1
|
Huang HH, Wang YJ, Jiang HY, Yu HW, Chen YQ, Chiou A, Kuo JC. Sarcopenia-related changes in serum GLP-1 level affect myogenic differentiation. J Cachexia Sarcopenia Muscle 2024; 15:1708-1721. [PMID: 38926763 PMCID: PMC11446708 DOI: 10.1002/jcsm.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Sarcopenia, a group of muscle-related disorders, leads to the gradual decline and weakening of skeletal muscle over time. Recognizing the pivotal role of gastrointestinal conditions in maintaining metabolic homeostasis within skeletal muscle, we hypothesize that the effectiveness of the myogenic programme is influenced by the levels of gastrointestinal hormones in the bloodstream, and this connection is associated with the onset of sarcopenia. METHODS We first categorized 145 individuals from the Emergency Room of Taipei Veterans General Hospital into sarcopenia and non-sarcopenia groups, following the criteria established by the Asian Working Group for Sarcopenia. A thorough examination of specific gastrointestinal hormone levels in plasma was conducted to identify the one most closely associated with sarcopenia. Techniques, including immunofluorescence, western blotting, glucose uptake assays, seahorse real-time cell metabolic analysis, flow cytometry analysis, kinesin-1 activity assays and qPCR analysis, were applied to investigate its impacts and mechanisms on myogenic differentiation. RESULTS Individuals in the sarcopenia group exhibited elevated plasma levels of glucagon-like peptide 1 (GLP-1) at 1021.5 ± 313.5 pg/mL, in contrast to non-sarcopenic individuals with levels at 351.1 ± 39.0 pg/mL (P < 0.05). Although it is typical for GLP-1 levels to rise post-meal and subsequently drop naturally, detecting higher GLP-1 levels in starving individuals with sarcopenia raised the possibility of GLP-1 influencing myogenic differentiation in skeletal muscle. Further investigation using a cell model revealed that GLP-1 (1, 10 and 100 ng/mL) dose-dependently suppressed the expression of the myogenic marker, impeding myocyte fusion and the formation of polarized myotubes during differentiation. GLP-1 significantly inhibited the activity of the microtubule motor kinesin-1, interfering with the translocation of glucose transporter 4 (GLUT4) to the cell membrane and the dispersion of mitochondria. These impairments subsequently led to a reduction in glucose uptake to 0.81 ± 0.04 fold (P < 0.01) and mitochondrial adenosine triphosphate (ATP) production from 25.24 ± 1.57 pmol/min to 18.83 ± 1.11 pmol/min (P < 0.05). Continuous exposure to GLP-1, even under insulin induction, attenuated the elevated glucose uptake. CONCLUSIONS The elevated GLP-1 levels observed in individuals with sarcopenia are associated with a reduction in myogenic differentiation. The impact of GLP-1 on both the membrane translocation of GLUT4 and the dispersion of mitochondria significantly hinders glucose uptake and the production of mitochondrial ATP necessary for the myogenic programme. These findings point us towards strategies to establish the muscle-gut axis, particularly in the context of sarcopenia. Additionally, these results present the potential of identifying relevant diagnostic biomarkers.
