1
|
Perfilova KV, Matyuta IO, Minyaev ME, Boyko KM, Cooley RB, Sluchanko NN. High-resolution structure reveals enhanced 14-3-3 binding by a mutant SARS-CoV-2 nucleoprotein variant with improved replicative fitness. Biochem Biophys Res Commun 2025; 767:151915. [PMID: 40318379 DOI: 10.1016/j.bbrc.2025.151915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Replication of many viruses depends on phosphorylation of viral proteins by host protein kinases and subsequent recruitment of host protein partners. The nucleoprotein (N) of SARS-CoV-2 is heavily phosphorylated and recruits human phosphopeptide-binding 14-3-3 proteins early in infection, which is reversed prior to nucleocapsid assembly in new virions. Among the multiple phosphosites of N, which are particularly dense in the serine/arginine-rich interdomain region, phospho-Thr205 is highly relevant for 14-3-3 recruitment by SARS-CoV-2 N. The context of this site is mutated in most SARS-CoV-2 variants of concern. Among mutations that increase infectious virus titers, the S202R mutation (B.1.526 Iota) causes a striking replication boost (∼166-fold), although its molecular consequences have remained unclear. Here, we show that the S202R-mutated N phosphopeptide exhibits a 5-fold higher affinity for human 14-3-3ζ than the Wuhan variant and we rationalize this effect by solving a high-resolution crystal structure of the complex. The structure revealed an enhanced 14-3-3/N interface contributed by the Arg202 side chain that, in contrast to Ser202, formed multiple stabilizing contacts with 14-3-3, including water-mediated H-bonds and guanidinium pi-pi stacking. These findings provide a compelling link between the replicative fitness of SARS-CoV-2 and the N protein's affinity for host 14-3-3 proteins.
Collapse
Affiliation(s)
- Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Moscow Center for Advanced Studies, Kulakova Str. 20, 123592, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
2
|
Náplavová A, Kozeleková A, Crha R, Gronenborn AM, Hritz J. Harnessing the power of 19F NMR for characterizing dimerization and ligand binding of 14-3-3 proteins. Int J Biol Macromol 2025; 305:141253. [PMID: 39978522 DOI: 10.1016/j.ijbiomac.2025.141253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The main role of dimeric 14-3-3 proteins is to modulate the activity of several hundred binding partners by interacting with phosphorylated residues of the partner proteins, often located in disordered regions. The inherent flexibility or large size of 14-3-3 complexes hampers their structural characterization by X-ray crystallography, cryo-electron microscopy (EM) and traditional solution nuclear magnetic resonance (NMR) spectroscopy. Here, we employ solution 1D 19F-Trp NMR spectroscopy to characterize substrate binding and dimerization of 14-3-3 proteins, focusing on 14-3-3ζ - an abundant human isoform as an example. Both conserved Trp residues are located in distinct functionally important sites - the dimeric interface and the ligand-binding groove. We substituted them by 5F-Trp, thereby introducing a convenient NMR probe. Fluorination of the two Trp did not impact the stability and interaction properties of 14-3-3ζ in a substantive manner, permitting to carry out 19F NMR experiments to assess 14-3-3's structure and behavior. Importantly, 5F-Trp228 reports on binding of substrates in the amphipathic binding groove of 14-3-3ζ and permitted to distinguish distinct recognition modes. Thus, we established that 19F NMR is a powerful approach to evaluate the binding of partner proteins to 14-3-3 and to characterize the properties of the resulting complexes.
Collapse
Affiliation(s)
- Alexandra Náplavová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Radek Crha
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia.
| |
Collapse
|
3
|
Delalande F, Østergaard SR, Gogl G, Cousido-Siah A, McEwen AG, Men Y, Salimova F, Rohrbacher A, Kostmann C, Nominé Y, Vincentelli R, Eberling P, Carapito C, Travé G, Monsellier E. Holdup Multiplex Assay for High-Throughput Measurement of Protein-Ligand Affinity Constants Using a Mass Spectrometry Readout. J Am Chem Soc 2025; 147:10886-10902. [PMID: 40129024 DOI: 10.1021/jacs.4c11102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The accurate description and subsequent modeling of protein interactomes require quantification of their affinities at the proteome-wide scale. Here we develop and validate the Holdup Multiplex, a versatile assay with a mass spectrometry (MS) readout for profiling the affinities of a protein for large pools of peptides. The method can precisely quantify, in one single run, thousands of affinity constants over several orders of magnitude. The throughput, dynamic range, and sensitivity can be pushed to the performance limit of the MS readout. We applied the Holdup Multiplex to quantify in a few sample runs the affinities of the 14-3-3s, phosphoreader proteins highly abundant in humans, for 1000 different phosphopeptides. The seven human 14-3-3 isoforms were found to display similar specificities but staggered affinities, with 14-3-3γ being always the best binder and 14-3-3ε and σ being the weakest. Hundreds of new 14-3-3 binding sites were identified. We also identified dozens of 14-3-3 binding sites, some intervening in key signaling pathways, that were either stabilized or destabilized by the phytotoxin Fusicoccin-A. The results were corroborated by X-ray crystallography. Finally, we demonstrated the transferability of the Holdup Multiplex by quantifying the interactions of a PDZ domain for 5400 PBM peptides at once. The approach is applicable to any category of protein-binding ligands that can be quantifiable by mass spectrometry.
