024]
Abstract
Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Guofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chao Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lan Zheng
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xiang Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianbo Wu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huiying Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fangfang Bi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruifeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xuelian Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhong Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
- The Center of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
13
|
Bi FF, Cao M, Pan QM, Jing ZH, Lv LF, Liu F, Tian H, Yu T, Li TY, Li XL, Liang HH, Shan HL, Zhou YH. ITFG2, an immune-modulatory protein, targets ATP 5b to maintain mitochondrial function in myocardial infarction. Biochem Pharmacol 2024; 226:116338. [PMID: 38848780 DOI: 10.1016/j.bcp.2024.116338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.
Collapse
Affiliation(s)
- Fang-Fang Bi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Miao Cao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qing-Ming Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ze-Hong Jing
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Li-Fang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Fu Liu
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China
| | - Hua Tian
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, PR China
| | - Tian-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xue-Lian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Hai-Hai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Hong-Li Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, PR China.
| | - Yu-Hong Zhou
- Department of Basic Medicine, Xiamen Medical College, Xiamen, Fujian 361023, PR China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| |
Collapse
|
14
|
Miao Y, Liang X, Chen J, Liu H, He Z, Qin Y, Liu A, Zhang R. Transfer of miR-877-3p via extracellular vesicles derived from dental pulp stem cells attenuates neuronal apoptosis and facilitates early neurological functional recovery after cerebral ischemia-reperfusion injury through the Bclaf1/P53 signaling pathway. Pharmacol Res 2024; 206:107266. [PMID: 38878918 DOI: 10.1016/j.phrs.2024.107266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024]
Abstract
Cerebral ischemia-reperfusion injury (I/RI) is one of the principal pathogenic factors in the poor prognosis of ischemic stroke, for which current therapeutic options to enhance neurological recovery are notably insufficient. Dental pulp stem cell-derived extracellular vesicles (DPSC-EVs) have promising prospects in stroke treatment and the specific underlying mechanisms have yet to be fully elucidated. The present study observed that DPSC-EVs ameliorated the degree of cerebral edema and infarct volume by reducing the apoptosis of neurons. Furthermore, the miRNA sequencing and functional enrichment analysis identified that miR-877-3p as a key component in DPSC-EVs, contributing to neuroprotection and anti-apoptotic effects. Following target prediction and dual-luciferase assay indicated that miR-877-3p interacted with Bcl-2-associated transcription factor (Bclaf1) to play a function. The miR-877-3p inhibitor or Bclaf1 overexpression reversed the neuroprotective effects of DPSC-EVs. The findings reveal a novel therapeutic pathway where miR-877-3p, transferred via DPSC-EVs, confers neuroprotection against cerebral I/RI, highlighting its potential in promoting neuronal survival and recovery post-ischemia.
Collapse
Affiliation(s)
- Yan Miao
- Department of Neurology, The Third Xiangya Hospital, Central South University, 410013, China
| | - Xin Liang
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, 100038, China
| | - Jigang Chen
- Department of burn and plastic surgery, Beijing Children's Hospital, Capital Medical University, 100045, China
| | - Hongyi Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070, China; School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Zilong He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, China
| | - Yongkai Qin
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, China
| | - Aihua Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070, China; Department of Neurosurgery, The Third Xiangya Hospital, Central South University, 410013, China.
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, 410013, China.
| |
Collapse
|
15
|
Zhang S, Yan F, Luan F, Chai Y, Li N, Wang YW, Chen ZL, Xu DQ, Tang YP. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155649. [PMID: 38653154 DOI: 10.1016/j.phymed.2024.155649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Cardiovascular disease is the main cause of death and disability, with myocardial ischemia being the predominant type that poses a significant threat to humans. Reperfusion, an essential therapeutic approach, promptly reinstates blood circulation to the ischemic myocardium and stands as the most efficacious clinical method for myocardial preservation. Nevertheless, the restoration of blood flow associated with this process can potentially induce myocardial ischemia-reperfusion injury (MIRI), thereby diminishing the effectiveness of reperfusion and impacting patient prognosis. Therefore, it is of great significance to prevent and treat MIRI. PURPOSE MIRI is an important factor affecting the prognosis of patients, and there is no specific in-clinic treatment plan. In this review, we have endeavored to summarize its pathological mechanisms and therapeutic drugs to provide more powerful evidence for clinical application. METHODS A comprehensive literature review was conducted using PubMed, Web of Science, Embase, Medline and Google Scholar with a core focus on the pathological mechanisms and potential therapeutic drugs of MIRI. RESULTS Accumulated evidence revealed that oxidative stress, calcium overload, mitochondrial dysfunction, energy metabolism disorder, ferroptosis, inflammatory reaction, endoplasmic reticulum stress, pyroptosis and autophagy regulation have been shown to participate in the process, and that the occurrence and development of MIRI are related to plenty of signaling pathways. Currently, a range of chemical drugs, natural products, and traditional Chinese medicine (TCM) preparations have demonstrated the ability to mitigate MIRI by targeting various mechanisms. CONCLUSIONS At present, most of the research focuses on animal and cell experiments, and the regulatory mechanisms of each signaling pathway are still unclear. The translation of experimental findings into clinical practice remains incomplete, necessitating further exploration through large-scale, multi-center randomized controlled trials. Given the absence of a specific drug for MIRI, the identification of therapeutic agents to reduce myocardial ischemia is of utmost significance. For the future, it is imperative to enhance our understanding of the pathological mechanism underlying MIRI, continuously investigate and develop novel pharmaceutical agents, expedite the clinical translation of these drugs, and foster innovative approaches that integrate TCM with Western medicine. These efforts will facilitate the emergence of fresh perspectives for the clinical management of MIRI.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Yan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Fei Luan
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Zhen-Lin Chen
- International Programs Office, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi Province, China.
| |
Collapse
|
16
|
Pang P, Si W, Wu H, Ju J, Liu K, Wang C, Jia Y, Diao H, Zeng L, Jiang W, Yang Y, Xiong Y, Kong X, Zhang Z, Zhang F, Song J, Wang N, Yang B, Bian Y. YTHDF2 Promotes Cardiac Ferroptosis via Degradation of SLC7A11 in Cardiac Ischemia-Reperfusion Injury. Antioxid Redox Signal 2024; 40:889-905. [PMID: 37548549 DOI: 10.1089/ars.2023.0291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Affiliation(s)
- Ping Pang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei Si
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiaming Ju
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Kuiwu Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chunlei Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingqiong Jia
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Hongtao Diao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Linghua Zeng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Weitao Jiang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuting Xiong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xue Kong
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhengwei Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Feng Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinglun Song
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ning Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yu Bian
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Niu X, Zhang J, Hu S, Dang W, Wang K, Bai M. lncRNA Oip5-as1 inhibits excessive mitochondrial fission in myocardial ischemia/reperfusion injury by modulating DRP1 phosphorylation. Cell Mol Biol Lett 2024; 29:72. [PMID: 38745296 PMCID: PMC11092055 DOI: 10.1186/s11658-024-00588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Aberrant mitochondrial fission, a critical pathological event underlying myocardial ischemia/reperfusion (MI/R) injury, has emerged as a potential therapeutic target. The long non-coding RNA (lncRNA) Oip5-as1 is increasingly recognized for its regulatory roles, particularly in MI/R injury. However, its precise mechanistic role in modulating mitochondrial dynamics remains elusive. This study aims to elucidate the mechanistic role of Oip5-as1 in regulating mitochondrial fission and evaluate its therapeutic potential against MI/R injury. METHODS To simulate in vitro MI/R injury, HL-1 cardiomyocytes were subjected to hypoxia/reoxygenation (H/R). Lentiviral vectors were employed to achieve overexpression or knockdown of Oip5-as1 in HL-1 cells by expressing Oip5-as1 or shRNA targeting Oip5-as1, respectively. The impact of Oip5-as1 on mitochondrial dynamics in HL-1 cells was assessed using CCK-8 assay, flow cytometry, immunofluorescence staining, and biochemical assays. MI/R injury was induced in mice by ligating the left anterior descending coronary artery. Conditional knockout mice for Oip5-as1 were generated using the CRISPR/Cas9 genome editing technology, while overexpression of Oip5-as1 in mice was achieved via intramyocardial administration of AAV9 vectors. In mice, the role of Oip5-as1 was evaluated through echocardiographic assessment, histopathological staining, and transmission electron microscopy. Furthermore, Western blotting, RNA pull-down, RNA immunoprecipitation, and co-immunoprecipitation assays were conducted to investigate Oip5-as1's underlying mechanisms. RESULTS The expression levels of Oip5-as1 are significantly decreased in MI/R-injured HL-1 cells and myocardium. In HL-1 cells undergoing H/R injury, overexpression of Oip5-as1 attenuated excessive mitochondrial fission, preserved mitochondrial functionality, and reduced cellular apoptosis, while knockdown of Oip5-as1 exhibited the opposite effects. Furthermore, in a mouse model of MI/R injury, overexpression of Oip5-as1 diminished mitochondrial fission, myocardial infarct size and improved cardiac function. However, knockout of Oip5-as1 exacerbated myocardial injury and cardiac dysfunction, which were significantly reversed by treatment with a mitochondrial division inhibitor-1 (Mdivi-1). Mechanistically, Oip5-as1 selectively interacts with AKAP1 and CaN proteins, inhibiting CaN activation and subsequent DRP1 dephosphorylation at Ser637, thereby constraining DRP1's translocation to the mitochondria and its involvement in mitochondrial fission. CONCLUSIONS Our study underscores the pivotal role of Oip5-as1 in mitigating excessive mitochondrial fission during MI/R injury. The findings not only enhance our comprehension of the molecular mechanisms underlying MI/R injury but also identify Oip5-as1 as a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Lanzhou, Gansu, 730000, China
- Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Lanzhou, Gansu, 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenhui Dang
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Kaiwen Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Key Laboratory of Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, China.
