1
|
Hu Z, Guo J, Ma D, Wang Z, Liu Y, Wang Q. Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents. Int J Mol Sci 2025; 26:1103. [PMID: 39940870 PMCID: PMC11816930 DOI: 10.3390/ijms26031103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Plant viral diseases cause great harm to crops in terms of yield and quality. Natural products have been providing an excellent source of novel chemistry, inspiring the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine (3a), trisphaeridine (4a), and bicolorine (5a) were selected as parent structures, and a series of their derivatives were designed, synthesized, and investigated for their anti-plant virus effects for the first time. Compounds 13b and 18 exhibited comparable inhibitory activities to ningnanmycin against tobacco mosaic virus (TMV). Preliminary research into the mechanism, involving transmission electron microscopy and molecular docking studies, suggests that compound 18 may interfere with the elongation phase of the TMV assembly process. This study provides some important information for the research and development of agrochemicals with phenanthridine structures.
Collapse
Affiliation(s)
- Zhan Hu
- Key Laboratory of Green Prevention and Control of Tropical Agriculture and Forestry BioDisasters of Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
| | - Jincheng Guo
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
- Baotou Research Institute of Rare Earths, Baotou 014030, China
| | - Dejun Ma
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
| | - Ziwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China; (J.G.); (D.M.); (Z.W.); (Y.L.)
| |
Collapse
|
2
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Yarullina L, Kalatskaja J, Tsvetkov V, Burkhanova G, Yalouskaya N, Rybinskaya K, Zaikina E, Cherepanova E, Hileuskaya K, Nikalaichuk V. The Influence of Chitosan Derivatives in Combination with Bacillus subtilis Bacteria on the Development of Systemic Resistance in Potato Plants with Viral Infection and Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:2210. [PMID: 39204646 PMCID: PMC11360750 DOI: 10.3390/plants13162210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Viral diseases of potatoes are among the main problems causing deterioration in the quality of tubers and loss of yield. The growth and development of potato plants largely depend on soil moisture. Prevention strategies require comprehensive protection against pathogens and abiotic stresses, including modeling the beneficial microbiome of agroecosystems combining microorganisms and immunostimulants. Chitosan and its derivatives have great potential for use in agricultural engineering due to their ability to induce plant immune responses. The effect of chitosan conjugate with caffeic acid (ChCA) in combination with Bacillus subtilis 47 on the transcriptional activity of PR protein genes and changes in the proteome of potato plants during potato virus Y (PVY) infection and drought was studied. The mechanisms of increasing the resistance of potato plants to PVY and lack of moisture are associated with the activation of transcription of genes encoding PR proteins: the main protective protein (PR-1), chitinase (PR-3), thaumatin-like protein (PR-5), protease inhibitor (PR-6), peroxidase (PR-9), and ribonuclease (PR-10), as well as qualitative and quantitative changes in the plant proteome. The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of combined treatment with B. subtilis and chitosan conjugate indicate that, in potato plants, the formation of resistance to viral infection in drought conditions proceeds synergistically. By two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 10 proteins were identified, the content and composition of which differed depending on the experiment variant. In infected plants treated with ChCA, the synthesis of proteinaceous RNase P 1 and oxygen-evolving enhancer protein 2 was enhanced in conditions of normal humidity, and 20 kDa chaperonin and TMV resistance protein N-like was enhanced in conditions of lack of moisture. The virus coat proteins were detected, which intensively accumulated in the leaves of plants infected with potato Y-virus. ChCA treatment reduced the content of these proteins in the leaves, and in plants treated with ChCA in combination with Bacillus subtilis, viral proteins were not detected at all, both in conditions of normal humidity and lack of moisture, which suggests the promising use of chitosan derivatives in combination with B. subtilis bacteria in the regulation of plant resistance.
Collapse
Affiliation(s)
- Liubov Yarullina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Joanna Kalatskaja
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Vyacheslav Tsvetkov
- Department of Biochemistry and Biotechnology, Ufa University of Science and Technology, ul. Zaki Validi, 32, 450076 Ufa, Russia;
| | - Guzel Burkhanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ninel Yalouskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Katerina Rybinskaya
- Institute of Experimental Botany Named after V.F. Kuprevich, ul. Akademicheskaya, 27, 220072 Minsk, Belarus; (J.K.); (N.Y.); (K.R.)
| | - Evgenia Zaikina
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Ekaterina Cherepanova
- Institute of Biochemistry and Genetics, pr. Oktyabrya, 71, 450054 Ufa, Russia; (G.B.); (E.Z.); (E.C.)