Collapse
Affiliation(s)
- François Delalande
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - So Ren Østergaard
- Novo Nordisk A/S, Global Research Technologies, Novo Nordisk Research Park, 2760 Maaloev, Denmark
| | - Gergo Gogl
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alexandra Cousido-Siah
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yushi Men
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Farida Salimova
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Aurélien Rohrbacher
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Camille Kostmann
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Yves Nominé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 CNRS-Aix-Marseille Université, 13288 Marseille, France
| | - Pascal Eberling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087 Strasbourg, France
| | - Gilles Travé
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Elodie Monsellier
- Équipe Labellisée Ligue 2015, Département de Biologie Structurale Intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258/CNRS UMR7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| |
Collapse
|
4
|
Busnadiego I, Lork M, Fernbach S, Schiefer S, Tsolakos N, Hale BG. An atlas of protein phosphorylation dynamics during interferon signaling. Proc Natl Acad Sci U S A 2025; 122:e2412990122. [PMID: 40138345 PMCID: PMC12002234 DOI: 10.1073/pnas.2412990122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Interferons (IFNs, types I-III) have pleiotropic functions in promoting antiviral and antitumor responses, as well as in modulating inflammation. Dissecting the signaling mechanisms elicited by different IFNs is therefore critical to understand their phenotypes. Here, we use mass spectrometry to investigate the early temporal dynamics of cellular protein phosphorylation in a human lung epithelial cell-line as it responds to stimulation with IFNα2, IFNβ, IFNω, IFNγ, or IFNλ1, representing all IFN types. We report an atlas of over 700 common or unique phosphorylation events reprogrammed by these different IFNs, revealing both previously known and uncharacterized modifications. While the proteins differentially phosphorylated following IFN stimulation have diverse roles, there is an enrichment of factors involved in chromatin remodeling, transcription, and RNA splicing. Functional screening and mechanistic studies identify that several proteins modified in response to IFNs contribute to host antiviral responses, either directly or by supporting IFN-stimulated gene or protein production. Among these, phosphorylation of PLEKHG3 at serine-1081 creates a phospho-regulated binding motif for the docking of 14-3-3 proteins, and together these factors contribute to coordinating efficient IFN-stimulated gene expression independent of early Janus kinase/signal transducer and activator of transcription signaling. Our findings map the global phosphorylation landscapes regulated by IFN types I, II, and III, and provide a key resource to explore their functional consequences.
Collapse
Affiliation(s)
- Idoia Busnadiego
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Marie Lork
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Sonja Fernbach
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Samira Schiefer
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Nikos Tsolakos
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| | - Benjamin G. Hale
- Institute of Medical Virology, University of Zurich, Zurich8057, Switzerland
| |
Collapse
|
5
|
Howe J, Barbar EJ. Dynamic interactions of dimeric hub proteins underlie their diverse functions and structures: A comparative analysis of 14-3-3 and LC8. J Biol Chem 2025; 301:108416. [PMID: 40107617 PMCID: PMC12017986 DOI: 10.1016/j.jbc.2025.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 03/22/2025] Open
Abstract
Hub proteins interact with a host of client proteins and regulate multiple cellular functions. Dynamic hubs have a single binding interface for one client at a time resulting in competition among clients with the highest affinity. Dynamic dimeric hubs with two identical sites bind either two different client proteins or two chains of the same client to form homogenous complexes and could also form heterogeneous mixtures of interconverting complexes. Here, we review the interactions of the dimeric hubs 14-3-3 and LC8. 14-3-3 is a phosphoserine/threonine binding protein involved in structuring client proteins and regulating their phosphorylation. LC8 is involved in promoting the dimerization of client peptides and the rigidification of their disordered regions. Both 14-3-3 and LC8 are essential genes, with 14-3-3 playing a crucial role in apoptosis and cell cycle regulation, while LC8 is critical for the assembly of proteins involved in transport, DNA repair, and transcription. Interestingly, both protein dimers can dissociate by phosphorylation, which results in their interactome-wide changes. Their interactions are also regulated by the phosphorylation of their clients. Both form heterogeneous complexes with various functions including phase separation, signaling, and viral hijacking where they restrict the conformational heterogeneity of their dimeric clients that bind nucleic acids. This comparative analysis highlights the importance of dynamic protein-protein interactions in the diversity of functions of 14-3-3 and LC8 and how small differences in structures of interfaces explain why 14-3-3 is primarily involved in the regulation of phosphorylation states while LC8 is primarily involved in the regulation of assembly of large dynamic complexes.