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
18
|
Luo L, Li Y, Bao Z, Zhu D, Chen G, Li W, Xiao Y, Wang Z, Zhang Y, Liu H, Chen Y, Liao Y, Cheng K, Li Z. Pericardial Delivery of SDF-1α Puerarin Hydrogel Promotes Heart Repair and Electrical Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302686. [PMID: 37665792 DOI: 10.1002/adma.202302686] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.
Collapse
Affiliation(s)
- Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yuetong Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Ziwei Bao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Guoqin Chen
- Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou, 511400, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yixin Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yanmei Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
19
|
Samidurai A, Olex AL, Ockaili R, Kraskauskas D, Roh SK, Kukreja RC, Das A. Integrated Analysis of lncRNA-miRNA-mRNA Regulatory Network in Rapamycin-Induced Cardioprotection against Ischemia/Reperfusion Injury in Diabetic Rabbits. Cells 2023; 12:2820. [PMID: 38132140 PMCID: PMC10742118 DOI: 10.3390/cells12242820] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The inhibition of mammalian target of rapamycin (mTOR) with rapamycin (RAPA) provides protection against myocardial ischemia/reperfusion (I/R) injury in diabetes. Since interactions between transcripts, including long non-coding RNA (lncRNA), microRNA(miRNA) and mRNA, regulate the pathophysiology of disease, we performed unbiased miRarray profiling in the heart of diabetic rabbits following I/R injury with/without RAPA treatment to identify differentially expressed (DE) miRNAs and their predicted targets of lncRNAs/mRNAs. Results showed that among the total of 806 unique miRNAs targets, 194 miRNAs were DE after I/R in diabetic rabbits. Specifically, eight miRNAs, including miR-199a-5p, miR-154-5p, miR-543-3p, miR-379-3p, miR-379-5p, miR-299-5p, miR-140-3p, and miR-497-5p, were upregulated and 10 miRNAs, including miR-1-3p, miR-1b, miR-29b-3p, miR-29c-3p, miR-30e-3p, miR-133c, miR-196c-3p, miR-322-5p, miR-499-5p, and miR-672-5p, were significantly downregulated after I/R injury. Interestingly, RAPA treatment significantly reversed these changes in miRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated the participation of miRNAs in the regulation of several signaling pathways related to I/R injury, including MAPK signaling and apoptosis. Furthermore, in diabetic hearts, the expression of lncRNAs, HOTAIR, and GAS5 were induced after I/R injury, but RAPA suppressed these lncRNAs. In contrast, MALAT1 was significantly reduced following I/R injury, with the increased expression of miR-199a-5p and suppression of its target, the anti-apoptotic protein Bcl-2. RAPA recovered MALAT1 expression with its sponging effect on miR-199-5p and restoration of Bcl-2 expression. The identification of novel targets from the transcriptome analysis in RAPA-treated diabetic hearts could potentially lead to the development of new therapeutic strategies for diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Amy L. Olex
- Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ramzi Ockaili
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Donatas Kraskauskas
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Sean K. Roh
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Rakesh C. Kukreja
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.S.); (R.O.); (D.K.); (S.K.R.)
| |
Collapse
|
20
|
Yao B, Lu Y, Li Y, Bai Y, Wei X, Yang Y, Yao D. BCLAF1-induced HIF-1α accumulation under normoxia enhances PD-L1 treatment resistances via BCLAF1-CUL3 complex. Cancer Immunol Immunother 2023; 72:4279-4292. [PMID: 37906282 PMCID: PMC10700218 DOI: 10.1007/s00262-023-03563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023]
Abstract
Bcl-2-associated transcription factor-1 (BCLAF1), an apoptosis-regulating protein of paramount significance, orchestrates the progression of various malignancies. This study reveals increased BCLAF1 expression in hepatocellular carcinoma (HCC) patients, in whom elevated BCLAF1 levels are linked to escalated tumor grades and diminished survival rates. Moreover, novel BCLAF1 expression is particularly increased in HCC patients who were not sensitive to the combined treatment of atezolizumab and bevacizumab, but not in patients who had tumors that responded to the combined regimen. Notably, overexpression of BCLAF1 increases HCC cell proliferation in vitro and in vivo, while the conditioned medium derived from cells overexpressing BCLAF1 strikingly enhances the tube-formation capacity of human umbilical vein endothelial cells. Furthermore, compelling evidence demonstrates that BCLAF1 attenuates the expression of prolyl hydroxylase domain protein 2 (PHD2) and governs the stability of hypoxia-inducible factor-1α (HIF-1α) under normoxic conditions without exerting any influence on transcription, as determined by Western blot and RT‒qPCR analyses. Subsequently, employing coimmunoprecipitation and immunofluorescence, we validated the reciprocal interaction between BCLAF1 and Cullin 3 (CUL3), through which BCLAF1 actively upregulates the ubiquitination and degradation of PHD2. The Western blot and RT‒qPCR results suggests that programmed death ligand-1 (PD-L1) is one of the downstream responders to HIF-1α in HCC. Thus, we reveal the pivotal role of BCLAF1 in promoting PD-L1 transcription and, through binding to CUL3, in promoting the accumulation of HIF-1α under normoxic conditions, thereby facilitating the ubiquitination and degradation of PHD2.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yixue Bai
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xinyu Wei
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yuanyuan Yang
- Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Demao Yao
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
21
|
Yu Q, Cai B, Zhang Y, Xu J, Liu D, Zhang X, Han Z, Ma Y, Jiao L, Gong M, Yang X, Wang Y, Li H, Sun L, Bian Y, Yang F, Xuan L, Wu H, Yang B, Zhang Y. Long non-coding RNA LHX1-DT regulates cardiomyocyte differentiation through H2A.Z-mediated LHX1 transcriptional activation. iScience 2023; 26:108051. [PMID: 37942009 PMCID: PMC10628816 DOI: 10.1016/j.isci.2023.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/22/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play widespread roles in various processes. However, there is still limited understanding of the precise mechanisms through which they regulate early stage cardiomyocyte differentiation. In this study, we identified a specific lncRNA called LHX1-DT, which is transcribed from a bidirectional promoter of LIM Homeobox 1 (LHX1) gene. Our findings demonstrated that LHX1-DT is nuclear-localized and transiently elevated expression along with LHX1 during early differentiation of cardiomyocytes. The phenotype was rescued by overexpression of LHX1 into the LHX1-DT-/- hESCs, indicating LHX1 is the downstream of LHX1-DT. Mechanistically, we discovered that LHX1-DT physically interacted with RNA/histone-binding protein PHF6 during mesoderm commitment and efficiently replaced conventional histone H2A with a histone variant H2A.Z at the promoter region of LHX1. In summary, our work uncovers a novel lncRNA, LHX1-DT, which plays a vital role in mediating the exchange of histone variants H2A.Z and H2A at the promoter region of LHX1.