Collapse
Affiliation(s)
- Hsien-Hao Huang
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Jie Wang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hui-Yu Jiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Quan Chen
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Wang W, Zhang X, Gui P, Zou Q, Nie Y, Ma S, Zhang S. SEPT9: From pan-cancer to lung squamous cell carcinoma. BMC Cancer 2024; 24:1105. [PMID: 39237897 PMCID: PMC11375884 DOI: 10.1186/s12885-024-12877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND SEPT9 is a pivotal cytoskeletal GTPase that regulates diverse biological processes encompassing mitosis and cytokinesis. While previous studies have implicated SEPT9 in tumorigenesis and development; comprehensive pan-cancer analyses have not been performed. This study aims to systematically explore its role in cancer screening, prognosis, and treatment, addressing this critical gap. METHODS Gene and protein expression data containing clinical information were obtained from public databases for pan-cancer analyses. Additionally, clinical samples from 90 patients with lung squamous cell carcinoma (LUSC) were used to further experimentally validate the clinical significance of SEPT9. In addition, the molecular docking tool was used to analyze the affinities between SEPT9 protein and drugs. RESULTS SEPT9 is highly expressed in various cancers, and its aberrant expression correlates with genetic alternations and epigenetic modifications, leading to adverse clinical outcomes. Take LUSC as an example, additional dataset analyses and immunohistochemical experiments further confirm the diagnostic and prognostic values as well as the clinical relevance of the SEPT9 gene and protein. Functional enrichment, single-cell expression, and immune infiltration analyses revealed that SEPT9 promotes malignant tumor progression and modulates the immune microenvironments, enabling patients to benefit from immunotherapy. Moreover, drug sensitivity and molecular docking analyses showed that SEPT9 is associated with the sensitivity and resistance of multiple drugs and has stable binding activity with them, including Vorinostat and OTS-964. To harness its prognostic and therapeutic potential in LUSC, a mitotic spindle-associated prognostic model including SEPT9, HSF1, ARAP3, KIF20B, FAM83D, TUBB8, and several clinical characteristics, was developed. This model not only improves clinical outcome predictions but also reshapes the immune microenvironment, making immunotherapy more effective for LUSC patients. CONCLUSION This is the first study to systematically analyze the role of SEPT9 in cancers and innovatively apply the mitotic spindle-associated model to LUSC, fully demonstrating its potential as a valuable biomarker for cancer screening and prognosis, and highlighting its application value in promoting immunotherapy and chemotherapy, particularly for LUSC.
Collapse
Affiliation(s)
- Wenwen Wang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Ping Gui
- Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Qizhen Zou
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China
| | - Yuzhou Nie
- Department of the Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310006, Zhejiang, China
| | - Shenglin Ma
- Department of Oncology, Hangzhou Cancer Hospital, Hangzhou, 310006, Zhejiang, China
| | - Shirong Zhang
- Translational Medicine Research Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Zhao X, Wang F, Kam C, Wu MY, Zhang J, Xu C, Bao K, He Q, Ye R, Tang BZ, Chen S. Fluorescent Nanocable as a Biomedical Tool: Intracellular Self-Assembly Formed by a Natural Product Interconnects and Synchronizes Mitochondria. ACS NANO 2024; 18:21447-21458. [PMID: 39080909 PMCID: PMC11328177 DOI: 10.1021/acsnano.4c06186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/17/2024] [Indexed: 08/18/2024]
Abstract
Self-assembly processes commonly occur in various biological contexts to form functional biological structures. However, the self-assembly of nanofibers within cells by heterologous molecules showing a biological function is rare. In this work, we reported the intracellular formation of fluorescent nanofibers by a natural small molecule, lycobetaine (LBT), which facilitated the direct physical connection between mitochondria and synchronized their membrane potential oscillations. The luminescent properties of LBT enabled the real-time observation of nanofiber formation, while the semiconductive nature of the LBT nanofiber facilitated electrical signal transduction among the connected mitochondria. This study introduces an approach to modulate mitochondrial connectivity within cells using "nano-cables" which facilitate studies on synchronized mitochondrial operations and the underlying mechanisms of drug action.