Collapse
Affiliation(s)
- Jesse Howe
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA
| | - Elisar J Barbar
- Oregon State University, Department of Biochemistry and Biophysics, Corvallis, Oregon, USA.
| |
Collapse
|
6
|
Jansen S, Narasimhan S, Cabre Fernandez P, Iľkovičová L, Kozeleková A, Králová K, Hritz J, Žídek L. Characterization of multiple binding sites on microtubule associated protein 2c recognized by dimeric and monomeric 14-3-3ζ. FEBS J 2025; 292:1991-2016. [PMID: 39877981 PMCID: PMC12001206 DOI: 10.1111/febs.17405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/09/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025]
Abstract
Microtubule associated protein 2 (MAP2) interacts with the regulatory protein 14-3-3ζ in a cAMP-dependent protein kinase (PKA) phosphorylation dependent manner. Using selective phosphorylation, calorimetry, nuclear magnetic resonance, chemical crosslinking, and X-ray crystallography, we characterized interactions of 14-3-3ζ with various binding regions of MAP2c. Although PKA phosphorylation increases the affinity of MAP2c for 14-3-3ζ in the proline rich region and C-terminal domain, unphosphorylated MAP2c also binds the dimeric 14-3-3ζ via its microtubule binding domain and variable central domain. Monomerization of 14-3-3ζ leads to the loss of affinity for the unphosphorylated residues. In neuroblastoma cell extract, MAP2c is heavily phosphorylated by PKA and the proline kinase ERK2. Although 14-3-3ζ dimer or monomer do not interact with the residues phosphorylated by ERK2, ERK2 phosphorylation of MAP2c in the C-terminal domain reduces the binding of MAP2c to both oligomeric variants of 14-3-3ζ.
Collapse
Affiliation(s)
- Séverine Jansen
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Subhash Narasimhan
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Paula Cabre Fernandez
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Research Institute Sant PauBarcelonaSpain
| | - Lucia Iľkovičová
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Aneta Kozeleková
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kateřina Králová
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Jozef Hritz
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Lukáš Žídek
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
7
|
Benarroch E. What Is the Function and Relevance of 14-3-3 Proteins in Neurologic Disease? Neurology 2025; 104:e213418. [PMID: 39889260 DOI: 10.1212/wnl.0000000000213418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/02/2025] Open
|
8
|
Sedlov IA, Sluchanko NN. Biochemical signatures strongly demarcate phylogenetic groups of plant 14-3-3 isoforms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70017. [PMID: 40051177 DOI: 10.1111/tpj.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 05/13/2025]
Abstract
Interaction of dimeric 14-3-3 proteins with phosphotargets regulates various physiological processes in plants, from flowering to transpiration and salt tolerance. Several genes express distinct 14-3-3 "isoforms," particularly numerous in plants, but these are unevenly studied even in model species. Here we systematically investigated twelve 14-3-3 isoforms from Arabidopsis thaliana. While all these proteins can homodimerize, four isoforms representing a supposedly more ancestral, epsilon phylogenetic group (iota, mu, omicron, epsilon), but not their eight non-epsilon counterparts (omega, phi, chi, psi, upsilon, nu, kappa, lambda), exhibit concentration-dependent monomerization, and pronounced surface hydrophobicity at physiologically relevant protein concentrations and under crowding conditions typical for the cell. We show that dramatically lowered thermodynamic stabilities entail aggregation of the epsilon group isoforms at near-physiological temperatures and accelerate their proteolytic degradation in vitro and in plant cell lysates. Mutations in 14-3-3 iota, inspired by structural analysis, helped us rescue non-epsilon behavior and pinpoint key positions responsible for the epsilon/non-epsilon demarcation. Combining two major demarcating positions (namely, 27th and 51st in omega) and differences in biochemical properties, we developed an epsilon/non-epsilon demarcation criterion that classified 89% of available 14-3-3 sequences from Dicots, Monocots, Gymnosperms, Ferns, and Lycophytes with 99.7% accuracy, and reliably predicted biochemical properties of a given 14-3-3 isoform, which we experimentally verified for distant 14-3-3 isoforms from Selaginella moellendorffii. The proven occurrence of isoforms of both groups in primitive plants refines the traditional phylogenetic, solely sequence-based analysis and provides intriguing insights into the evolutionary history of the epsilon phylogenetic group.