Collapse
Affiliation(s)
- Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Department of Pharmacy at The Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Dongping Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiyang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhenbo Han
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Avenue, COMRB 4100, Chicago, IL 60612, USA
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Manyu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xuewen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lihua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yu Bian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Fan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Haodi Wu
- Heart, Lung, and Blood Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences (2019RU070), Harbin 150086, China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
22
|
Zhao H, Tan Z, Zhou J, Wu Y, Hu Q, Ling Q, Ling J, Liu M, Ma J, Zhang D, Wang Y, Zhang J, Yu P, Jiang Y, Liu X. The regulation of circRNA and lncRNAprotein binding in cardiovascular diseases: Emerging therapeutic targets. Biomed Pharmacother 2023; 165:115067. [PMID: 37392655 DOI: 10.1016/j.biopha.2023.115067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Noncoding ribonucleic acids (ncRNAs) are a class of ribonucleic acids (RNAs) that carry cellular information and perform essential functions. This class encompasses various RNAs, such as small nuclear ribonucleic acids (snRNA), small interfering ribonucleic acids (siRNA) and many other kinds of RNA. Of these, circular ribonucleic acids (circRNAs) and long noncoding ribonucleic acids (lncRNAs) are two types of ncRNAs that regulate crucial physiological and pathological processes, including binding, in several organs through interactions with other RNAs or proteins. Recent studies indicate that these RNAs interact with various proteins, including protein 53, nuclear factor-kappa B, vascular endothelial growth factor, and fused in sarcoma/translocated in liposarcoma, to regulate both the histological and electrophysiological aspects of cardiac development as well as cardiovascular pathogenesis, ultimately leading to a variety of genetic heart diseases, coronary heart disease, myocardial infarction, rheumatic heart disease and cardiomyopathies. This paper presents a thorough review of recent studies on circRNA and lncRNAprotein binding within cardiac and vascular cells. It offers insight into the molecular mechanisms involved and emphasizes potential implications for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Huilei Zhao
- Department of Anesthesiology, The Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Ziqi Tan
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Zhou
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yifan Wu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qingwen Hu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qing Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jitao Ling
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Menglu Liu
- Department of Cardiology, Seventh People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Yue Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangzhou, China.
| |
Collapse
|
23
|
Huang X, Liu X, Zhang X, Yang Y, Gao H, Gao J, Bao H, Zhao L, Yang G, Zhang Y, Liu D. The long noncoding RNA CIRBIL is a regulator of steroidogenesis in mice. Reprod Biol 2023; 23:100783. [PMID: 37336146 DOI: 10.1016/j.repbio.2023.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Infertility affects roughly 8-12 % of couples worldwide, and in above 50 % of couples, male factors are the primary or contributing cause. Many long noncoding RNAs (lncRNAs) are detected in the testis, but their functions are not well understood. CIRBIL was 862 nucleotides in length and was found to be localized mostly in the cytosol of Leydig cell, a small portion was positioned inside the seminiferous tubules. Loss of CIRBIL in mice resulted in male subfertility, characterized by smaller testis and increased germ cell apoptosis. Deletion of CIRBIL significant decreased the number of sperm and impaired the integrity of sperm head and tail. In CIRBIL KO mice, testosterone levels in serum and expression of testosterone biosynthesis genes (STAR and 3β-HSD) were both reduced. Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were primarily enriched in steroid synthesis process in CIRBIL-binding proteins. Protein-protein (PPI) interaction networks revealed that both cis- and trans-regulated target genes of CIRBIL were associated with testosterone synthesis. Collectively, our results strongly suggest that CIRBIL is a regulator of steroid hormone synthesis.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Xin Liu
- The Department of Histology and Embryology, Harbin Medical University, Harbin 150086, PR China
| | - Xiaofang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Ying Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Haiyu Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Jianjun Gao
- The Department of Hepatopancreatobility, Surgery Second Affiliated Hospital of Harbin Medical University, 150086, PR China
| | - Hairong Bao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Lexin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Guohui Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China
| | - Yang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, PR China; North Translational Medicine Research Cooperation Center, 2019 Research Unit 070, Harbin, Heilongjiang 150086, PR China.
| | - Donghua Liu
- The Department of Histology and Embryology, Harbin Medical University, Harbin 150086, PR China.
| |
Collapse
|
24
|
Giacca M. Fulfilling the Promise of RNA Therapies for Cardiac Repair and Regeneration. Stem Cells Transl Med 2023; 12:527-535. [PMID: 37440203 PMCID: PMC10427962 DOI: 10.1093/stcltm/szad038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/07/2023] [Indexed: 07/14/2023] Open
Abstract
The progressive appreciation that multiple types of RNAs regulate virtually all aspects of tissue function and the availability of effective tools to deliver RNAs in vivo now offers unprecedented possibilities for obtaining RNA-based therapeutics. For the heart, RNA therapies can be developed that stimulate endogenous repair after cardiac damage. Applications in this area include acute cardioprotection after ischemia or cancer chemotherapy, therapeutic angiogenesis to promote new blood vessel formation, regeneration to form new cardiac mass, and editing of mutations to cure inherited cardiac disease. While the potential of RNA therapeutics for all these conditions is exciting, the field is still in its infancy. A number of roadblocks need to be overcome for RNA therapies to become effective, in particular, related to the problem of delivering RNA medicines into the cells and targeting them specifically to the heart.
