1
|
Yu Z, Lin H, Zhang H, Han Y. Exploring guest species in zeolites using transmission electron microscopy: a review and outlook. Chem Soc Rev 2025; 54:4763-4789. [PMID: 40237072 DOI: 10.1039/d5cs00159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Zeolites, with their well-defined microporous frameworks, accommodate diverse guest species, including metal ions, atoms, clusters, complexes, and organic molecules. Direct imaging of these species and their interactions with the framework is crucial for understanding their structural and functional roles. Transmission electron microscopy (TEM), particularly aberration-corrected scanning TEM (STEM), has become an indispensable tool, offering atomic-resolution real-space insights. This review summarizes key (S)TEM techniques for probing guest species in zeolites, with a focus on low-dose strategies to minimize beam damage. We discuss the principles, applications, and limitations of various imaging modalities and highlight recent advances in visualizing metallic and organic species. Finally, we explore future directions for (S)TEM in zeolite research, emphasizing the opportunities and challenges of in situ, three-dimensional, and cryogenic imaging for resolving host-guest interactions with greater precision.
Collapse
Affiliation(s)
- Zhiling Yu
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Huang Lin
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
| | - Hui Zhang
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
| | - Yu Han
- Center for Electron Microscopy, South China University of Technology, Guangzhou 511442, China.
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 511442, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 511442, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Zhang N, Zhang Y, Wu F, Liu Z, Xu X, Li Q, Mei Y, Zu Y. Fabricating a stable interface of tetracoordinated-phosphorus and framework Al within P-doping ZSM-5 zeolite for catalytic methanol-to-propylene reaction. J Colloid Interface Sci 2025; 685:321-330. [PMID: 39848065 DOI: 10.1016/j.jcis.2025.01.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Phosphorus (P)-doping H-ZSM-5 zeolites, which is crucial for industrial applications, aim to adjust both acidity and framework stability while optimizing product distribution in heterogeneous catalysis. Nonetheless, current phosphating methods often suffer from inadequate phosphorus dispersion and unclear interfacial interactions with framework aluminum (Al). In this work, P-doping ZSM-5 zeolites were successfully one-step prepared by using tributylphosphine served as an organophosphorus precursor, assisting by density functional theory calculations. On account of this, a stable interface of tetracoordinated-phosphorus and framework Al was fabricated uniformly. Such an interfacial structure not only made more framework Al sit in the straight/sinusoidal channels, but also remodeled Brønsted acid sites and reinforced its acidity. Under comparable conditions, methanol-to-propylene (MTP) evaluations indicated that the high-silica PZ-75 zeolite catalyst displayed an appreciable catalytic lifetime (30 h) and a higher C3H6 selectivity (52.4 %). Additionally, in-situ Fourier transform infrared spectroscopy further revealed that this exceptional MTP performance was attributable to the predominant olefinic pathway and lower hydrogen transfer ability. These results provide valuable information for cognizing phosphorus-zeolite chemistry and creating high-performance MTP catalytic materials.
Collapse
Affiliation(s)
- Nengcui Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China
| | - Yimin Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China
| | - Feng Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China.
| | - Ziyan Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China
| | - Xinyu Xu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China
| | - Qiang Li
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Fushun 113001, PR China
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China
| | - Yun Zu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming 650500, PR China.
| |
Collapse
|
3
|
Zhu Z, Fan M, He M, An B, Chen Y, Xu S, Zhou T, Sheveleva AM, Kippax-Jones M, Shan L, Cheng Y, Cavaye H, Armstrong J, Rudić S, Parker SF, Thornley W, Tillotson E, Lindley M, Tian S, Lee D, Fu S, Frogley MD, Tuna F, McInnes EJL, Haigh SJ, Yang S. Selective production of olefins from methanol over a heteroatomic SAPO-34 zeolite. Sci Bull (Beijing) 2025; 70:694-703. [PMID: 39827027 DOI: 10.1016/j.scib.2024.12.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/17/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The methanol-to-olefins (MTO) process has the potential to bridge future gaps in the supply of sustainable lower olefins. Promoting the selectivity of propylene and ethylene and revealing the catalytic role of active sites are challenging goals in MTO reactions. Here, we report a novel heteroatomic silicoaluminophosphate (SAPO) zeolite, SAPO-34-Ta, which incorporates active tantalum(V) sites within the framework to afford an optimal distribution of acidity. SAPO-34-Ta exhibits a remarkable total selectivity of 85.8% for propylene and ethylene with a high selectivity of 54.9% for propylene on full conversion of methanol at 400 °C. In situ and operando synchrotron powder X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy and inelastic neutron scattering, coupled with theoretical calculations, reveal trimethyloxonium as the key reaction intermediate, promoting the formation of first carbon-carbon bonds in olefins. The tacit cooperation between tantalum(V) and Brønsted acid sites within SAPO-34 provides an efficient platform for selective production of lower olefins from methanol.