| | - Kseniya Hileuskaya
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| | - Viktoryia Nikalaichuk
- Institute of Chemistry of New Materials, The National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (K.H.); (V.N.)
| |
Collapse
|
4
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Rossmanith W, Giegé P, Hartmann RK. Discovery, structure, mechanisms, and evolution of protein-only RNase P enzymes. J Biol Chem 2024; 300:105731. [PMID: 38336295 PMCID: PMC10941002 DOI: 10.1016/j.jbc.2024.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The endoribonuclease RNase P is responsible for tRNA 5' maturation in all domains of life. A unique feature of RNase P is the variety of enzyme architectures, ranging from dual- to multi-subunit ribonucleoprotein forms with catalytic RNA subunits to protein-only enzymes, the latter occurring as single- or multi-subunit forms or homo-oligomeric assemblies. The protein-only enzymes evolved twice: a eukaryal protein-only RNase P termed PRORP and a bacterial/archaeal variant termed homolog of Aquifex RNase P (HARP); the latter replaced the RNA-based enzyme in a small group of thermophilic bacteria but otherwise coexists with the ribonucleoprotein enzyme in a few other bacteria as well as in those archaea that also encode a HARP. Here we summarize the history of the discovery of protein-only RNase P enzymes and review the state of knowledge on structure and function of bacterial HARPs and eukaryal PRORPs, including human mitochondrial RNase P as a paradigm of multi-subunit PRORPs. We also describe the phylogenetic distribution and evolution of PRORPs, as well as possible reasons for the spread of PRORPs in the eukaryal tree and for the recruitment of two additional protein subunits to metazoan mitochondrial PRORP. We outline potential applications of PRORPs in plant biotechnology and address diseases associated with mutations in human mitochondrial RNase P genes. Finally, we consider possible causes underlying the displacement of the ancient RNA enzyme by a protein-only enzyme in a small group of bacteria.
Collapse
Affiliation(s)
- Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Philippe Giegé
- Institute for Plant Molecular Biology, IBMP-CNRS, University of Strasbourg, Strasbourg, France.
| | - Roland K Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Wilhelm CA, Kaitany K, Kelly A, Yacoub M, Koutmos M. The protein-only RNase Ps, endonucleases that cleave pre-tRNA: Biological relevance, molecular architectures, substrate recognition and specificity, and protein interactomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1836. [PMID: 38453211 PMCID: PMC11740979 DOI: 10.1002/wrna.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
| | - Kipchumba Kaitany
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Abigail Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Yacoub
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Sridhara S. Multiple structural flavors of RNase P in precursor tRNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1835. [PMID: 38479802 DOI: 10.1002/wrna.1835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 06/06/2024]
Abstract
The precursor transfer RNAs (pre-tRNAs) require extensive processing to generate mature tRNAs possessing proper fold, structural stability, and functionality required to sustain cellular viability. The road to tRNA maturation follows an ordered process: 5'-processing, 3'-processing, modifications at specific sites, if any, and 3'-CCA addition before aminoacylation and recruitment to the cellular protein synthesis machinery. Ribonuclease P (RNase P) is a universally conserved endonuclease in all domains of life, performing the hydrolysis of pre-tRNA sequences at the 5' end by the removal of phosphodiester linkages between nucleotides at position -1 and +1. Except for an archaeal species: Nanoarchaeum equitans where tRNAs are transcribed from leaderless-position +1, RNase P is indispensable for life and displays fundamental variations in terms of enzyme subunit composition, mechanism of substrate recognition and active site architecture, utilizing in all cases a two metal ion-mediated conserved catalytic reaction. While the canonical RNA-based ribonucleoprotein RNase P has been well-known to occur in bacteria, archaea, and eukaryotes, the occurrence of RNA-free protein-only RNase P in eukaryotes and RNA-free homologs of Aquifex RNase P in prokaryotes has been discovered more recently. This review aims to provide a comprehensive overview of structural diversity displayed by various RNA-based and RNA-free RNase P holoenzymes towards harnessing critical RNA-protein and protein-protein interactions in achieving conserved pre-tRNA processing functionality. Furthermore, alternate roles and functional interchangeability of RNase P are discussed in the context of its employability in several clinical and biotechnological applications. This article is categorized under: RNA Processing > tRNA Processing RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Sagar Sridhara