Collapse
Affiliation(s)
- Ilya A Sedlov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
- School of Biology, Department of Biochemistry, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| |
Collapse
|
9
|
Tian Y, Li L, Wu L, Xu Q, Li Y, Pan H, Bing T, Bai X, Finko AV, Li Z, Bian J. Recent Developments in 14-3-3 Stabilizers for Regulating Protein-Protein Interactions: An Update. J Med Chem 2025; 68:2124-2146. [PMID: 39902774 DOI: 10.1021/acs.jmedchem.4c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
14-3-3 proteins play a crucial role in the regulation of protein-protein interactions, impacting various cellular processes and disease mechanisms. Recent advancements have led to the development of stabilizers that enhance the binding of 14-3-3 proteins to clients, presenting promising therapeutic potentials. This perspective provides an updated overview of the latest developments in the field of 14-3-3 stabilizers, with a focus on their design, synthesis, and biological evaluation. We discuss the structural basis for the interaction between 14-3-3 proteins and their ligands, highlighting key modifications that enhance binding affinity and selectivity. Additionally, we explore the therapeutic applications of 14-3-3 stabilizers across major therapeutic areas such as cancer, metabolic disorders, and neurodegenerative diseases. By summarizing recent research findings and technological advancements, this perspective aims to shed light on the current state of 14-3-3 stabilizer developments and outline future directions for optimizing these compounds as effective therapeutic agents.
Collapse
Affiliation(s)
- Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Longjing Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liuyi Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yaojie Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huawei Pan
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Tiejun Bing
- ICE Bioscience, Bldg 15, Yd 18, Kechuang 13th St, Etown, Tongzhou Dist, Beijing 100176, China
| | - Xiumei Bai
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Alexander V Finko
- Department of Chemistry, Lomonosov Moscow State University (MSU), Moscow 119991, Russia
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Sedlov IA, Sluchanko NN. The Big, Mysterious World of Plant 14-3-3 Proteins. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S1-S35. [PMID: 40164151 DOI: 10.1134/s0006297924603319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 04/02/2025]
Abstract
14-3-3 is a family of small regulatory proteins found exclusively in eukaryotic organisms. They selectively bind to phosphorylated molecules of partner proteins and regulate their functions. 14-3-3 proteins were first characterized in the mammalian brain approximately 60 years ago and then found in plants, 30 years later. The multifunctionality of 14-3-3 proteins is exemplified by their involvement in coordination of protein kinase cascades in animal brain and regulation of flowering, growth, metabolism, and immunity in plants. Despite extensive studies of this diverse and complex world of plant 14-3-3 proteins, our understanding of functions of these enigmatic molecules is fragmentary and unsystematic. The results of studies are often contradictory and many questions remain unanswered, including biochemical properties of 14-3-3 isoforms, structure of protein-protein complexes, and direct mechanisms by which 14-3-3 proteins influence the functions of their partners in plants. Although many plant genes coding for 14-3-3 proteins have been identified, the isoforms for in vivo and in vitro studies are often selected at random. This rather limited approach is partly due to an exceptionally large number and variety of 14-3-3 homologs in plants and erroneous a priori assumptions on the equivalence of certain isoforms. The accumulated results provide an extensive but rather fragmentary picture, which poses serious challenges for making global generalizations. This review is aimed to demonstrate the diversity and scope of studies of the functions of plant 14-3-3 proteins, as well as to identify areas that require further systematic investigation and close scientific attention.
Collapse
Affiliation(s)
- Ilya A Sedlov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
11
|
Han F, Guo XY, Jiang MX, Xia NS, Gu Y, Li SW. Structural biology of the human papillomavirus. Structure 2024; 32:1877-1892. [PMID: 39368462 DOI: 10.1016/j.str.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Human papillomavirus (HPV), known for its oncogenic properties, is the primary cause of cervical cancer and significantly contributes to mortality rates. It also plays a considerable role in the globally rising incidences of head and neck cancers. These cancers pose a substantial health burden worldwide. Current limitations in diagnostic and treatment strategies, along with inadequate coverage of preventive vaccines in low- and middle-income countries, hinder the progress toward the World Health Organization (WHO) HPV prevention and control targets set for 2030. In response to these challenges, extensive research in structural virology has explored the properties of HPV proteins, yielding crucial insights into the mechanisms of HPV infection that are important for the development of prevention and therapeutic strategies. This review highlights recent advances in understanding the structures of HPV proteins and discusses achievements and future opportunities for HPV vaccine development.
Collapse
Affiliation(s)
- Feng Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Xin-Ying Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ming-Xia Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ning-Shao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| | - Shao-Wei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
12
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation Code of Human Nucleophosmin Includes Four Cryptic Sites for Hierarchical Binding of 14-3-3 Proteins. J Mol Biol 2024; 436:168592. [PMID: 38702038 DOI: 10.1016/j.jmb.2024.168592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phosphosites in NPM1 reside within signal sequences, this work suggests a mechanism of NPM1 regulation by which NPM1 phosphorylation can promote 14-3-3 binding to affect NPM1 shuttling between cell compartments. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
13
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
14
|
Pitasse-Santos P, Hewitt-Richards I, Abeywickrama Wijewardana Sooriyaarachchi MD, Doveston RG. Harnessing the 14-3-3 protein-protein interaction network. Curr Opin Struct Biol 2024; 86:102822. [PMID: 38685162 DOI: 10.1016/j.sbi.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Protein-protein interactions (PPIs) play a critical role in cellular signaling and represent interesting targets for therapeutic intervention. 14-3-3 proteins integrate many signaling targets via PPIs and are frequently implicated in disease, making them intriguing drug targets. Here, we review the recent advances in the 14-3-3 field. It will discuss the roles 14-3-3 proteins play within the cell, elucidation of their expansive interactome, and the complex mechanisms that underpin their function. In addition, the review will discuss significant advances in the development of molecular glues that target 14-3-3 PPIs. In particular, it will focus on novel drug discovery and development methodologies that have delivered selective, potent, and drug-like molecules that could open new avenues for the development of precision molecular tools and medicines.
