1
|
Notari E, Wood CW, Michel J. Assessment of the Topology and Oligomerisation States of Coiled Coils Using Metadynamics with Conformational Restraints. J Chem Theory Comput 2025; 21:3260-3276. [PMID: 40042175 PMCID: PMC11948332 DOI: 10.1021/acs.jctc.4c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/26/2025]
Abstract
Coiled-coil proteins provide an excellent scaffold for multistate de novo protein design due to their established sequence-to-structure relationships and ability to switch conformations in response to external stimuli, such as changes in pH or temperature. However, the computational design of multistate coiled-coil protein assemblies is challenging, as it requires accurate estimates of the free energy differences between multiple alternative coiled-coil conformations. Here, we demonstrate how this challenge can be tackled using metadynamics simulations with orientational, positional and conformational restraints. We show that, even for subtle sequence variations, our protocol can predict the preferred topology of coiled-coil dimers and trimers, the preferred oligomerization states of coiled-coil dimers, trimers, and tetramers, as well as the switching behavior of a pH-dependent multistate system. Our approach provides a method for predicting the stability of coiled-coil designs and offers a new framework for computing binding free energies in protein-protein and multiprotein complexes.
Collapse
Affiliation(s)
- Evangelia Notari
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| | - Christopher W. Wood
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Edinburgh EH9 3FF, U.K.
| | - Julien Michel
- EaStCHEM
School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K.
| |
Collapse
|
2
|
Chen Z, Ji M, Qian J, Zhang Z, Zhang X, Gao H, Wang H, Wang R, Qi Y. ProBID-Net: a deep learning model for protein-protein binding interface design. Chem Sci 2024; 15:19977-19990. [PMID: 39568891 PMCID: PMC11575592 DOI: 10.1039/d4sc02233e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
Protein-protein interactions are pivotal in numerous biological processes. The computational design of these interactions facilitates the creation of novel binding proteins, crucial for advancing biopharmaceutical products. With the evolution of artificial intelligence (AI), protein design tools have swiftly transitioned from scoring-function-based to AI-based models. However, many AI models for protein design are constrained by assuming complete unfamiliarity with the amino acid sequence of the input protein, a feature most suited for de novo design but posing challenges in designing protein-protein interactions when the receptor sequence is known. To bridge this gap in computational protein design, we introduce ProBID-Net. Trained using natural protein-protein complex structures and protein domain-domain interface structures, ProBID-Net can discern features from known target protein structures to design specific binding proteins based on their binding sites. In independent tests, ProBID-Net achieved interface sequence recovery rates of 52.7%, 43.9%, and 37.6%, surpassing or being on par with ProteinMPNN in binding protein design. Validated using AlphaFold-Multimer, the sequences designed by ProBID-Net demonstrated a close correspondence between the design target and the predicted structure. Moreover, the model's output can predict changes in binding affinity upon mutations in protein complexes, even in scenarios where no data on such mutations were provided during training (zero-shot prediction). In summary, the ProBID-Net model is poised to significantly advance the design of protein-protein interactions.
Collapse
Affiliation(s)
- Zhihang Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Menglin Ji
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Jie Qian
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Zhe Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Xiangying Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haotian Gao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| | - Yifei Qi
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 People's Republic of China
| |
Collapse
|
3
|
Yu LT, Kreutzberger MAB, Bui TH, Hancu MC, Farsheed AC, Egelman EH, Hartgerink JD. Exploration of the hierarchical assembly space of collagen-like peptides beyond the triple helix. Nat Commun 2024; 15:10385. [PMID: 39613762 PMCID: PMC11606958 DOI: 10.1038/s41467-024-54560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II helices, such as those found in collagen, remains relatively limited. In this study, we focus on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen Surfactant Protein A as a model. By dissecting the sequence derived from Surfactant Protein A and synthesizing short collagen-like peptides, we successfully construct a discrete bundle of hollow triple helices. Amino acid substitution studies pinpoint hydrophobic and charged residues that are critical for oligomer formation. These insights guide the de novo design of collagen-like peptides, resulting in the formation of diverse quaternary structures, including discrete and heterogenous bundled oligomers, two-dimensional nanosheets, and pH-responsive nanoribbons. Our study represents a significant advancement in the understanding and harnessing of collagen higher-order assemblies beyond the triple helix.