Collapse
Affiliation(s)
- Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King’s College London, London, UK
- Department of Medical Sciences, University of Trieste, Italy
| |
Collapse
|
25
|
Wang J, Zhu X, Wang S, Zhang Y, Hua W, Liu Z, Zheng Y, Lu X. Phosphoproteomic and proteomic profiling in post-infarction chronic heart failure. Front Pharmacol 2023; 14:1181622. [PMID: 37405054 PMCID: PMC10315476 DOI: 10.3389/fphar.2023.1181622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Background: Post-infarction chronic heart failure is the most common type of heart failure. Patients with chronic heart failure show elevated morbidity and mortality with limited evidence-based therapies. Phosphoproteomic and proteomic analysis can provide insights regarding molecular mechanisms underlying post-infarction chronic heart failure and explore new therapeutic approaches. Methods and results: Global quantitative phosphoproteomic and proteomic analysis of left ventricular tissues from post-infarction chronic heart failure rats were performed. A total of 33 differentially expressed phosphorylated proteins (DPPs) and 129 differentially expressed proteins were identified. Bioinformatic analysis indicated that DPPs were enriched mostly in nucleocytoplasmic transport and mRNA surveillance pathway. Bclaf1 Ser658 was identified after construction of Protein-Protein Interaction Network and intersection with Thanatos Apoptosis Database. Predicted Upstream Kinases of DPPs based on kinase-substrate enrichment analysis (KSEA) app showed 13 kinases enhanced in heart failure. Proteomic analysis showed marked changes in protein expression related to cardiac contractility and metabolism. Conclusion: The present study marked phosphoproteomics and proteomics changes in post-infarction chronic heart failure. Bclaf1 Ser658 might play a critical role in apoptosis in heart failure. PRKAA1, PRKACA, and PAK1 might serve as potential therapeutic targets for post-infarction chronic heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Zheng
- *Correspondence: Yu Zheng, ; Xiao Lu,
| | - Xiao Lu
- *Correspondence: Yu Zheng, ; Xiao Lu,
| |
Collapse
|
26
|
Yang R, Li L, Hou Y, Li Y, Zhang J, Yang N, Zhang Y, Ji W, Yu T, Lv L, Liang H, Li X, Li T, Shan H. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14:344. [PMID: 37253771 DOI: 10.1038/s41419-023-05852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Cardiac hypertrophy is a common structural remodeling in many cardiovascular diseases. Recently, long non-coding RNAs (LncRNAs) were found to be involved in the physiological and pathological processes of cardiac hypertrophy. In this study, we found that LncRNA KCND1 (LncKCND1) was downregulated in both transverse aortic constriction (TAC)-induced hypertrophic mouse hearts and Angiotensin II (Ang II)-induced neonatal mouse cardiomyocytes. Further analyses showed that the knockdown of LncKCND1 impaired cardiac mitochondrial function and led to hypertrophic changes in cardiomyocytes. In contrast, overexpression of LncKCND1 inhibited Ang II-induced cardiomyocyte hypertrophic changes. Importantly, enhanced expression of LncKCND1 protected the heart from TAC-induced pathological cardiac hypertrophy and improved heart function in TAC mice. Subsequent analyses involving mass spectrometry and RNA immunoprecipitation assays showed that LncKCND1 directly binds to YBX1. Furthermore, overexpression of LncKCND1 upregulated the expression level of YBX1, while silencing LncKCND1 had the opposite effect. Furthermore, YBX1 was downregulated during cardiac hypertrophy, whereas overexpression of YBX1 inhibited Ang II-induced cardiomyocyte hypertrophy. Moreover, silencing YBX1 reversed the effect of LncKCND1 on cardiomyocyte mitochondrial function and its protective role in cardiac hypertrophy, suggesting that YBX1 is a downstream target of LncKCND1 in regulating cardiac hypertrophy. In conclusion, our study provides mechanistic insights into the functioning of LncKCND1 and supports LncKCND1 as a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yumeng Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingnan Li
- Center for Tumor and Immunology, the Precision Medical Institute, Xi'an Jiaotong University, Xi'an, 710115, China
| | - Jing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weihang Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Basic Medicine, The Centre of Functional Experiment Teaching, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
27
|
Xing J, Wang H, Xie Y, Fan T, Cui C, Li Y, Wang S, Gu W, Wang C, Tang H, Liu L. Novel rare genetic variants of familial and sporadic pulmonary atresia identified by whole-exome sequencing. Open Life Sci 2023; 18:20220593. [PMID: 37215497 PMCID: PMC10199322 DOI: 10.1515/biol-2022-0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 05/24/2023] Open
Abstract
Pulmonary atresia (PA) is a severe cyanotic congenital heart disease. Although some genetic mutations have been described to be associated with PA, the knowledge of pathogenesis is insufficient. The aim of this research was to use whole-exome sequencing (WES) to determine novel rare genetic variants in PA patients. We performed WES in 33 patients (27 patient-parent trios and 6 single probands) and 300 healthy control individuals. By applying an enhanced analytical framework to incorporate de novo and case-control rare variation, we identified 176 risk genes (100 de novo variants and 87 rare variants). Protein‒protein interaction (PPI) analysis and Genotype-Tissue Expression analysis revealed that 35 putative candidate genes had PPIs with known PA genes with high expression in the human heart. Expression quantitative trait loci analysis revealed that 27 genes that were identified as novel PA genes that could be affected by the surrounding single nucleotide polymorphism were screened. Furthermore, we screened rare damaging variants with a threshold of minor allele frequency at 0.5% in the ExAC_EAS and GnomAD_exome_EAS databases, and the deleteriousness was predicted by bioinformatics tools. For the first time, 18 rare variants in 11 new candidate genes have been identified that may play a role in the pathogenesis of PA. Our research provides new insights into the pathogenesis of PA and helps to identify the critical genes for PA.
Collapse
Affiliation(s)
- Junyue Xing
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Hongdan Wang
- Medical Genetics Institute of Henan Province, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou 450002, China
| | - Yuanyuan Xie
- Department of Pediatrics, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, China
| | - Taibing Fan
- Department of Children’s Heart Center, Henan Provincial People’s Hospital, Department of Children’s Heart Center of Central China Fuwai Hospital, Henan Key Medical Laboratory of Tertiary Prevention and Treatment for Congenital Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 451464, China
| | - Cunying Cui
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Yanan Li
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Shuai Wang
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Weiyue Gu
- Department of Translational Medicine Center, Chigene (Beijing) Translational Medical Research Center Co., Beijing, 100176, China
| | - Chengzeng Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hao Tang
- Henan Key Laboratory of Chronic Disease Management, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Heart Center of Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Lin Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
28
|
Zhuang Y, Li T, Hu X, Xie Y, Pei X, Wang C, Li Y, Liu J, Tian Z, Zhang X, Peng L, Meng B, Wu H, Yuan W, Pan Z, Lu Y. MetBil as a novel molecular regulator in ischemia-induced cardiac fibrosis via METTL3-mediated m6A modification. FASEB J 2023; 37:e22797. [PMID: 36753405 DOI: 10.1096/fj.202201734r] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 02/09/2023]
Abstract
Cardiac fibrosis is a common pathological manifestation in multiple cardiovascular diseases and often results in myocardial stiffness and cardiac dysfunctions. LncRNA (long noncoding RNA) participates in a number of pathophysiological processes. However, its role in cardiac fibrosis remains unclear. The purpose of this study was to investigate the role and molecular mechanism of MetBil in regulating cardiac fibrosis. Our data showed that METTL3 binding lncRNA (MetBil) was significantly increased both in fibrotic tissue following myocardial infarction (MI) in mice and in cardiac fibroblasts (CFs) exposed to TGF-β1 (20 ng/mL) or 20% FBS. Overexpression of MetBil augmented collagen deposition, CF proliferation and activation while silencing MetBil exhibited the opposite effects. Importantly, heterozygous knockout of MetBil alleviated cardiac fibrosis and improved cardiac function after MI. RNA pull-down and RNA-binding protein immunoprecipitation assay showed that METTL3 is a direct downstream target of MetBil; consistently, MetBil and METTL3 were co-localized in both the nucleus and cytoplasm of CFs. Interestingly, MetBil regulated METTL3 expression at protein level, but not mRNA level, in ubiquitin-proteasome pathway. Enforced expression of METTL3 canceled the antifibrotic effects of silencing MetBil reflected by increased collagen production, CF proliferation and activation. Most notably, the m6A-modified fibrosis-regulated genes mediated by METTL3 are profoundly involved in the regulation of MetBil in the cardiac fibrosis following MI. Our study reveals that MetBil as a novel regulator of fibrosis promotes cardiac fibrosis via interacting with METTL3 and regulating the expression of the methylated fibrosis-associated genes, providing a new intervening target for fibrosis-associated cardiac diseases.