Collapse
Affiliation(s)
- Paulo Pitasse-Santos
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Isaac Hewitt-Richards
- School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Richard G Doveston
- Leicester Institute of Structural and Chemical Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK; School of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
15
|
Egorkin NA, Dominnik EE, Maksimov EG, Sluchanko NN. Insights into the molecular mechanism of yellow cuticle coloration by a chitin-binding carotenoprotein in gregarious locusts. Commun Biol 2024; 7:448. [PMID: 38605243 PMCID: PMC11009388 DOI: 10.1038/s42003-024-06149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble β-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds β-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, β-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while β-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
Rrustemi T, Meyer K, Roske Y, Uyar B, Akalin A, Imami K, Ishihama Y, Daumke O, Selbach M. Pathogenic mutations of human phosphorylation sites affect protein-protein interactions. Nat Commun 2024; 15:3146. [PMID: 38605029 PMCID: PMC11009412 DOI: 10.1038/s41467-024-46794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.
Collapse
Affiliation(s)
| | - Katrina Meyer
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Bora Uyar
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Altuna Akalin
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Oliver Daumke
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
17
|
Kapitonova AA, Perfilova KV, Cooley RB, Sluchanko NN. Phosphorylation code of human nucleophosmin includes four cryptic sites for hierarchical binding of 14-3-3 proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580064. [PMID: 38405961 PMCID: PMC10888825 DOI: 10.1101/2024.02.13.580064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Nucleophosmin (NPM1) is the 46th most abundant human protein with many functions whose dysregulation leads to various cancers. Pentameric NPM1 resides in the nucleolus but can also shuttle to the cytosol. NPM1 is regulated by multisite phosphorylation, yet molecular consequences of site-specific NPM1 phosphorylation remain elusive. Here we identify four 14-3-3 protein binding sites in NPM1 concealed within its oligomerization and α-helical C-terminal domains that are found phosphorylated in vivo. By combining mutagenesis, in-cell phosphorylation and PermaPhos technology for site-directed incorporation of a non-hydrolyzable phosphoserine mimic, we show how phosphorylation promotes NPM1 monomerization and partial unfolding, to recruit 14-3-3 dimers with low-micromolar affinity. Using fluorescence anisotropy we quantified pairwise interactions of all seven human 14-3-3 isoforms with four recombinant NPM1 phosphopeptides and assessed their druggability by fusicoccin. This revealed a complex hierarchy of 14-3-3 affinities toward the primary (S48, S293) and secondary (S106, S260) sites, differentially modulated by the small molecule. As three of these 14-3-3 binding phospho-sites in NPM1 reside within signal sequences, this work highlights a key mechanism of NPM1 regulation by which NPM1 phosphorylation promotes 14-3-3 binding to control nucleocytoplasmic shuttling. It also provides further evidence that phosphorylation-induced structural rearrangements of globular proteins serve to expose otherwise cryptic 14-3-3-binding sites that are important for cellular function.