Collapse
Affiliation(s)
- Xueqian Zhao
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Fei Wang
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Chuen Kam
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Ming-Yu Wu
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| | - Jianyu Zhang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Hong Kong 999077, China
| | - Changhuo Xu
- Ministry
of Education Frontiers Science Center for Precision Oncology, Faculty
of Health Sciences, University of Macau, Macao 999078, China
| | - Kai Bao
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Qiyuan He
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ruquan Ye
- Department
of Materials Science and Engineering, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, and Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Hong Kong 999077, China
- School of
Science and Engineering, Shenzhen Institute of Aggregate Science and
Technology, The Chinese University of Hong
Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Sijie Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Hong Kong 999077, China
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong 999077, China
| |
Collapse
|
4
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
5
|
Wang X, Ma J, Dong Y, Ren X, Li R, Yang G, She G, Tan Y, Chen S. Exploration on the potential efficacy and mechanism of methyl salicylate glycosides in the treatment of schizophrenia based on bioinformatics, molecular docking and dynamics simulation. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:64. [PMID: 39019913 PMCID: PMC11255270 DOI: 10.1038/s41537-024-00484-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
The etiological and therapeutic complexities of schizophrenia (SCZ) persist, prompting exploration of anti-inflammatory therapy as a potential treatment approach. Methyl salicylate glycosides (MSGs), possessing a structural parent nucleus akin to aspirin, are being investigated for their therapeutic potential in schizophrenia. Utilizing bioinformation mining, network pharmacology, molecular docking and dynamics simulation, the potential value and mechanism of MSGs (including MSTG-A, MSTG-B, and Gaultherin) in the treatment of SCZ, as well as the underlying pathogenesis of the disorder, were examined. 581 differentially expressed genes related to SCZ were identified in patients and healthy individuals, with 349 up-regulated genes and 232 down-regulated genes. 29 core targets were characterized by protein-protein interaction (PPI) network, with the top 10 core targets being BDNF, VEGFA, PVALB, KCNA1, GRIN2A, ATP2B2, KCNA2, APOE, PPARGC1A and SCN1A. The pathogenesis of SCZ primarily involves cAMP signaling, neurodegenerative diseases and other pathways, as well as regulation of ion transmembrane transport. Molecular docking analysis revealed that the three candidates exhibited binding activity with certain targets with binding affinities ranging from -4.7 to -109.2 kcal/mol. MSTG-A, MSTG-B and Gaultherin show promise for use in the treatment of SCZ, potentially through their ability to modulate the expression of multiple genes involved in synaptic structure and function, ion transport, energy metabolism. Molecular dynamics simulation revealed good binding abilities between MSTG-A, MSTG-B, Gaultherin and ATP2B2. It suggests new avenues for further investigation in this area.
Collapse
Affiliation(s)
- Xiuhuan Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Ruoming Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Guigang Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, 100096, PR China.
| |
Collapse
|
6
|
Wang Z, Chen Z, Zhang Z, Wang H, Zhang H. Highly-ordered assembled organic fluorescent materials for high-resolution bio-sensing: a review. Biomater Sci 2024; 12:2019-2032. [PMID: 38469672 DOI: 10.1039/d3bm02070c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organic fluorescent materials (OFMs) play a crucial role in the development of biosensors, enabling the extraction of biochemical information within cells and organisms, extending to the human body. Concurrently, OFM biosensors contribute significantly to the progress of modern medical and biological research. However, the practical applications of OFM biosensors face challenges, including issues related to low resolution, dispersivity, and stability. To overcome these challenges, scientists have introduced interactive elements to enhance the order of OFMs. Highly-ordered assembled OFMs represent a novel material type applied to biosensors. In comparison to conventional fluorescent materials, highly-ordered assembled OFMs typically exhibit robust anti-diffusion properties, high imaging contrast, and excellent stability. This approach has emerged as a promising method for effectively tracking bio-signals, particularly in the non-invasive monitoring of chronic diseases. This review introduces several highly-ordered assembled OFMs used in biosensors and also discusses various interactions that are responsible for their assembly, such as hydrogen bonding, π-π interaction, dipole-dipole interaction, and ion electrostatic interaction. Furthermore, it delves into the various applications of these biosensors while addressing the drawbacks that currently limit their commercial application. This review aims to provide a theoretical foundation for designing high-performance, highly-ordered assembled OFM biosensors suitable for practical applications. Additionally, it sheds light on the evolving trends in OFM biosensors and their application fields, offering valuable insights into the future of this dynamic research area.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zilong Chen
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Zhenhao Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Hongzhen Wang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| | - Haichang Zhang
- Key Laboratory of Rubber-Plastics of Ministry of Education/Shandong Province (QUST), School of Polymer Science & Engineering, Qingdao University of Science & Technology, 53-Zhengzhou Road, Qingdao, 266042, PR China.