Collapse
Affiliation(s)
- Yuting Zhuang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,Scientific Research Center, Harbin Medical University Cancer Hospital, Harbin, P. R. China
| | - Tingting Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaoxi Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yilin Xie
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xinyu Pei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Chaoqun Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yuyang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Junwu Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhongrui Tian
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Xiaowen Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Lili Peng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Bo Meng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Hao Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Wei Yuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China
| | - Yanjie Lu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, P. R. China.,China Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
29
|
Yang Y, Wang X, Tan Y, Xu Y, Guo X, Wu Y, Wang W, Jing R, Zhu F, Ye D, Zhang Q, Lu C, Kang J, Wang G. LncCMRR Plays an Important Role in Cardiac Differentiation by Regulating the Purb/Flk1 Axis. Stem Cells 2023; 41:11-25. [PMID: 36318802 DOI: 10.1093/stmcls/sxac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
As crucial epigenetic regulators, long noncoding RNAs (lncRNAs) play critical functions in development processes and various diseases. However, the regulatory mechanism of lncRNAs in early heart development is still limited. In this study, we identified cardiac mesoderm-related lncRNA (LncCMRR). Knockout (KO) of LncCMRR decreased the formation potential of cardiac mesoderm and cardiomyocytes during embryoid body differentiation of mouse embryonic stem (ES) cells. Mechanistic analyses showed that LncCMRR functionally interacted with the transcription suppressor PURB and inhibited its binding potential at the promoter region of Flk1, which safeguarded the transcription of Flk1 during cardiac mesoderm formation. We also carried out gene ontology term and signaling pathway enrichment analyses for the differentially expressed genes after KO of LncCMRR, and found significant correlation of LncCMRR with cardiac muscle contraction, dilated cardiomyopathy, and hypertrophic cardiomyopathy. Consistently, the expression level of Flk1 at E7.75 and the thickness of myocardium at E17.5 were significantly decreased after KO of LncCMRR, and the survival rate and heart function index of LncCMRR-KO mice were also significantly decreased as compared with the wild-type group. These findings indicated that the defects in early heart development led to functional abnormalities in adulthood heart of LncCMRR-KO mice. Conclusively, our findings elucidate the main function and regulatory mechanism of LncCMRR in cardiac mesoderm formation, and provide new insights into lncRNA-mediated regulatory network of mouse ES cell differentiation.
Collapse
Affiliation(s)
- Yiwei Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xing Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yu Tan
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Wuchan Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Ruiqi Jing
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Fugui Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Dan Ye
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Qingquan Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Chenqi Lu
- Department of Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
30
|
Li S, Ni Y, Li C, Xiang Q, Zhao Y, Xu H, Huang W, Wang Y, Wang Y, Zhan J, Liu Y. Long noncoding RNA SNHG1 alleviates high glucose-induced vascular smooth muscle cells calcification/senescence by post-transcriptionally regulating Bhlhe40 and autophagy via Atg10. J Physiol Biochem 2023; 79:83-105. [PMID: 36194366 PMCID: PMC9905201 DOI: 10.1007/s13105-022-00924-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
Abstract
Long noncoding RNAs (lncRNAs) are emerging regulators of vascular diseases, yet their role in diabetic vascular calcification/aging remains poorly understood. In this study, we identified a down-expressed lncRNA SNHG1 in high glucose (HG)-induced vascular smooth muscle cells (HA-VSMCs), which induced excessive autophagy and promoted HA-VSMCs calcification/senescence. Overexpression of SNHG1 alleviated HG-induced HA-VSMCs calcification/senescence. The molecular mechanisms of SNHG1 in HA-VSMCs calcification/senescence were explored by RNA pull-down, RNA immunoprecipitation, RNA stability assay, luciferase reporter assay, immunoprecipitation and Western blot assays. In one mechanism, SNHG1 directly interacted with Bhlhe40 mRNA 3'-untranslated region and increased Bhlhe40 mRNA stability and expression. In another mechanism, SNHG1 enhanced Bhlhe40 protein SUMOylation by serving as a scaffold to facilitate the binding of SUMO E3 ligase PIAS3 and Bhlhe40 protein, resulting in increased nuclear translocation of Bhlhe40 protein. Moreover, Bhlhe40 suppressed the expression of Atg10, which is involved in the process of autophagosome formation. Collectively, the protective effect of SNHG1 on HG-induced HA-VSMCs calcification/senescence is accomplished by stabilizing Bhlhe40 mRNA and promoting the nuclear translocation of Bhlhe40 protein. Our study could provide a novel approach for diabetic vascular calcification/aging.
Collapse
Affiliation(s)
- Shuang Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yuqing Ni
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Chen Li
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Qunyan Xiang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yan Zhao
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Hui Xu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Wu Huang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yanjiao Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Yi Wang
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China
| | - Junkun Zhan
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| | - Youshuo Liu
- Department of Geriatrics, Institute of Aging and Age-Related Disease Research, The Second Xiangya Hospital, Central SouthUniversity, Changsha, 410011, Hunan, China.
| |
Collapse
|
31
|
Zhu MX, Ma XF, Niu X, Fan GB, Li Y. Mitochondrial unfolded protein response in ischemia-reperfusion injury. Brain Res 2022; 1797:148116. [PMID: 36209898 DOI: 10.1016/j.brainres.2022.148116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/21/2022]
Abstract
Mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that activates the transcriptional program of mitochondrial chaperone proteins and proteases to keep protein homeostasis in mitochondria. Ischemia-reperfusion injury results in multiple severe clinical issues linked to high morbidity and mortality in various disorders. The pathophysiology and pathogenesis of ischemia-reperfusion injury are complex and multifactorial. Emerging evidence showed the roles of UPRmt signaling in ischemia-reperfusion injury. Herein, we discuss the regulatory mechanisms underlying UPRmt signaling in C. elegans and mammals. Furthermore, we review the recent studies into the roles and mechanisms of UPRmt signaling in ischemia-reperfusion injury of the heart, brain, kidney, and liver. Further research of UPRmt signaling will potentially develop novel therapeutic strategies against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Ming-Xi Zhu
- Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Hainan, China
| | - Xiao-Fei Ma
- Department of ICU, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gui-Bo Fan
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yan Li
- Department of Anesthesiology, The 4th Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
32
|
Chen HS, Wang J, Li HH, Wang X, Zhang SQ, Deng T, Li YK, Zou RS, Wang HJ, Zhu R, Xie WL, Zhao G, Wang F, Chen JG. Long noncoding RNA Gm2694 drives depressive-like behaviors in male mice by interacting with GRP78 to disrupt endoplasmic reticulum homeostasis. SCIENCE ADVANCES 2022; 8:eabn2496. [PMID: 36459549 PMCID: PMC10936050 DOI: 10.1126/sciadv.abn2496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in various biological processes and implicated in the regulation of neuronal activity, but the potential role of lncRNAs in depression remains largely unknown. Here, we identified that lncRNA Gm2694 was increased in the medial prefrontal cortex (mPFC) of male mice subjected to chronic social defeat stress (CSDS). The down-regulation of Gm2694 in the mPFC alleviated CSDS-induced depressive-like behaviors through enhanced excitatory synaptic transmission. Furthermore, we found that Gm2694 preferentially interacted with the carboxyl-terminal domain of 78-kilodalton glucose-regulated protein (GRP78), which abrogated GRP78 function and disrupted endoplasmic reticulum homeostasis, resulting in a reduction of the surface expression of AMPA receptors (AMPARs). Overexpression of GRP78 in the mPFC promoted the surface expression of AMPARs and attenuated the CSDS-induced depressive-like behaviors of mice. Together, our results unraveled a previously unknown role of Gm2694 in regulating endoplasmic reticulum homeostasis and excitatory synaptic transmission in depression.