Collapse
Affiliation(s)
- Anna A. Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kristina V. Perfilova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Richard B. Cooley
- GCE4All Center, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
18
|
Abdi G, Jain M, Patil N, Upadhyay B, Vyas N, Dwivedi M, Kaushal RS. 14-3-3 proteins-a moonlight protein complex with therapeutic potential in neurological disorder: in-depth review with Alzheimer's disease. Front Mol Biosci 2024; 11:1286536. [PMID: 38375509 PMCID: PMC10876095 DOI: 10.3389/fmolb.2024.1286536] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
Alzheimer's disease (AD) affects millions of people worldwide and is a gradually worsening neurodegenerative condition. The accumulation of abnormal proteins, such as tau and beta-amyloid, in the brain is a hallmark of AD pathology. 14-3-3 proteins have been implicated in AD pathology in several ways. One proposed mechanism is that 14-3-3 proteins interact with tau protein and modulate its phosphorylation, aggregation, and toxicity. Tau is a protein associated with microtubules, playing a role in maintaining the structural integrity of neuronal cytoskeleton. However, in the context of Alzheimer's disease (AD), an abnormal increase in its phosphorylation occurs. This leads to the aggregation of tau into neurofibrillary tangles, which is a distinctive feature of this condition. Studies have shown that 14-3-3 proteins can bind to phosphorylated tau and regulate its function and stability. In addition, 14-3-3 proteins have been shown to interact with beta-amyloid (Aβ), the primary component of amyloid plaques in AD. 14-3-3 proteins can regulate the clearance of Aβ through the lysosomal degradation pathway by interacting with the lysosomal membrane protein LAMP2A. Dysfunction of lysosomal degradation pathway is thought to contribute to the accumulation of Aβ in the brain and the progression of AD. Furthermore, 14-3-3 proteins have been found to be downregulated in the brains of AD patients, suggesting that their dysregulation may contribute to AD pathology. For example, decreased levels of 14-3-3 proteins in cerebrospinal fluid have been suggested as a biomarker for AD. Overall, these findings suggest that 14-3-3 proteins may play an important role in AD pathology and may represent a potential therapeutic target for the disease. However, further research is needed to fully understand the mechanisms underlying the involvement of 14-3-3 proteins in AD and to explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Gholamareza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nil Patil
- Cell and Developmental Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Bindiya Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Nigam Vyas
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University, Lucknow, Uttar Pradesh, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, Gujarat, India
- Biophysics and Structural Biology Laboratory, Research and Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
19
|
Ward JA, Romartinez-Alonso B, Kay DF, Bellamy-Carter J, Thurairajah B, Basran J, Kwon H, Leney AC, Macip S, Roversi P, Muskett FW, Doveston RG. Characterizing the protein-protein interaction between MDM2 and 14-3-3σ; proof of concept for small molecule stabilization. J Biol Chem 2024; 300:105651. [PMID: 38237679 PMCID: PMC10864208 DOI: 10.1016/j.jbc.2024.105651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 01/01/2024] [Indexed: 02/10/2024] Open
Abstract
Mouse Double Minute 2 (MDM2) is a key negative regulator of the tumor suppressor protein p53. MDM2 overexpression occurs in many types of cancer and results in the suppression of WT p53. The 14-3-3 family of adaptor proteins are known to bind MDM2 and the 14-3-3σ isoform controls MDM2 cellular localization and stability to inhibit its activity. Therefore, small molecule stabilization of the 14-3-3σ/MDM2 protein-protein interaction (PPI) is a potential therapeutic strategy for the treatment of cancer. Here, we provide a detailed biophysical and structural characterization of the phosphorylation-dependent interaction between 14-3-3σ and peptides that mimic the 14-3-3 binding motifs within MDM2. The data show that di-phosphorylation of MDM2 at S166 and S186 is essential for high affinity 14-3-3 binding and that the binary complex formed involves one MDM2 di-phosphorylated peptide bound to a dimer of 14-3-3σ. However, the two phosphorylation sites do not simultaneously interact so as to bridge the 14-3-3 dimer in a 'multivalent' fashion. Instead, the two phosphorylated MDM2 motifs 'rock' between the two binding grooves of the dimer, which is unusual in the context of 14-3-3 proteins. In addition, we show that the 14-3-3σ-MDM2 interaction is amenable to small molecule stabilization. The natural product fusicoccin A forms a ternary complex with a 14-3-3σ dimer and an MDM2 di-phosphorylated peptide resulting in the stabilization of the 14-3-3σ/MDM2 PPI. This work serves as a proof-of-concept of the drugability of the 14-3-3/MDM2 PPI and paves the way toward the development of more selective and efficacious small molecule stabilizers.
Collapse
Affiliation(s)
- Jake A Ward
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Beatriz Romartinez-Alonso
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Danielle F Kay
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | - Bethany Thurairajah
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; School of Chemistry, University of Leicester, Leicester, UK
| | - Jaswir Basran
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Hanna Kwon
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Aneika C Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK; FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Ctra de Can Ruti, Camí de les Escoles, s/n, Badalona, Barcelona, Spain
| | - Pietro Roversi
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Institute of Agricultural Biology and Biotechnology, C.N.R., Unit of Milan, Milano, Italy
| | - Frederick W Muskett
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Richard G Doveston
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, UK; School of Chemistry, University of Leicester, Leicester, UK.
| |
Collapse
|
20
|
Šulskis D, Žiaunys M, Sakalauskas A, Sniečkutė R, Smirnovas V. Formation of amyloid fibrils by the regulatory 14-3-3 ζ protein. Open Biol 2024; 14:230285. [PMID: 38228169 DOI: 10.1098/rsob.230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024] Open
Abstract
The 14-3-3 proteins are a highly conserved adaptor protein family with multi-layer functions, abundantly expressed in the brain. The 14-3-3 proteins modulate phosphorylation, regulate enzymatic activity and can act as chaperones. Most importantly, they play an important role in various neurodegenerative disorders due to their vast interaction partners. Particularly, the 14-3-3ζ isoform is known to co-localize in aggregation tangles in both Alzheimer's and Parkinson's diseases as a result of protein-protein interactions. These abnormal clumps consist of amyloid fibrils, insoluble aggregates, mainly formed by the amyloid-β, tau and α-synuclein proteins. However, the molecular basis of if and how 14-3-3ζ can aggregate into amyloid fibrils is unknown. In this study, we describe the formation of amyloid fibrils by 14-3-3ζ using a comprehensive approach that combines bioinformatic tools, amyloid-specific dye binding, secondary structure analysis and atomic force microscopy. The results presented herein characterize the amyloidogenic properties of 14-3-3ζ and imply that the well-folded protein undergoes aggregation to β-sheet-rich amyloid fibrils.