Collapse
Affiliation(s)
- Zhaodong Zhu
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Mengtian Fan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Meng He
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Bing An
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yinlin Chen
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Shaojun Xu
- Departmentof Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Tianze Zhou
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Alena M Sheveleva
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | | | - Lutong Shan
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Yongqiang Cheng
- The Chemical and Engineering Materials Division (CEMD), Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Hamish Cavaye
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Jeff Armstrong
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Svemir Rudić
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Stewart F Parker
- ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - William Thornley
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Evan Tillotson
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Matthew Lindley
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Daniel Lee
- Departmentof Chemical Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Shiyu Fu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mark D Frogley
- Diamond Light Source, Harwell Science Campus, Didcot, OX11 0DE, UK
| | - Floriana Tuna
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Eric J L McInnes
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; Photon Science Institute, University of Manchester, Manchester, M13 9PL, UK
| | - Sarah J Haigh
- Department of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK; College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Altus KM, Shi Y, Probst P, Heaton JH, Gyton MR, Lari L, Buchmeiser MR, Dyer PW, Weller AS. Room Temperature Ethene to Propene (ETP) Tandem Catalysis using Single Crystalline Solid-State Molecular Pre-Catalysts. Angew Chem Int Ed Engl 2025; 64:e202419923. [PMID: 39876647 DOI: 10.1002/anie.202419923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 01/30/2025]
Abstract
A tandem catalytic ensemble of solid-state molecular organometallic (SMOM) crystalline pre-catalysts are deployed under batch or flow conditions for the ethene to propene process (ETP). These catalysts operate at ambient temperature and low pressure, via sequential ethene dimerization, butenes isomerization and cross-metathesis. Under flow conditions the on-stream ethene conversion (55 %), initial propene selectivity (92 %), stability (71 % selectivity after 7 h) and low temperature/pressures are competitive with the best-in-class heterogeneous systems, marking a new, in crystallo, approach to ETP.
Collapse
Affiliation(s)
- Kristof M Altus
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Yiping Shi
- Department of Chemistry, Durham University South Road, Durham, DH1 3LE, UK
| | - Patrick Probst
- Faculty of Chemistry, University of Stuttgart Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Jack H Heaton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Matthew R Gyton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Leonardo Lari
- York Jeol Nanocentre, Helix House, Science Park, Heslington, York, YO10 5BR, UK School of Physics Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK
| | - Michael R Buchmeiser
- Faculty of Chemistry, University of Stuttgart Pfaffenwaldring 55, D-70569, Stuttgart, Germany
| | - Philip W Dyer
- Department of Chemistry, Durham University South Road, Durham, DH1 3LE, UK
| | - Andrew S Weller
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
5
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
6
|
He Z, Yang J, Liu L. Design of Supported Metal Catalysts and Systems for Propane Dehydrogenation. JACS AU 2024; 4:4084-4109. [PMID: 39610729 PMCID: PMC11600159 DOI: 10.1021/jacsau.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Propane dehydrogenation (PDH) is currently an approach for the production of propylene with high industrial importance, especially in the context of the shale gas revolution and the growing global demands for propylene and downstream commodity chemicals. In this Perspective article, we comprehensively summarize the recent advances in the design of advanced catalysts for PDH and the new understanding of the structure-performance relationship in supported metal catalysts. Furthermore, we discuss the gaps between fundamental research and practical industrial applications in the catalyst developments for the PDH process. In particular, we overview some critical issues regarding catalyst regeneration and the compatibility of the catalyst and reactor design. Finally, we make perspectives on the future directions of PDH research, including the efforts toward achieving a unified understanding of the structure-performance relationship, innovation in reactor engineering, and translation of the knowledge accumulated on PDH studies to other important alkane dehydrogenation reactions.