| |
Collapse
|
7
|
Chen Y, Lu S, Abbas Abedi SA, Jeong M, Li H, Hwa Kim M, Park S, Liu X, Yoon J, Chen X. Janus-Type ESIPT Chromophores with Distinctive Intramolecular Hydrogen-bonding Selectivity. Angew Chem Int Ed Engl 2023; 62:e202311543. [PMID: 37602709 DOI: 10.1002/anie.202311543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT)-based solid luminescent materials with multiple hydrogen bond acceptors (HBAs) remain unexplored. Herein, we introduced a family of Janus-type ESIPT chromophores featuring distinctive hydrogen bond (H-bond) selectivity between competitive HBAs in a single molecule. Our investigations showed that the central hydroxyl group preferentially forms intramolecular H-bonds with imines in imine-modified 2-hydroxyphenyl benzothiazole (HBT) chromophores but tethers the benzothiazole moiety in hydrazone-modified HBT chromophores. Imine-derived HBTs generally exhibit higher fluorescence efficiency, while hydrazone-derived HBTs show a reduced overlap between the absorption and fluorescence bands. Quantum chemical calculations unveiled the molecular origins of the biased intramolecular H-bonds and their impact on the ESIPT process. This Janus-type ESIPT chromophore skeleton provides new opportunities for the design of solid luminescent materials.
Collapse
Affiliation(s)
- Yahui Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
- New and Renewable Energy Research Center, Ewha Womans University, 03760, Seoul, Korea
| | - Sheng Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
| | - Syed Ali Abbas Abedi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Minseok Jeong
- Department of Chemistry and Research Institute for Natural Science, Korea University, 02841, Seoul, Korea
| | - Haidong Li
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, 116024, Dalian, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
- New and Renewable Energy Research Center, Ewha Womans University, 03760, Seoul, Korea
| | - Sungnam Park
- Department of Chemistry and Research Institute for Natural Science, Korea University, 02841, Seoul, Korea
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, 03760, Seoul, Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 211816, Nanjing, China
| |
Collapse
|
8
|
Yan J, Liu H, Wu Y, Niu B, Deng X, Zhang L, Dang Q, Wang Y, Lu X, Zhang B, Sun W. Recent progress of self-immobilizing and self-precipitating molecular fluorescent probes for higher-spatial-resolution imaging. Biomaterials 2023; 301:122281. [PMID: 37643487 DOI: 10.1016/j.biomaterials.2023.122281] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Flourished in the past two decades, fluorescent probe technology provides researchers with accurate and efficient tools for in situ imaging of biomarkers in living cells and tissues and may play a significant role in clinical diagnosis and treatment such as biomarker detection, fluorescence imaging-guided surgery, and photothermal/photodynamic therapy. In situ imaging of biomarkers depends on the spatial resolution of molecular probes. Nevertheless, the majority of currently available molecular fluorescent probes suffer from the drawback of diffusing from the target region. This leads to a rapid attenuation of the fluorescent signal over time and a reduction in spatial resolution. Consequently, the diffused fluorescent signal cannot accurately reflect the in situ information of the target. Self-immobilizing and self-precipitating molecular fluorescent probes can be used to overcome this problem. These probes ensure that the fluorescent signal remains at the location where the signal is generated for a long time. In this review, we introduce the development history of the two types of probes and classify them in detail according to different design strategies. In addition, we compare their advantages and disadvantages, summarize some representative studies conducted in recent years, and propose prospects for this field.