Collapse
Affiliation(s)
- Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mantas Žiaunys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Sakalauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Rūta Sniečkutė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
21
|
Yang Q, Loureiro ZY, Desai A, DeSouza T, Li K, Wang H, Nicoloro SM, Solivan-Rivera J, Corvera S. Regulation of lipolysis by 14-3-3 proteins on human adipocyte lipid droplets. PNAS NEXUS 2023; 2:pgad420. [PMID: 38130664 PMCID: PMC10733194 DOI: 10.1093/pnasnexus/pgad420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Adipocyte lipid droplets (LDs) play a crucial role in systemic lipid metabolism by storing and releasing lipids to meet the organism's energy needs. Hormonal signals such as catecholamines and insulin act on adipocyte LDs, and impaired responsiveness to these signals can lead to uncontrolled lipolysis, lipotoxicity, and metabolic disease. To investigate the mechanisms that control LD function in human adipocytes, we applied proximity labeling mediated by enhanced ascorbate peroxidase (APEX2) to identify the interactome of PLIN1 in adipocytes differentiated from human mesenchymal progenitor cells. We identified 70 proteins that interact specifically with PLIN1, including PNPLA2 and LIPE, which are the primary effectors of regulated triglyceride hydrolysis, and 4 members of the 14-3-3 protein family (YWHAB, YWHAE, YWHAZ, and YWHAG), which are known to regulate diverse signaling pathways. Functional studies showed that YWHAB is required for maximum cyclic adenosine monophosphate (cAMP)-stimulated lipolysis, as its CRISPR-Cas9-mediated knockout mitigates lipolysis through a mechanism independent of insulin signaling. These findings reveal a new regulatory mechanism operating in human adipocytes that can impact lipolysis and potentially systemic metabolism.
Collapse
Affiliation(s)
- Qin Yang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Zinger Yang Loureiro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester MA 01605, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kaida Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hui Wang
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Javier Solivan-Rivera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Diabetes Center of Excellence, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
22
|
Sluchanko NN, Kapitonova AA, Shulepko MA, Kukushkin ID, Kulbatskii DS, Tugaeva KV, Varfolomeeva LA, Minyaev ME, Boyko KM, Popov VO, Kirpichnikov MP, Lyukmanova EN. Crystal structure reveals canonical recognition of the phosphorylated cytoplasmic loop of human alpha7 nicotinic acetylcholine receptor by 14-3-3 protein. Biochem Biophys Res Commun 2023; 682:91-96. [PMID: 37804592 DOI: 10.1016/j.bbrc.2023.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels composed of five homologous subunits. The homopentameric α7-nAChR, abundantly expressed in the brain, is involved in the regulation of the neuronal plasticity and memory and undergoes phosphorylation by protein kinase A (PKA). Here, we extracted native α7-nAChR from murine brain, validated its assembly by cryo-EM and showed that phosphorylation by PKA in vitro enables its interaction with the abundant human brain protein 14-3-3ζ. Bioinformatic analysis narrowed the putative 14-3-3-binding site down to the fragment of the intracellular loop (ICL) containing Ser365 (Q361RRCSLASVEMS372), known to be phosphorylated in vivo. We reconstructed the 14-3-3ζ/ICL peptide complex and determined its structure by X-ray crystallography, which confirmed the Ser365 phosphorylation-dependent canonical recognition of the ICL by 14-3-3. A common mechanism of nAChRs' regulation by ICL phosphorylation and 14-3-3 binding that potentially affects nAChR activity, stoichiometry, and surface expression is suggested.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail A Shulepko
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China
| | - Ilya D Kukushkin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Ekaterina N Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia.
| |
Collapse
|
23
|
Skelin J, Tomaić V. Comparative Analysis of Alpha and Beta HPV E6 Oncoproteins: Insights into Functional Distinctions and Divergent Mechanisms of Pathogenesis. Viruses 2023; 15:2253. [PMID: 38005929 PMCID: PMC10674601 DOI: 10.3390/v15112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Human papillomaviruses (HPVs) represent a diverse group of DNA viruses that infect epithelial cells of mucosal and cutaneous tissues, leading to a wide spectrum of clinical outcomes. Among various HPVs, alpha (α) and beta (β) types have garnered significant attention due to their associations with human health. α-HPVs are primarily linked to infections of the mucosa, with high-risk subtypes, such as HPV16 and HPV18, being the major etiological agents of cervical and oropharyngeal cancers. In contrast, β-HPVs are predominantly associated with cutaneous infections and are commonly found on healthy skin. However, certain β-types, notably HPV5 and HPV8, have been implicated in the development of non-melanoma skin cancers in immunocompromised individuals, highlighting their potential role in pathogenicity. In this review, we comprehensively analyze the similarities and differences between α- and β-HPV E6 oncoproteins, one of the major drivers of viral replication and cellular transformation, and how these impact viral fitness and the capacity to induce malignancy. In particular, we compare the mechanisms these oncoproteins use to modulate common cellular processes-apoptosis, DNA damage repair, cell differentiation, and the immune response-further shedding light on their shared and distinct features, which enable them to replicate at divergent locations of the human body and cause different types of cancer.