Collapse
Affiliation(s)
- Le Tracy Yu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Mark A B Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Thi H Bui
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Maria C Hancu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
4
|
Albanese KI, Petrenas R, Pirro F, Naudin EA, Borucu U, Dawson WM, Scott DA, Leggett GJ, Weiner OD, Oliver TAA, Woolfson DN. Rationally seeded computational protein design of ɑ-helical barrels. Nat Chem Biol 2024; 20:991-999. [PMID: 38902458 PMCID: PMC11288890 DOI: 10.1038/s41589-024-01642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 05/09/2024] [Indexed: 06/22/2024]
Abstract
Computational protein design is advancing rapidly. Here we describe efficient routes starting from validated parallel and antiparallel peptide assemblies to design two families of α-helical barrel proteins with central channels that bind small molecules. Computational designs are seeded by the sequences and structures of defined de novo oligomeric barrel-forming peptides, and adjacent helices are connected by loop building. For targets with antiparallel helices, short loops are sufficient. However, targets with parallel helices require longer connectors; namely, an outer layer of helix-turn-helix-turn-helix motifs that are packed onto the barrels. Throughout these computational pipelines, residues that define open states of the barrels are maintained. This minimizes sequence sampling, accelerating the design process. For each of six targets, just two to six synthetic genes are made for expression in Escherichia coli. On average, 70% of these genes express to give soluble monomeric proteins that are fully characterized, including high-resolution structures for most targets that match the design models with high accuracy.
Collapse
Affiliation(s)
- Katherine I Albanese
- School of Chemistry, University of Bristol, Bristol, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK
| | | | - Fabio Pirro
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Ufuk Borucu
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK
| | | | - D Arne Scott
- Rosa Biotech, Science Creates St Philips, Bristol, UK
| | | | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, UK.
- School of Biochemistry, University of Bristol, Medical Sciences Building, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
5
|
Cross JA, Dawson WM, Shukla SR, Weijman JF, Mantell J, Dodding MP, Woolfson DN. A de novo designed coiled coil-based switch regulates the microtubule motor kinesin-1. Nat Chem Biol 2024; 20:916-923. [PMID: 38849529 PMCID: PMC11213707 DOI: 10.1038/s41589-024-01640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Many enzymes are allosterically regulated via conformational change; however, our ability to manipulate these structural changes and control function is limited. Here we install a conformational switch for allosteric activation into the kinesin-1 microtubule motor in vitro and in cells. Kinesin-1 is a heterotetramer that accesses open active and closed autoinhibited states. The equilibrium between these states centers on a flexible elbow within a complex coiled-coil architecture. We target the elbow to engineer a closed state that can be opened with a de novo designed peptide. The alternative states are modeled computationally and confirmed by biophysical measurements and electron microscopy. In cells, peptide-driven activation increases kinesin transport, demonstrating a primary role for conformational switching in regulating motor activity. The designs are enabled by our understanding of ubiquitous coiled-coil structures, opening possibilities for controlling other protein activities.
Collapse
Affiliation(s)
- Jessica A Cross
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
| | | | - Shivam R Shukla
- School of Biochemistry, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Judith Mantell
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Yu LT, Kreutzberger MAB, Hancu MC, Bui TH, Farsheed AC, Egelman EH, Hartgerink JD. Beyond the Triple Helix: Exploration of the Hierarchical Assembly Space of Collagen-like Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594194. [PMID: 38798367 PMCID: PMC11118445 DOI: 10.1101/2024.05.14.594194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The de novo design of self-assembling peptides has garnered significant attention in scientific research. While alpha-helical assemblies have been extensively studied, exploration of polyproline type II (PPII) helices, such as those found in collagen, remains relatively limited. In this study, we focused on understanding the sequence-structure relationship in hierarchical assemblies of collagen-like peptides, using defense collagen SP-A as a model. By dissecting the sequence derived from SP-A and synthesizing short collagen-like peptides, we successfully constructed a discrete bundle of hollow triple helices. Mutation studies pinpointed amino acid sequences, including hydrophobic and charged residues that are critical for oligomer formation. These insights guided the de novo design of collagen-like peptides, resulting in the formation of diverse quaternary structures, including discrete and heterogenous bundled oligomers, 2D nanosheets, and pH-responsive nanoribbons. Our study represents a significant advancement in the understanding and harnessing of collagen higher-order assemblies beyond the triple helix.