Collapse
Affiliation(s)
- Zhe He
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingnan Yang
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lichen Liu
- Engineering Research Center of Advanced
Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Yu X, Cheng Y, Li Y, Polo-Garzon F, Liu J, Mamontov E, Li M, Lennon D, Parker SF, Ramirez-Cuesta AJ, Wu Z. Neutron Scattering Studies of Heterogeneous Catalysis. Chem Rev 2023. [PMID: 37315192 DOI: 10.1021/acs.chemrev.3c00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure-catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron-nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis.
Collapse
Affiliation(s)
- Xinbin Yu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Felipe Polo-Garzon
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
| | - Jue Liu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Meijun Li
- Manufacturing Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Lennon
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Stewart F Parker
- ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
| | - Anibal J Ramirez-Cuesta
- Neutron Technologies Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37381, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
8
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
9
|
Liu Y, Zhang Q, Li J, Wang X, Terasaki O, Xu J, Yu J. Protozeolite‐Seeded Synthesis of Single‐Crystalline Hierarchical Zeolites with Facet‐Shaped Mesopores and Their Catalytic Application in Methanol‐to‐Propylene Conversion. Angew Chem Int Ed Engl 2022; 61:e202205716. [DOI: 10.1002/anie.202205716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yinghao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| | - Junyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- Center for High-resolution Electron Microscopy (CħEM) School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road, Pudong Shanghai 201210 P. R. China
| | - Xingxing Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- National Centre for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Osamu Terasaki
- Center for High-resolution Electron Microscopy (CħEM) School of Physical Science and Technology ShanghaiTech University 393 Middle Huaxia Road, Pudong Shanghai 201210 P. R. China
| | - Jun Xu
- National Centre for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
- International Center of Future Science Jilin University Qianjin Street 2699 Changchun 130012 P. R. China
| |
Collapse
|
10
|
Quantitative principle of shape‐selective catalysis for a rational screening of zeolites for methanol‐to‐hydrocarbons. AIChE J 2022. [DOI: 10.1002/aic.17881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Liu Y, Zhang Q, Li J, Wang X, Terasaki O, Xu J, Yu J. Protozeolite‐Seeded Synthesis of Single‐Crystalline Hierarchical Zeolites with Facet‐Shaped Mesopores and Their Catalytic Application in Methanol‐to‐Propylene Conversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yinghao Liu
- Jilin University College of Chemistry State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Henan Province People'S Republic Of China Yuzhou City Liangbei Town Suwangkou Vi CHINA
| | - Qiang Zhang
- Jilin University College of Chemistry State Key Laboratory of Inorganic Synthesis and Preparative Chemistry CHINA
| | - Junyan Li
- Jilin University College of Chemistry State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University; Centre for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University. CHINA
| | - Xingxing Wang
- Jilin University College of Chemistry State Key Laboratory of Inorganic Synthesis and Preparative Chemistry CHINA
| | - Osamu Terasaki
- ShanghaiTech University Centre for High-resolution Electron Microscopy (CħEM), School of Physical Science and Technology, ShanghaiTech University CHINA
| | - Jun Xu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology National Centre for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Jihong Yu
- Jilin University College of Chemistry Qianjin Street 2699 130012 Changchun CHINA
| |
Collapse
|
12
|
Lin Y, Xu D, Chen Z, Yu Y, Li F, Huang X, Liu Y, He M. P-modified Deactivated TS-1: A Benign Catalyst for the MTP Reaction. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Kalantari N, Bekheet MF, Nezhad PDK, Back JO, Farzi A, Penner S, Delibaş NÇ, Schwarz S, Bernardi J, Salari D, Niaei A. Effect of chromium and boron incorporation methods on structural and catalytic properties of hierarchical ZSM-5 in the methanol-to-propylene process. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