Collapse
Affiliation(s)
- Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian, 116023, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Ben Niu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Linhao Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qi Dang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Yubo Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Xiao Lu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
9
|
Li Z, Liang PZ, Ren TB, Yuan L, Zhang XB. Orderly Self-Assembly of Organic Fluorophores for Sensing and Imaging. Angew Chem Int Ed Engl 2023; 62:e202305742. [PMID: 37219959 DOI: 10.1002/anie.202305742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Fluorescence imaging utilizing traditional organic fluorophores is extensively applied in both cellular and in vivo studies. However, it faces significant obstacles, such as low signal-to-background ratio (SBR) and spurious positive/negative signals, primarily due to the facile diffusion of these fluorophores. To cope with this challenge, orderly self-assembled functionalized organic fluorophores have gained significant attention in the past decades. These fluorophores can create nanoaggregates via a well-ordered self-assembly process, thus prolonging their residency time within cells and in vivo settings. The development of self-assembled-based fluorophores is an emerging field, and as such, in this review, we present a summary of the progress and challenges of self-assembly fluorophores, focusing on their development history, self-assembly mechanisms, and biomedical applications. We hope that the insights provided herein will assist scientists in further developing functionalized organic fluorophores for in situ imaging, sensing, and therapy.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-Zhao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
10
|
Li Z, Liang PZ, Xu L, Zhang XX, Li K, Wu Q, Lou XF, Ren TB, Yuan L, Zhang XB. In situ orderly self-assembly strategy affording NIR-II-J-aggregates for in vivo imaging and surgical navigation. Nat Commun 2023; 14:1843. [PMID: 37012267 PMCID: PMC10070396 DOI: 10.1038/s41467-023-37586-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
J-aggregation, an effective strategy to extend wavelength, has been considered as a promising method for constructing NIR-II fluorophores. However, due to weak intermolecular interactions, conventional J-aggregates are easily decomposed into monomers in the biological environment. Although adding external carriers could help conventional J-aggregates stabilize, such methods still suffer from high-concentration dependence and are unsuitable for activatable probes design. Besides, these carriers-assisted nanoparticles are risky of disassembly in lipophilic environment. Herein, by fusing the precipitated dye (HPQ) which has orderly self-assembly structure, onto simple hemi-cyanine conjugated system, we construct a series of activatable, high-stability NIR-II-J-aggregates which overcome conventional J-aggregates carrier's dependence and could in situ self-assembly in vivo. Further, we employ the NIR-II-J-aggregates probe HPQ-Zzh-B to achieve the long-term in situ imaging of tumor and precise tumor resection by NIR-II imaging navigation for reducing lung metastasis. We believe this strategy will advance the development of controllable NIR-II-J-aggregates and precise bioimaging in vivo.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ping-Zhao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Li Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xing-Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ke Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
11
|
Potential Role of Fenestrated Septa in Axonal Transport of Golgi Cisternae and Gap Junction Formation/Function. Int J Mol Sci 2023; 24:ijms24065385. [PMID: 36982457 PMCID: PMC10049177 DOI: 10.3390/ijms24065385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Crayfish axons contain a system of parallel membranous cisternae spaced by ~2 μm and oriented perpendicularly to the axon’s long axis. Each cisterna is composed of two roughly parallel membranes, separated by a 150–400 Å wide space. The cisternae are interrupted by 500–600 Å pores, each occupied by a microtubule. Significantly, filaments, likely made of kinesin, often bridge the gap between the microtubule and the edge of the pore. Neighboring cisternae are linked by longitudinal membranous tubules. In small axons, the cisternae seem to be continuous across the axon, while in large axons they are intact only at the axon’s periphery. Due to the presence of pores, we have named these structures “Fenestrated Septa” (FS). Similar structures are also present in vertebrates, including mammals, proving that they are widely expressed in the animal kingdom. We propose that FS are components of the “anterograde transport” mechanism that moves cisternae of the Golgi apparatus (GA) toward the nerve ending by means of motor proteins, likely to be kinesins. In crayfish lateral giant axons, we believe that vesicles that bud off FS at the nerve ending contain gap junction hemichannels (innexons) for gap junction channel and hemichannel formation and function.