Collapse
Affiliation(s)
- Le Tracy Yu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Mark A. B. Kreutzberger
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Maria C. Hancu
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Thi H. Bui
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Adam C. Farsheed
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Jeffrey D. Hartgerink
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
7
|
Agrahari A, Lipton M, Chmielewski J. Metal-Promoted Higher-Order Assembly of Disulfide-Stapled Helical Barrels. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2645. [PMID: 37836285 PMCID: PMC10574645 DOI: 10.3390/nano13192645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Peptide-based helical barrels are a noteworthy building block for hierarchical assembly, with a hydrophobic cavity that can serve as a host for cargo. In this study, disulfide-stapled helical barrels were synthesized containing ligands for metal ions on the hydrophilic face of each amphiphilic peptide helix. The major product of the disulfide-stapling reaction was found to be composed of five amphiphilic peptides, thereby going from a 16-amino-acid peptide to a stapled 80-residue protein in one step. The structure of this pentamer, 5HB1, was optimized in silico, indicating a significant hydrophobic cavity of ~6 Å within a helical barrel. Metal-ion-promoted assembly of the helical barrel building blocks generated higher order assemblies with a three-dimensional (3D) matrix morphology. The matrix was decorated with hydrophobic dyes and His-tagged proteins both before and after assembly, taking advantage of the hydrophobic pocket within the helical barrels and coordination sites within the metal ion-peptide framework. As such, this peptide-based biomaterial has potential for a number of biotechnology applications, including supplying small molecule and protein growth factors during cell and tissue growth within the matrix.
Collapse
Affiliation(s)
| | - Mark Lipton
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA;
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA;
| |
Collapse
|
8
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
9
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Ding W, Nakai K, Gong H. Protein design via deep learning. Brief Bioinform 2022; 23:bbac102. [PMID: 35348602 PMCID: PMC9116377 DOI: 10.1093/bib/bbac102] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.
Collapse
Affiliation(s)
- Wenze Ding
- School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
- School of Future Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Kenta Nakai
- Institute of Medical Science, the University of Tokyo, Tokyo 1088639, Japan
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Rational design of hairpin RNA excited states reveals multi-step transitions. Nat Commun 2022; 13:1523. [PMID: 35314698 PMCID: PMC8938425 DOI: 10.1038/s41467-022-29194-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/01/2022] [Indexed: 11/25/2022] Open
Abstract
RNA excited states represent a class of high-energy-level and thus low-populated conformational states of RNAs that are sequestered within the free energy landscape until being activated by cellular cues. In recent years, there has been growing interest in structural and functional studies of these transient states, but the rational design of excited states remains unexplored. Here we developed a method to design small hairpin RNAs with predefined excited states that exchange with ground states through base pair reshuffling, and verified these transient states by combining NMR relaxation dispersion technique and imino chemical shift prediction. Using van’t Hoff analysis and accelerated molecular dynamics simulations, a mechanism of multi-step sequential transition has been revealed. The efforts made in this study will expand the scope of RNA rational design, and also contribute towards improved predictions of RNA secondary structure. RNA molecules exhibit conformational fluctuations between ground states and excited states. Here the authors designed and verified small hairpin RNAs with predefined secondary structure reshufflings. In light of Van’t Hoff analysis and accelerated molecular dynamics simulation, a mechanism of multistep sequential transition has been revealed.
Collapse
|
12
|
Villegas JA, Sinha NJ, Teramoto N, Von Bargen CD, Pochan DJ, Saven JG. Computational Design of Single-Peptide Nanocages with Nanoparticle Templating. Molecules 2022; 27:1237. [PMID: 35209027 PMCID: PMC8874777 DOI: 10.3390/molecules27041237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Protein complexes perform a diversity of functions in natural biological systems. While computational protein design has enabled the development of symmetric protein complexes with spherical shapes and hollow interiors, the individual subunits often comprise large proteins. Peptides have also been applied to self-assembly, and it is of interest to explore such short sequences as building blocks of large, designed complexes. Coiled-coil peptides are promising subunits as they have a symmetric structure that can undergo further assembly. Here, an α-helical 29-residue peptide that forms a tetrameric coiled coil was computationally designed to assemble into a spherical cage that is approximately 9 nm in diameter and presents an interior cavity. The assembly comprises 48 copies of the designed peptide sequence. The design strategy allowed breaking the side chain conformational symmetry within the peptide dimer that formed the building block (asymmetric unit) of the cage. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) techniques showed that one of the seven designed peptide candidates assembled into individual nanocages of the size and shape. The stability of assembled nanocages was found to be sensitive to the assembly pathway and final solution conditions (pH and ionic strength). The nanocages templated the growth of size-specific Au nanoparticles. The computational design serves to illustrate the possibility of designing target assemblies with pre-determined specific dimensions using short, modular coiled-coil forming peptide sequences.