Collapse
Affiliation(s)
- Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hou-Hong Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiao Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Shao-Qi Zhang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Tan Deng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Yu-Ke Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Ruo-Si Zou
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Hua-Jie Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Rui Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wen-Long Xie
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Gang Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China
- The Research Center for Depression, Tongji Medical College, Huazhong University of Science, 430030 Wuhan, China
- The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, 430030 Wuhan, China
- The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, 430030 Wuhan, China
- Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, 430030 Wuhan, China
| |
Collapse
|
33
|
Ye X, Zhang P, Zhang Y, Luan J, Xu C, Wu Z, Ju D, Hu W. GSDMD contributes to myocardial reperfusion injury by regulating pyroptosis. Front Immunol 2022; 13:893914. [PMID: 36217543 PMCID: PMC9546776 DOI: 10.3389/fimmu.2022.893914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGasdermin D (GSDMD) plays an essential role in the pathway of pyroptosis. However, whether GSDMD participates in myocardial ischaemia/reperfusion injury (MI/RI) remains poorly understood.MethodsSerum levels of GSDMD and IL-18 in ST-segment elevation myocardial infarction (STEMI) patients were measured by ELISA. The expression of GSDMD and GSDMD N-terminal (GSDMD-NT) in vivo and in vitro was assessed by western blot and immunofluorescence staining. GSDMD-/- mice and wild type (WT) mice were induced MI/RI, followed by cardiac ultrasound and histological analysis.ResultsClinically, patients suffering from STEMI after percutaneous coronary intervention (PCI) exhibited higher levels of GSDMD and IL-18 than that in the controls. In vitro, the cleavage of GSDMD was significantly upregulated in macrophages exposed to hypoxia/reoxygenation or H2O2. In vivo, the levels of GSDMD and GSDMD-NT increased notably after MI/RI, especially in macrophages infiltrating in the infarct area. Moreover, compared with WT mice, GSDMD-/- mice showed reduced infarct size (25.45 ± 3.07% versus 36.47 ± 3.72%), improved left ventricular ejection fraction (37.71 ± 1.81% versus 29.44 ± 2.28%) and left ventricular fractional shortening (18.01 ± 0.97% versus 13.62 ± 1.15%) as well as attenuated pathological damage after I/R injury, along with reduced levels of proinflammatory cytokines and decreased infiltration of neutrophils.ConclusionsOur study revealed that GSDMD deficiency significantly alleviated the inflammatory response by regulating pyroptosis, reduced the infarct size and preserved cardiac function after MI/RI, thus providing a potential strategy for the treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Xiaomiao Ye
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Peng Zhang
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Jingyun Luan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Zhengyu Wu
- TAU Cambridge Ltd, Cambridge, United Kingdom
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Dianwen Ju, ; Wei Hu,
| | - Wei Hu
- Department of Cardiology, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Dianwen Ju, ; Wei Hu,
| |
Collapse
|
34
|
Song Y, Ren X, Gao F, Li F, Zhou J, Chen J, Zhang Y. LINC01588 regulates WWP2-mediated cardiomyocyte injury by interacting with HNRNPL. ENVIRONMENTAL TOXICOLOGY 2022; 37:1629-1641. [PMID: 35258167 DOI: 10.1002/tox.23512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Cardiomyocyte dysfunction and apoptosis induced by ischemia-hypoxia are common features of many acute and chronic heart diseases. WW domain-containing E3 ubiquitin ligase (WWP2) has been identified as an important regulator in pathogenesis of some health-threatening diseases. Although a couple of recent reports prompted the potential role of WWP2 in heart dysfunction, however, its exact role and how its expression was regulated in ischemic-hypoxic cardiomyocytes are still elusive. Here, we found that WWP2 protein level was induced in anoxia/reoxygenation (A/R) treated cardiomyocytes in a time-dependent manner, accompanied by synchronous expression of LINC01588 and HNRNPL. Knockdown of LINC01588 increased cardiomyocyte apoptosis, the level of oxidative stress, and expression of pro-inflammatory cytokine genes, down-regulated the expression of WWP2 and promoted expression of SEPT4 gene that contributed to cardiomyocyte dysfunction and was a target gene of WWP2. LINC01588 overexpression improved the functions of A/R treated cardiomyocytes, up-regulated WWP2 and reduced SEPT4 expression. In the mechanism exploration, we found that LINC01588 could directly bind with HNRNPL protein that could interact with WWP2, suggesting that WWP2 was involved in the regulation of LINC01588 in A/R treated cardiomyocytes. Moreover, WWP2 inhibition declined the protective role of LINC01588 in cardiomyocyte dysfunction induced by A/R. Finally, we demonstrated that LINC01588 overexpression improved acute myocardial infarction in mice in vivo. In conclusion, LINC01588 improved A/R-induced cardiomyocyte dysfunction by interacting with HNRNPL and promoting WWP2-mediated degradation of SEPT4.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Xiaoyue Ren
- Department of Oncology, Yan'an University Affiliated Hospital, China
| | - Feng Gao
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Fei Li
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Jing Zhou
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Junmin Chen
- Department of Cardiovasology, Yan'an University Affiliated Hospital, China
- Heart and Brain Laboratory, Yan'an University Affiliated Hospital, China
| | - Yunqing Zhang
- Department of Pathology, Yan'an University Affiliated Hospital, China
| |
Collapse
|
35
|
Jiang Y, Shen X, Dong C, Zhi F, Gao Y, Shi C, Chao Y, Xu J, Shang D, Xu J, Yang B, Li X, Bai Y. The whole transcriptome analysis and the circRNA-lncRNA network construction in arsenic trioxide-treated mice myocardium. Biomed Pharmacother 2022; 151:113183. [PMID: 35676786 DOI: 10.1016/j.biopha.2022.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/AIMS Arsenic trioxide (ATO) is an effective anti-cancer drug. Nonetheless, it possesses cardiotoxic effects which limit its clinical application. The present study aims to elucidate the molecular basis of ATO-induced cardiotoxicity through using whole transcriptome analysis. METHODS The whole transcriptome in ATO-treated mice myocardium was analyzed using RNA sequencing technique. These results were confirmed by real-time PCR. The lncRNA-mRNA and circRNA-mRNA co-expression networks were constructed. Finally, a circRNA-lncRNA co-regulated competing endogenous RNA (ceRNA) network was constructed. GO and KEGG pathway analyses were performed. The expression levels of Txnip and Spp1 in ATO-treated neonatal mouse cardiomyocytes were validated by real-time PCR. RESULTS A total of 113 mRNAs, 159 lncRNAs, 35 miRNAs, and 94 circRNAs were differentially expressed in ATO-treated mice myocardium. A lncRNA-circRNA co-regulation network was constructed. Function annotation revealed that aberrantly expressed genes may be enriched in the 'Wnt signaling pathway', 'Hippo signaling pathway', 'Notch signaling pathway', etc. Finally, the expression levels of Txnip and Spp1 were validated in ATO-treated cardiomyocytes, which was in accordance with the RNA-sequencing results. CONCLUSION ATO altered coding and noncoding RNA profiles in myocardium of mice. The ATO-related lncRNA-circRNA co-regulation network was constructed. Genes in the co-regulation network are likely to play important roles in the cardiotoxicity of ATO. This study provides new insights into the prevention and treatment of ATO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chunpeng Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yuqiu Chao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jincheng Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Desi Shang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
36
|
Li Y, Zhang J, Sun H, Yu X, Chen Y, Ma C, Zheng X, Zhang L, Zhao X, Jiang Y, Xin W, Wang S, Hu J, Wang M, Zhu D. RPS4XL encoded by lnc-Rps4l inhibits hypoxia-induced pyroptosis by binding HSC70 glycosylation site. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:920-934. [PMID: 35757299 PMCID: PMC9185019 DOI: 10.1016/j.omtn.2022.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 05/18/2022] [Indexed: 10/25/2022]
|
37
|
Song J, Ge Y, Sun X, Guan Q, Gong S, Wei M, Niu J, Zhao L. Noncoding RNAs related to the hedgehog pathway in cancer: clinical implications and future perspectives. Mol Cancer 2022; 21:115. [PMID: 35581586 PMCID: PMC9112456 DOI: 10.1186/s12943-022-01591-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/10/2022] [Indexed: 12/27/2022] Open
Abstract
Cancer is a type of malignant affliction threatening human health worldwide; however, the molecular mechanism of cancer pathogenesis remains to be elusive. The oncogenic hedgehog (Hh) pathway is a highly evolutionarily conserved signaling pathway in which the hedgehog-Patched complex is internalized to cellular lysosomes for degradation, resulting in the release of Smoothened inhibition and producing downstream intracellular signals. Noncoding RNAs (ncRNAs) with diversified regulatory functions have the potency of controlling cellular processes. Compelling evidence reveals that Hh pathway, ncRNAs, or their crosstalk play complicated roles in the initiation, metastasis, apoptosis and drug resistance of cancer, allowing ncRNAs related to the Hh pathway to serve as clinical biomarkers for targeted cancer therapy. In this review, we attempt to depict the multiple patterns of ncRNAs in the progression of malignant tumors via interactions with the Hh crucial elements in order to better understand the complex regulatory mechanism, and focus on Hh associated ncRNA therapeutics aimed at boosting their application in the clinical setting.