Collapse
|
12
|
Wang Z, Ma J, Li C, Zhang H. Conjugated Aggregation-Induced Fluorescent Materials for Biofluorescent Probes: A Review. BIOSENSORS 2023; 13:159. [PMID: 36831925 PMCID: PMC9953538 DOI: 10.3390/bios13020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The common fluorescent conjugated materials present weak or quenching luminescent phenomena in the solid or aggregate state (ACQ), which limits their applications in medicine and biology. In the last two decades, certain materials, named aggregation-induced emission (AIE) fluorescent materials, have exhibited strong luminescent properties in the aggregate state, which can overcome the ACQ phenomenon. Due to their intrinsic properties, the AIE materials have been successfully used in biolabeling, where they can not only detect the species of ions and their concentrations in organisms, but can also monitor the organisms' physiological activity. In addition, these kinds of materials often present non-biological toxicity. Thus, AIE materials have become some of the most popular biofluorescent probe materials and are attracting more and more attention. This field is still in its early infancy, and several open challenges urgently need to be addressed, such as the materials' biocompatibility, metabolism, and so on. Designing a high-performance AIE material for biofluorescent probes is still challenging. In this review, based on the molecular design concept, various AIE materials with functional groups in the biofluorescent probes are introduced, including tetrastyrene materials, distilbene anthracene materials, triphenylamine materials, and hexaphenylsilole materials. In addition, according to the molecular system design strategy, the donor-acceptor (D-A) system and hydrogen-bonding AIE materials used as biofluorescent probes are reviewed. Finally, the biofluorescent probe design concept and potential evolution trends are discussed. The final goal is to outline a theoretical scaffold for the design of high-performance AIE biofluorescent probes that can at the same time further the development of the applications of AIE-based biofluorescent probes.
Collapse
|
13
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
14
|
Zhang Y, Liu C, Sun W, Yu Z, Su M, Rong X, Wang X, Wang K, Li X, Zhu H, Yu M, Sheng W, Zhu B. Concise Biothiol-Activatable HPQ-NBD Conjugate as a Targeted Theranostic Probe for Tumor Cells. Anal Chem 2022; 94:7140-7147. [PMID: 35522825 DOI: 10.1021/acs.analchem.2c01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer, as a malignant tumor, seriously endangers human health. The study of cancer diagnosis and therapy has great practical significance. The development of theranostic agents has become a very important research topic. Nevertheless, some existing agents still have imperfections, such as complex structures and difficult syntheses. Therefore, it is urgent for researchers to develop simple novel theranostic agents. In this study, the precipitated fluorophore HAPQ was used as a simple drug molecule for the first time and combined with NBD-Cl to construct a simple and efficient theranostic probe (HAPQ-NBD). The theranostic probe can distinguish between tumor cells and normal cells based on the higher levels of biothiol in tumor cells. In addition, the probe can use biothiol as a control switch to release higher levels of precipitated fluorophore HAPQ in tumor cells, leading to selective high toxicity to tumor cells, thus achieving the goal of selectively killing tumor cells. The construction of probe HAPQ-NBD provides a practical tool for the diagnosis and therapy of cancer. It is expected that the development and utilization of precipitated fluorophore will provide a new method and strategy for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Weimin Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Ziwen Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiwei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| |
Collapse
|
15
|
Xie L, Wen D, Wu C, Zhang C. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength. BMC PLANT BIOLOGY 2022; 22:49. [PMID: 35073838 PMCID: PMC8785456 DOI: 10.1186/s12870-022-03435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/11/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND The stalk rind is one of the important factors affecting maize stalk strength that is closely related to stalk lodging. However, the mechanism of rind development in maize is still largely unknown. RESULTS In this study, we analyzed the mechanical, anatomical, and biochemical properties of the third basal internode in one maize non-stiff-stalk (NSS) line and two stiff-stalk (SS) lines. Compared with the NSS line, the two SS lines had a significantly higher rind penetrometer resistance, thicker rind, and higher dry matter, hemicellulose, cellulose, and lignin weights per unit length. RNA-seq analysis was used to compare transcriptomes of the third basal internode of the two SS lines and the NSS line at the ninth leaf and tasseling stages. Gene Ontology (GO) enrichment analysis revealed that genes involved in hydrolase activity (hydrolyzing O-glycosyl compounds) and cytoskeleton organization were significantly up-regulated in the two SS lines at the ninth leaf stage and that microtubule process-related genes were significantly up-regulated in the two SS lines at the tasseling stage. Moreover, the two SS lines had enhanced expression of cell wall metabolism-related genes at the tasseling stage. CONCLUSIONS The synthesis of cell wall polysaccharides and the cytoskeleton might play important roles in internode development. Our results can be applied for screening lodging-resistant inbred lines and breeding lodging-resistant cultivars in maize.