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Galewski PJ, Majumdar R, Lebar MD, Strausbaugh CA, Eujayl IA. Combined Omics Approaches Reveal Distinct Mechanisms of Resistance and/or Susceptibility in Sugar Beet Double Haploid Genotypes at Early Stages of Beet Curly Top Virus Infection. Int J Mol Sci 2023; 24:15013. [PMID: 37834460 PMCID: PMC10573692 DOI: 10.3390/ijms241915013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed. Using BCTV resistant (R) [KDH13; Line 13 and KDH4-9; Line 4] and susceptible (S) [KDH19-17; Line 19] lines, beet leafhopper mediated natural infection, mRNA/sRNA sequencing, and metabolite analyses, potential mechanisms of resistance against the virus and vector were identified. At early infection stages (2- and 6-days post inoculation), examples of differentially expressed genes highly up-regulated in the 'R' lines (vs. 'S') included EL10Ac5g10437 (inhibitor of trypsin and hageman factor), EL10Ac6g14635 (jasmonate-induced protein), EL10Ac3g06016 (ribosome related), EL10Ac2g02812 (probable prolyl 4-hydroxylase 10), etc. Pathway enrichment analysis showed differentially expressed genes were predominantly involved with peroxisome, amino acids metabolism, fatty acid degradation, amino/nucleotide sugar metabolism, etc. Metabolite analysis revealed significantly higher amounts of specific isoflavonoid O-glycosides, flavonoid 8-C glycosides, triterpenoid, and iridoid-O-glycosides in the leaves of the 'R' lines (vs. 'S'). These data suggest that a combination of transcriptional regulation and production of putative antiviral metabolites might contribute to BCTV resistance. In addition, genome divergence among BCTV strains differentially affects the production of small non-coding RNAs (sncRNAs) and small peptides which may potentially affect pathogenicity and disease symptom development.
Collapse
Affiliation(s)
- Paul J. Galewski
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
- Plant Germplasm Introduction and Testing Research Unit, United States Department of Agriculture—Agricultural Research Service, Pullman, WA 99164, USA
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture—Agricultural Research Service, New Orleans, LA 70179, USA;
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Imad A. Eujayl
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| |
Collapse
|
9
|
Kumar GNM, Kannangara CG, Knowles NR. Nucleases are upregulated in potato tubers afflicted with zebra chip disease. PLANTA 2022; 255:54. [PMID: 35103848 DOI: 10.1007/s00425-022-03832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The defense response of potato tubers afflicted with zebra chip disease involves oxidatively mediated upregulation of nucleases that likely modulate localized programmed cell death to restrict the phloem-mobile, CLso bacterial pathogen to the vasculature. Zebra chip (ZC) is a bacterial disease of potato (Solanum tuberosum L.) caused by Candidatus Liberibacter solanacearum (CLso). Tubers from infected plants develop characteristic brown discoloration of the vasculature, a result of localized programmed cell death (PCD). We examined the potential contribution of nucleases in the response of tubers to CLso infection. Specific activities of the major isozymes of dsDNase, ssDNase, and RNase were substantially upregulated in tubers from CLso-infected plants, despite their significantly lower soluble protein content. However, ZC disease had no effect on nuclease isozyme profiles. Activities of the predominant nuclease isoforms from healthy and CLso-infected tubers had similar pH optima, thermotolerance, and responses to metallic co-factors. Nuclease activities were heat stable to 60 °C and resistant to precipitation with 70% (v/v) isopropanol, which constitute effective techniques for partial purification. DNase and RNase isozyme activities were highest at pH 7.2-8.5 and 6.8-7.2, respectively, and profiles were similar for tubers from CLso-infected and non-infected plants. RNase activities were mostly insensitive to inhibition by EDTA, except at pH 8.5 and above. DNase activities were inhibited by EDTA but less sensitive to inhibition at high pH than the RNases. The EDTA-mediated inhibition of DNase (ds/ss) activities was restored with ZnSO4, but not Ca+2 or Mg+2. By contrast, ZnSO4 inhibited the activities of RNases. DTT and CuSO4 inhibited the activities of all three nucleases. These results suggest that activation of tuber nucleases is dependent on the oxidation of sulfhydryl groups to disulfide and/or oxidation of Zn to Zn+2. In light of previous published results that established extensive CLso-induced upregulation of oxidative stress metabolism in tubers, we propose a model to show how increased nuclease activity could result from a glutathione-mediated oxidation of nuclease sulfhydryl groups in diseased tubers. DNases and RNases are likely an integral part of the hypersensitive response and may modulate PCD to isolate the pathogen to the vascular tissues of tubers.
Collapse
Affiliation(s)
- G N Mohan Kumar
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA.
| | - C G Kannangara
- Department of Crop and Soils, Washington State University, Pullman, WA, 99163, USA
- , 335/4A, 2nd Cross Street, Kotte Road, Nugegoda, Sri Lanka
| | - N Richard Knowles
- Department of Horticulture, Washington State University, Pullman, WA, 99163, USA
| |
Collapse
|
10
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|