Collapse
Affiliation(s)
- Jia Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Yuexin Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, 110000, People's Republic of China
| | - Jumin Niu
- Department of Gynecology, Shenyang Women's and Children's Hospital, Shenyang, 110011, People's Republic of China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
38
|
Zhang T, Su F, Lu YB, Ling XL, Dai HY, Yang TN, Zhang B, Zhao D, Hou XM. MYC/MAX-Activated LINC00958 Promotes Lung Adenocarcinoma by Oncogenic Transcriptional Reprogramming Through HOXA1 Activation. Front Oncol 2022; 12:807507. [PMID: 35223488 PMCID: PMC8864111 DOI: 10.3389/fonc.2022.807507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The role of the long non-coding RNA (lncRNA) LINC00958, which regulates the malignant behavior of multiple tumors, in LUAD has not been elucidated. METHODS Tissue microarray, FISH, and qRT-PCR were used to detect the expression of LINC00958. Plasmid and viral infections were used to manipulate gene expression. The role of LINC00958 in LUAD was studied by cell proliferation analysis, cell apoptosis analysis, cell migration and invasion analysis, and subcutaneous inoculation of animal models. At the same time, RNA-Seq, RNA pull-down, ChIRP, ChIP, and luciferase reporter gene assays were performed to clarify the mechanism. RESULTS The expression of LINC00958 in LUAD tissues was significantly upregulated when compared with that in adjacent tissues and could independently predict poor survival of patients with LUAD. LINC00958 knockdown significantly inhibited the growth and metastasis of lung cancer cells in vitro and in vivo. LINC00958 localized to the nucleus, regulated oncogenes and metabolism-related and immune response-related genes, and interacted with histones. The targets of LINC00958 were TRPV3, STAP2, and EDN2 promoters with motifs of HOXA1, NANOG, FOSL2, JUN, and ATF4. Moreover, HOXA1 overexpression mitigated the LINC00958 knockdown-induced oncogenic phenotype. MYC/MAX motif, which was detected at the cis-element of LINC00958, trans-activated the LINC00958 promoter. CONCLUSIONS MYC/MAX-trans-activated LINC00958 promotes the malignant behavior of LUAD by recruiting HOXA1 and inducing oncogenic reprogramming.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China.,The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-Bin Lu
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ling Ling
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Huan-Yu Dai
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Tian-Ning Yang
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bin Zhang
- Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, China
| | - Da Zhao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-Ming Hou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
39
|
Anderson KM, Anderson DM. LncRNAs at the heart of development and disease. Mamm Genome 2022; 33:354-365. [PMID: 35048139 DOI: 10.1007/s00335-021-09937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Kelly M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
40
|
Yu Z, Zhu J, Wang H, Li H, Jin X. Function of BCLAF1 in human disease. Oncol Lett 2022; 23:58. [PMID: 34992690 PMCID: PMC8721854 DOI: 10.3892/ol.2021.13176] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Originally identified as a regulator of apoptosis and transcription, B-cell lymphoma-2-associated transcription factor 1 (BCLAF1) has since been shown to be associated with a multitude of biological processes, such as DNA damage response, splicing and processing of pre-mRNA, T-cell activation, lung development, muscle cell proliferation and differentiation, autophagy, ischemia-reperfusion injury, and viral infection. In recent years, an increasing amount of evidence has shown that BCLAF1 acts as either a tumor promoter or tumor suppressor in tumorigenesis depending on the cellular context and the type of cancer. Even in the same tumor type, BCLAF1 may have opposite effects. In the present review, the subcellular localization, structural features, mutations within BCLAF1 will be described, then the regulation of BCLAF1 and its downstream targets will be analyzed. Furthermore, the different roles and possible mechanisms of BCLAF1 in tumorigenesis will also be highlighted and discussed. Finally, BCLAF1 may be considered as a potential target for cancer therapy in the future.
Collapse
Affiliation(s)
- Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Haibiao Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo University, Ningbo, Zhejiang 315040, P.R. China.,Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
41
|
Xie L, Zhang Q, Mao J, Zhang J, Li L. The Roles of lncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:680713. [PMID: 34604208 PMCID: PMC8481623 DOI: 10.3389/fcell.2021.680713] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have been demonstrated to be associated with many physiological and pathological processes in cardiac. Recent studies have shown that lncRNAs are expressed dynamically in cardiovascular diseases and participate in regulation through a variety of molecular mechanisms, which have become a critical part of the epigenetic and transcriptional regulatory pathways in heart development, as well as the initiation and progress of myocardial infarction. In this review, we summarized some current research about the roles of lncRNAs in heart development and myocardial infarction, with the emphasis on molecular mechanisms of pathological responses, and highlighted their functions in the secondary changes of myocardial infarction. We also discussed the possibility of lncRNAs as novel diagnostic biomarkers and potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Teaching Affairs, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Song J, Sun Y, Cao H, Liu Z, Xi L, Dong C, Yang R, Shi Y. A novel pyroptosis-related lncRNA signature for prognostic prediction in patients with lung adenocarcinoma. Bioengineered 2021; 12:5932-5949. [PMID: 34488540 PMCID: PMC8806662 DOI: 10.1080/21655979.2021.1972078] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lung adenocarcinoma (LUAD) has been the major cause of tumor-associated mortality in recent years and has a poor prognosis. Pyroptosis is regulated via the activation of inflammasomes and participates in tumorigenesis. However, the effects of pyroptosis-related lncRNAs (PRlncRNAs) on LUAD have not yet been completely elucidated. Therefore, we attempted to systematically explore patterns of cell pyroptosis to establish a novel signature for predicting LUAD survival. Based on TCGA database, we set up a prognostic model by incorporating PRlncRNAs with differential expression using Cox regression and LASSO regression. Kaplan-Meier analysis was conducted to compare the survival of LUAD patients. We further simplified the risk model and created a nomogram to enhance the prediction of LUAD prognosis. Altogether, 84 PRlncRNAs with differential expression were discovered. Subsequently, a new risk model was constructed based on five PRlncRNAs, GSEC, FAM83A-AS1, AL606489.1, AL034397.3 and AC010980.2. The proposed signature exhibited good performance in prognostic prediction and was related to immunocyte infiltration. The nomogram exactly forecasted the overall survival of patients and had excellent clinical utility. In the present study, the five-lncRNA prognostic risk signature and nomogram are trustworthy and effective indicators for predicting the prognosis of LUAD.