Collapse
Affiliation(s)
- Liuyong Xie
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018 P. R. China
| | - Daxing Wen
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018 P. R. China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018 P. R. China
| | - Chunqing Zhang
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an, Shandong Province 271018 P. R. China
| |
Collapse
|
16
|
Li K, Ren TB, Huan S, Yuan L, Zhang XB. Progress and Perspective of Solid-State Organic Fluorophores for Biomedical Applications. J Am Chem Soc 2021; 143:21143-21160. [PMID: 34878771 DOI: 10.1021/jacs.1c10925] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent organic dyes have been extensively used as raw materials for the development of versatile imaging tools in the field of biomedicine. Particularly, the development of solid-state organic fluorophores (SSOFs) in the past 20 years has exhibited an upward trend. In recent years, studies on SSOFs have focused on the development of advanced tools, such as optical contrast agents and phototherapy agents, for biomedical applications. However, the practical application of these tools has been hindered owing to several limitations. Thus, in this Perspective, we have provided insights that could aid researchers to further develop these tools and overcome the limitations such as limited aqueous dispersibility, low biocompatibility, and uncontrolled emission. First, we described the inherent photophysical properties and fluorescence mechanisms of conventional, aggregation-induced emissive, and precipitating SSOFs with respect to their biomedical applications. Subsequently, we highlighted the recent development of functionalized SSOFs for bioimaging, biosensing, and theranostics. Finally, we elucidated the potential prospects and limitations of current SSOF-based tools associated with biomedical applications.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Tian-Bing Ren
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Li K, Xu S, Xiong M, Huan SY, Yuan L, Zhang XB. Molecular engineering of organic-based agents for in situ bioimaging and phototherapeutics. Chem Soc Rev 2021; 50:11766-11784. [PMID: 34570124 DOI: 10.1039/d1cs00408e] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ monitoring of the location and transportation of bioactive molecules is essential for deciphering diverse biological events in the field of biomedicine. In addition, obtaining the in situ information of lesions will provide a clear perspective for surgeons to perform precise resection in clinical surgery. Notably, delivering drugs or operating photodynamic therapy/photothermal therapy in situ by labeling the lesion regions of interest can improve treatment and reduce side effects in vivo. In various advanced imaging and therapy modalities, optical theranostic agents based on organic small molecules can be conveniently modified as needed and can be easily internalized into cells/lesions in a non-invasive manner, which are prerequisites for in situ bioimaging and precision treatment. In this tutorial review, we first summarize the in situ molecular immobilization strategies to retain small-molecule agents inside cells/lesions to prevent their diffusion in living organisms. Emphasis will be focused on introducing the application of these strategies for in situ imaging of biomolecules and precision treatment, particularly pertaining to why targeting therapy in situ is required.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| |
Collapse
|