van Vreeswijk SH, Weckhuysen BM. Emerging Analytical Methods to Characterize Zeolite-Based Materials. Natl Sci Rev 2022; 9:nwac047. [PMID: 36128456 PMCID: PMC9477204 DOI: 10.1093/nsr/nwac047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites and zeolitic materials are, through their use in numerous conventional and sustainable applications, very important to our daily lives, including to foster the necessary transition to a more circular society. The characterization of zeolite-based materials has a tremendous history and a great number of applications and properties of these materials have been discovered in the past decades. This review focuses on recently developed novel as well as more conventional techniques applied with the aim of better understanding zeolite-based materials. Recently explored analytical methods, e.g. atom probe tomography, scanning transmission X-ray microscopy, confocal fluorescence microscopy and photo-induced force microscopy, are discussed on their important contributions to the better understanding of zeolites as they mainly focus on the micro- to nanoscale chemical imaging and the revelation of structure–composition–performance relationships. Some other techniques have a long and established history, e.g. nuclear magnetic resonance, infrared, neutron scattering, electron microscopy and X-ray diffraction techniques, and have gone through increasing developments allowing the techniques to discover new and important features in zeolite-based materials. Additional to the increasing application of these methods, multiple techniques are nowadays used to study zeolites under working conditions (i.e. the in situ/operando mode of analysis) providing new insights in reaction and deactivation mechanisms.
Collapse
Affiliation(s)
- S H van Vreeswijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - B M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
15
|
Hu W, Xu Y, Xin J, Liu B, Jiang F, Liu X. Stable co-production of olefins and aromatics from ethane over Co 2+-exchanged HZSM-5 zeolite. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00664b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Olefins and aromatics can be stably co-produced from ethane over a Co-exchanged HZSM-5 catalyst in which isolated Co(ii) species are anchored at Brønsted acid sites and active for efficient ethane dehydrogenation.
Collapse
Affiliation(s)
- Wenjin Hu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Jian Xin
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Feng Jiang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122 Wuxi, China
| |
Collapse
|
16
|
How Many Molecules Can Fit in a Zeolite Pore? Implications for the Hydrocarbon Pool Mechanism of the Methanol-to-Hydrocarbons Process. Catalysts 2021. [DOI: 10.3390/catal11101204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The methanol-to-hydrocarbons (MTH) process is a very advantageous way to upgrade methanol to more valuable commodity chemicals such as light alkenes and gasoline. There is general agreement that, at steady state, the process operates via a dual cycle “hydrocarbon pool” mechanism. This mechanism defines a minimum number of reactants, intermediates, and products that must be present for the reaction to occur. In this paper, we calculate (by three independent methods) the volume required for a range of compounds that must be present in a working catalyst. These are compared to the available volume in a range of zeolites that have been used, or tested, for MTH. We show that this straightforward comparison provides a means to rationalize the product slate and the deactivation pathways in zeotype materials used for the MTH reaction.
Collapse
|
17
|
Nastase SAF, Logsdail AJ, Catlow CRA. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Phys Chem Chem Phys 2021; 23:17634-17644. [PMID: 34369957 DOI: 10.1039/d1cp02535j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C2+ species, rather than inter-framework migration, and that the role of carbenes in the formation of the first C-C bond will be via a concerted type of mechanism rather than stepwise.
Collapse
Affiliation(s)
- Stefan A F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT, UK.
| | | | | |
Collapse
|
18
|
Actis A, Salvadori E, Chiesa M. Framework coordination of single-ion Cu 2+ sites in hydrated 17O-ZSM-5 zeolite. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00838b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial coordination chemistry of water solvated single Cu2+ sites in ZSM-5 is assessed through pulsed EPR spectroscopy and selective 17O isotopic labelling.
Collapse
Affiliation(s)
- Arianna Actis
- Department of Chemistry and NIS Centre
- University of Torino
- 10125 Torino
- Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre
- University of Torino
- 10125 Torino
- Italy
| | - Mario Chiesa
- Department of Chemistry and NIS Centre
- University of Torino
- 10125 Torino
- Italy
| |
Collapse
|