Collapse
Affiliation(s)
- Jiahang Song
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanyuan Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Cao
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengcheng Liu
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xi
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changqing Dong
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rusong Yang
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Shi
- Department of Thoracic Surgery, Nanjing Chest Hospital, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Nanjing Chest Hospital, The Affiliated Nanjing Brain hospital of Nanjing Medical University, and The Pulmonary Nodule Diagnosis and Treatment Research Center of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Wang J, Cai Y, Lu H, Zhang F, Zheng J. LncRNA APOA1-AS facilitates proliferation and migration and represses apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization. Cell Cycle 2021; 20:1642-1652. [PMID: 34382908 DOI: 10.1080/15384101.2021.1951940] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Coronary atherosclerosis (CAS) is a major cause of cardiovascular disease. Long non-coding RNAs (lncRNAs) have been implicated as novel biomarkers in coronary artery disease (CAD). APOA1 antisense RNA (APOA1-AS) was proven to show high expression during atherosclerotic development, but no report has uncovered the detailed mechanism of APOA1-AS in CAS. Thus, this paper aims to explore the role of APOA1-AS in CAS. Vascular smooth muscle cells (VSMCs) were treated with oxidized low-density lipoprotein (ox-LDL) to mimic atherosclerosis-like injury. Quantitative real-time PCR (RT-qPCR) and western blot analysis analyzed gene expression. Cell counting kit-8 (CCK-8), wound healing assay, and flow cytometry were implemented to assess the function of APOA1-AS in modulating pathological phenotype of VSMCs. Results demonstrated that APOA1-AS was notably up-regulated in ox-LDL treated VSMCs (ox-LDL-VSMCs). The deficiency of APOA1-AS hindered proliferation and migration and stimulated apoptosis in ox-LDL-VSMCs. Mechanistically, APOA1-AS recruited TATA-box binding protein associated factor 15 (TAF15) protein to stabilized SMAD family member 3 (SMAD3) mRNA and activate the TGF-β/SMAD3 signaling pathway. In conclusion, APOA1-AS contributed to proliferation and migration and repressed apoptosis of VSMCs through TAF15-mediated SMAD3 mRNA stabilization, indicating that APOA1-AS could be a promising target for CAS.
Collapse
Affiliation(s)
- Jixiang Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Ying Cai
- Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin, China
| | - Hui Lu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Fugeng Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Junyi Zheng
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
44
|
Chen Z, Li Y, Tan B, Li F, Zhao Q, Fan L, Zhang Z, Zhao X, Liu Y, Wang D. Long Non-coding RNA ASNR Targeting miR-519e-5p Promotes Gastric Cancer Development by Regulating FGFR2. Front Cell Dev Biol 2021; 9:679176. [PMID: 34307360 PMCID: PMC8299726 DOI: 10.3389/fcell.2021.679176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC), as a common gastrointestinal tumor, is an important cause of death from cancer all around the world. Long non-coding RNAs (lncRNAs), a novel class of transcripts, have attracted great attention of researchers. However, the mechanisms of the clinical significance of most lncRNAs in human cancer are mainly undocumented. This research desires to explore the clinical significance, biological function, and mechanism of Lnc_ASNR (apoptosis suppressing-non-coding RNA) in GC. Cell proliferation, cell cycle, cell migration, and invasion abilities were respectively determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), flow cytometry, wound healing, and Transwell assay (Sigma-Aldrich, St. Louis, MO, United States). The association of Lnc_ASNR, miR-519e-5p, and fibroblast growth factor receptor 2 (FGFR2) was evaluated via luciferase reporter experiments. The tumor xenograft assay was conducted to confirm the results of cell experiments. High expressed Lnc_ASNR was detected in both GC cells and tissues using qRT-PCR. Downregulated Lnc_ASNR could reduce proliferation, migration, and invasion in GC cells, while upregulated Lnc_ASNR could promote the cell proliferation, migration, and invasion. Moreover, the effect of Lnc_ASNR on migration and invasion ability is closely related to epithelial-mesenchymal transition (EMT). The bioinformatics analysis, luciferase assay, and Western blot demonstrated that Lnc_ASNR inhibited miR-519e-5p expression but increased FGFR2 expression. Lnc_ASNR and FGFR2 were both targeted to miR-519e-5p, and they were negatively correlated with the expression of miR-519e-5p. All investigations indicated that Lnc_ASNR functioned as a ceRNA targeting miR-519e-5p and facilitated GC development by regulating the pathway of miR-519e-5p/FGFR2.
Collapse
Affiliation(s)
- Zihao Chen
- Graduate School of Hebei Medical University, Shijiazhuang, China.,The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liqiao Fan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhidong Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuefeng Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
45
|
Qin S, Yang L, Kong S, Xu Y, Liang B, Ju S. LncRNA HCP5 : A Potential Biomarker for Diagnosing Gastric Cancer. Front Oncol 2021; 11:684531. [PMID: 34222007 PMCID: PMC8252797 DOI: 10.3389/fonc.2021.684531] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Background It has been reported that long non-coding RNAs (lncRNAs) can be regarded as a biomarker and had particular clinical significance for early screening and gastric cancer (GC) diagnosis. Therefore, this study aimed to investigate whether serum HCP5 could be a new diagnostic biomarker. Methods Filtered out the HCP5 from the GEO database. The specificity of HCP5 was verified by real-time fluorescence quantitative PCR (qRT-PCR), and then the stability of HCP5 was verified by room temperature storage and repeated freeze-thaw experiments. Meanwhile, the accuracy of HCP5 was verified by agarose gel electrophoresis (AGE) and Sanger sequencing. Simultaneously, the expression level of serum HCP5 was detected by qRT-PCR in 98 patients with primary gastric cancer, 21 gastritis patients, 82 healthy donors, and multiple cancer types. Then, the methodology analysis was carried on. Moreover, receiver operating characteristic (ROC) was used to evaluate its diagnostic efficiency. Results qRT-PCR method had good repeatability and stability in detecting HCP5. The expression level of HCP5 in the serum of gastric cancer patients was remarkably higher than that of healthy controls, and it could distinguish gastritis patients from healthy donors. Besides, the expression of HCP5 was increased dramatically in MKN-45 and MGC-803. The FISH assay showed that HCP5 was mainly distributed in the cytoplasm of MKN-45 and BGC-823 cells. When HCP5 was combined with existing tumor markers, the diagnostic efficiency of HCP5 was the best, and the combined diagnosis of carcinoembryonic antigen (CEA), carbohydrate antigen199 (CA199), and HCP5 can significantly improve the diagnostic sensitivity. Besides, compared with the expression levels of thyroid cancer (THCA), colorectal cancer (CRC), and breast cancer (BRCA), serum HCP5 in gastric cancer was the most specific. Moreover, the high expression of serum HCP5 was related to differentiation, lymph node metastasis, and nerve invasion. The term of serum HCP5 after the operation was significantly lower than that of patients with primary gastric cancer. Conclusion Serum HCP5 can be used as a potential biomarker of non-invasive fluid biopsy, which had a unique value in the early diagnosis, development, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Shiyi Qin
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Lei Yang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Shan Kong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Yanhua Xu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical School of Nantong University, Nantong University, Nantong, China
| | - Bo Liang
- Department of Medical Ultrasonics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
46
|
Kay M, Soltani BM. LncRNAs in Cardiomyocyte Maturation: New Window for Cardiac Regenerative Medicine. Noncoding RNA 2021; 7:ncrna7010020. [PMID: 33802186 PMCID: PMC8005985 DOI: 10.3390/ncrna7010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyocyte (CM) maturation, which is characterized by structural, functional, and metabolic specializations, is the last phase of CM development that prepares the cells for efficient and forceful contraction throughout life. Over the past decades, CM maturation has gained increased attention due to the fact that pluripotent stem cell-derived CMs are structurally, transcriptionally, and functionally immature and embryonic-like, which causes a defect in cell replacement therapy. The current challenge is to discover and understand the molecular mechanisms, which control the CM maturation process. Currently, emerging shreds of evidence emphasize the role of long noncoding RNAs (lncRNAs) in regulating different aspects of CM maturation, including myofibril maturation, electrophysiology, and Ca2+ handling maturation, metabolic maturation and proliferation to hypertrophy transition. Here, we describe the structural and functional characteristics of mature CMs. Furthermore, this review highlights the lncRNAs as crucial regulators of different aspects in CM maturation, which have the potential to be used for mature CM production. With the current advances in oligonucleotide delivery; lncRNAs may serve as putative therapeutic targets to produce highly mature CMs for research and regenerative medicine.
Collapse
|