Collapse
Affiliation(s)
- José A. Villegas
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Nairiti J. Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Naozumi Teramoto
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Christopher D. Von Bargen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| | - Darrin J. Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA; (N.J.S.); (N.T.)
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.A.V.); (C.D.V.B.)
| |
Collapse
|
13
|
A Peptide-Based Trap for Metal Ions Studied by Electron Paramagnetic Resonance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Peptide-based materials provide a versatile platform for sensing and ion sequestration since peptides are endowed with stimuli-responsive properties. The mechanism of molecular sensing is often based on peptide structural changes (or switching), caused by the binding of the target molecule. One scope of sensing applications is the selection of a specific analyte, which may be achieved by adjusting the structure of the peptide binding site. Therefore, exact knowledge of peptide properties and 3D-structure in the ‘switched’ state is desirable for tuning the detection and for further molecular construction. Hence, here we demonstrate the performance of Electron Paramagnetic Resonance (EPR) spectroscopy in the identification of metal ion binding by the antimicrobial peptide trichogin GA IV. Na(I), Ca(II), and Cu(II) ions were probed as analytes to evaluate the impact of coordination number, ionic radii, and charge. Conclusions drawn by EPR are in line with literature data, where other spectroscopic techniques were exploited to study peptide-ion interactions for trichogin GA IV, and the structural switch from an extended helix to a hairpin structure, wrapped around the metal ion upon binding of divalent cations was proposed.
Collapse
|
14
|
Alberstein RG, Guo AB, Kortemme T. Design principles of protein switches. Curr Opin Struct Biol 2022; 72:71-78. [PMID: 34537489 PMCID: PMC8860883 DOI: 10.1016/j.sbi.2021.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023]
Abstract
Protein switches perform essential roles in many biological processes and are exciting targets for de novo protein design, which aims to produce proteins of arbitrary shape and functionality. However, the biophysical requirements for switch function - multiple conformational states, fine-tuned energetics, and stimuli-responsiveness - pose a formidable challenge for design by computation (or intuition). A variety of methods have been developed toward tackling this challenge, usually taking inspiration from the wealth of sequence and structural information available for naturally occurring protein switches. More recently, modular switches have been designed computationally, and new methods have emerged for sampling unexplored structure space, providing promising new avenues toward the generation of purpose-built switches and de novo signaling systems for cellular engineering.
Collapse
Affiliation(s)
- Robert G Alberstein
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy B Guo
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
17
|
Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 2021; 12:6923-6928. [PMID: 34745518 PMCID: PMC8503928 DOI: 10.1039/d1sc00460c] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I-K-E-I-A-x-Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.
Collapse
Affiliation(s)
- William M Dawson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Freddie J O Martin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Guto G Rhys
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Kathryn L Shelley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
- Bristol BioDesign Institute, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
18
|
ElGamacy M, Hernandez Alvarez B. Expanding the versatility of natural and de novo designed coiled coils and helical bundles. Curr Opin Struct Biol 2021; 68:224-234. [PMID: 33964630 DOI: 10.1016/j.sbi.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Natural helical bundles (HBs) constitute a ubiquitous class of protein folds built of two or more longitudinally arranged α-helices. They adopt topologies that include symmetric, highly regular assemblies all the way to asymmetric, loosely packed domains. The diverse functional spectrum of HBs ranges from structural scaffolds to complex and dynamic effectors as molecular motors, signaling and sensing molecules, enzymes, and molecular switches. Symmetric HBs, particularly coiled coils, offer simple model systems providing an ideal entry point for protein folding and design studies. Herein, we review recent progress unveiling new structural features and functional mechanisms in natural HBs and cover staggering advances in the de novo design of HBs, giving rise to exotic structures and the creation of novel functions.
Collapse
Affiliation(s)
- Mohammad ElGamacy
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen, 72076, Germany; Division of Translational Oncology, Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Otfried-Müller-Strasse 10, Tübingen, 72076, Germany; Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany
| | - Birte Hernandez Alvarez
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tübingen, 72076, Germany.
| |
Collapse
|
19
|
Rhys GG, Dawson WM, Beesley JL, Martin FJO, Brady RL, Thomson AR, Woolfson DN. How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules 2021; 22:2010-2019. [PMID: 33881308 DOI: 10.1021/acs.biomac.1c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - William M Dawson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Freddie J O Martin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|