1
|
Duck SA, Smith KR, Saleh MG, Jansen E, Papantoni A, Song Y, Edden RAE, Carnell S. GABA (gamma-aminobutyric acid) levels in dorsal anterior cingulate cortex are negatively associated with food motivation in a pediatric sample. Sci Rep 2024; 14:24845. [PMID: 39438541 PMCID: PMC11496509 DOI: 10.1038/s41598-024-75520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Food motivation varies between individuals, affecting body weight and risk for eating disorders. Prior neuroimaging studies in youth and adults have revealed functional and structural alterations in the anterior cingulate cortex [ACC] in those with obesity and disordered eating but have not investigated their neurochemical underpinnings. In a sample of 37 children aged 4 to 13 years old, we used Magnetic Resonance Spectroscopy [MRS] to assess levels of γ-aminobutyric acid [GABA] - the major inhibitory neurotransmitter in the human brain - quantified relative to creatine in a 27-ml voxel including the dorsal ACC. We used the CEBQ to assess trait food motivation. In analyses adjusting for age, lower GABA+/Cr levels in the dorsal ACC were associated with higher trait enjoyment of food. Higher enjoyment of food scores were in turn associated with higher energy intake during an ad libitum test meal and during a postprandial task assessing intake in the absence of hunger, and higher body weight. Our results indicate a role for GABA function in the dorsal ACC in determining individual variation in food motivation in children.
Collapse
Affiliation(s)
- Sarah Ann Duck
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad G Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yulu Song
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Abe Y, Erchinger VJ, Ousdal OT, Oltedal L, Tanaka KF, Takamiya A. Neurobiological mechanisms of electroconvulsive therapy for depression: Insights into hippocampal volumetric increases from clinical and preclinical studies. J Neurochem 2024; 168:1738-1750. [PMID: 38238933 DOI: 10.1111/jnc.16054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/08/2024] [Indexed: 10/04/2024]
Abstract
Depression is a highly prevalent and disabling psychiatric disorder. The hippocampus, which plays a central role in mood regulation and memory, has received considerable attention in depression research. Electroconvulsive therapy (ECT) is the most effective treatment for severe pharmacotherapy-resistant depression. Although the working mechanism of ECT remains unclear, recent magnetic resonance imaging (MRI) studies have consistently reported increased hippocampal volumes following ECT. The clinical implications of these volumetric increases and the specific cellular and molecular significance are not yet fully understood. This narrative review brings together evidence from animal models and human studies to provide a detailed examination of hippocampal volumetric increases following ECT. In particular, our preclinical MRI research using a mouse model is consistent with human findings, demonstrating a marked increase in hippocampal volume following ECT. Notable changes were observed in the ventral hippocampal CA1 region, including dendritic growth and increased synaptic density at excitatory synapses. Interestingly, inhibition of neurogenesis did not affect the ECT-related hippocampal volumetric increases detected on MRI. However, it remains unclear whether these histological and volumetric changes would be correlated with the clinical effect of ECT. Hence, future research on the relationships between cellular changes, ECT-related brain volumetric changes, and antidepressant effect could benefit from a bidirectional translational approach that integrates human and animal models. Such translational research may provide important insights into the mechanisms and potential biomarkers associated with ECT-induced hippocampal volumetric changes, thereby advancing our understanding of ECT for the treatment of depression.
Collapse
Affiliation(s)
- Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Vera J Erchinger
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Olga Therese Ousdal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Oltedal
- Department of Biomedicine, The Faculty of Medicine, University of Bergen, Bergen, Norway
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akihiro Takamiya
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Jia K, Wang M, Steinwurzel C, Ziminski JJ, Xi Y, Emir U, Kourtzi Z. Recurrent inhibition refines mental templates to optimize perceptual decisions. SCIENCE ADVANCES 2024; 10:eado7378. [PMID: 39083601 PMCID: PMC11290482 DOI: 10.1126/sciadv.ado7378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Translating sensory inputs to perceptual decisions relies on building internal representations of features critical for solving complex tasks. Yet, we still lack a mechanistic account of how the brain forms these mental templates of task-relevant features to optimize decision-making. Here, we provide evidence for recurrent inhibition: an experience-dependent plasticity mechanism that refines mental templates by enhancing γ-aminobutyric acid (GABA)-mediated (GABAergic) inhibition and recurrent processing in superficial visual cortex layers. We combine ultrahigh-field (7 T) functional magnetic resonance imaging at submillimeter resolution with magnetic resonance spectroscopy to investigate the fine-scale functional and neurochemical plasticity mechanisms for optimized perceptual decisions. We demonstrate that GABAergic inhibition increases following training on a visual (i.e., fine orientation) discrimination task, enhancing the discriminability of orientation representations in superficial visual cortex layers that are known to support recurrent processing. Modeling functional and neurochemical plasticity interactions reveals that recurrent inhibitory processing optimizes brain computations for perpetual decisions and adaptive behavior.
Collapse
Affiliation(s)
- Ke Jia
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Mengxin Wang
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | | | - Joseph J. Ziminski
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Yinghua Xi
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Uzay Emir
- Purdue University School of Health Sciences, West Lafayette, IN 47906, USA
| | - Zoe Kourtzi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| |
Collapse
|
4
|
Holton E, Grohn J, Ward H, Manohar SG, O'Reilly JX, Kolling N. Goal commitment is supported by vmPFC through selective attention. Nat Hum Behav 2024; 8:1351-1365. [PMID: 38632389 PMCID: PMC11272579 DOI: 10.1038/s41562-024-01844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/01/2024] [Indexed: 04/19/2024]
Abstract
When striking a balance between commitment to a goal and flexibility in the face of better options, people often demonstrate strong goal perseveration. Here, using functional MRI (n = 30) and lesion patient (n = 26) studies, we argue that the ventromedial prefrontal cortex (vmPFC) drives goal commitment linked to changes in goal-directed selective attention. Participants performed an incremental goal pursuit task involving sequential decisions between persisting with a goal versus abandoning progress for better alternative options. Individuals with stronger goal perseveration showed higher goal-directed attention in an interleaved attention task. Increasing goal-directed attention also affected abandonment decisions: while pursuing a goal, people lost their sensitivity to valuable alternative goals while remaining more sensitive to changes in the current goal. In a healthy population, individual differences in both commitment biases and goal-oriented attention were predicted by baseline goal-related activity in the vmPFC. Among lesion patients, vmPFC damage reduced goal commitment, leading to a performance benefit.
Collapse
Affiliation(s)
- Eleanor Holton
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Jan Grohn
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Harry Ward
- Centre for Experimental Medicine and Rheumatology, Queen Mary University London (QMUL), London, UK
| | - Sanjay G Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
| | - Nils Kolling
- Wellcome Centre for Integrative Neuroimaging (WIN), University of Oxford, Oxford, UK
- Stem Cell and Brain Research Institute U1208, Inserm, Université Claude Bernard Lyon 1, Bron, France
| |
Collapse
|
5
|
Marzecová A, Kaiser LF, Maddah A. Neuromodulation of Foraging Decisions: The Role of Dopamine. Front Behav Neurosci 2021; 15:660667. [PMID: 33927602 PMCID: PMC8076528 DOI: 10.3389/fnbeh.2021.660667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/15/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Anna Marzecová
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.,Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Luca F Kaiser
- Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Armin Maddah
- Institute of Experimental Psychology, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|