Collapse
Affiliation(s)
| | - Vjekoslav Tomaić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| |
Collapse
|
24
|
Petrvalska O, Honzejkova K, Koupilova N, Herman P, Obsilova V, Obsil T. 14-3-3 protein inhibits CaMKK1 by blocking the kinase active site with its last two C-terminal helices. Protein Sci 2023; 32:e4805. [PMID: 37817008 PMCID: PMC10588359 DOI: 10.1002/pro.4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/04/2023] [Accepted: 10/08/2023] [Indexed: 10/12/2023]
Abstract
Ca2+ /CaM-dependent protein kinase kinases 1 and 2 (CaMKK1 and CaMKK2) phosphorylate and enhance the catalytic activity of downstream kinases CaMKI, CaMKIV, and protein kinase B. Accordingly, CaMKK1 and CaMKK2 regulate key physiological and pathological processes, such as tumorigenesis, neuronal morphogenesis, synaptic plasticity, transcription factor activation, and cellular energy homeostasis, and promote cell survival. Both CaMKKs are partly inhibited by phosphorylation, which in turn triggers adaptor and scaffolding protein 14-3-3 binding. However, 14-3-3 binding only significantly affects CaMKK1 function. CaMKK2 activity remains almost unchanged after complex formation for reasons still unclear. Here, we aim at structurally characterizing CaMKK1:14-3-3 and CaMKK2:14-3-3 complexes by SAXS, H/D exchange coupled to MS, and fluorescence spectroscopy. The results revealed that complex formation suppresses the interaction of both phosphorylated CaMKKs with Ca2+ /CaM and affects the structure of their kinase domains and autoinhibitory segments. But these effects are much stronger on CaMKK1 than on CaMKK2 because the CaMKK1:14-3-3γ complex has a more compact and rigid structure in which the active site of the kinase domain directly interacts with the last two C-terminal helices of the 14-3-3γ protein, thereby inhibiting CaMKK1. In contrast, the CaMKK2:14-3-3 complex has a looser and more flexible structure, so 14-3-3 binding only negligibly affects the catalytic activity of CaMKK2. Therefore, Ca2+ /CaM binding suppression and the interaction of the kinase active site of CaMKK1 with the last two C-terminal helices of 14-3-3γ protein provide the structural basis for 14-3-3-mediated CaMKK1 inhibition.
Collapse
Affiliation(s)
- Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Nicola Koupilova
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Herman
- Institute of Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
| | - Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling ProteinsDivision BIOCEVVestecCzech Republic
| |
Collapse
|
25
|
Ruwolt M, Piazza I, Liu F. The potential of cross-linking mass spectrometry in the development of protein-protein interaction modulators. Curr Opin Struct Biol 2023; 82:102648. [PMID: 37423038 DOI: 10.1016/j.sbi.2023.102648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Cross-linking mass spectrometry (XL-MS) can provide a wealth of information on endogenous protein-protein interaction (PPI) networks and protein binding interfaces. These features make XL-MS an attractive tool to support the development of PPI-targeting drugs. Though not yet widely used, applications of XL-MS to drug characterization are beginning to emerge. Here, we compare XL-MS to established structural proteomics methods in drug research, discuss the current state and remaining challenges of XL-MS technology, and provide a perspective on the future role XL-MS can play in drug development, with a particular emphasis on PPI modulators.
Collapse
Affiliation(s)
- Max Ruwolt
- Department of Structural Biology, Leibniz, Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany. https://twitter.com/@MRuwolt
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany.
| | - Fan Liu
- Department of Structural Biology, Leibniz, Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, 13125 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117 Berlin, Germany.
| |
Collapse
|
26
|
Tanaka K, Hatano Y, Ohkanda J. Isoform-Selective Fluorescent Labeling of 14-3-3σ by Acrylamide-Containing Fusicoccins. Chemistry 2023; 29:e202301059. [PMID: 37170712 DOI: 10.1002/chem.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
The 14-3-3 family of proteins is central to the regulation of signaling pathways driven by serine/threonine kinases. In humans, 14-3-3 consists of seven highly conserved isoforms, yet the function of each isoform remains to be fully elucidated. Synthetic agents capable of isoform-specific fluorescent labeling of 14-3-3 would provide a useful tool for studying in depth the biological roles of isoforms. In this study, the 14-3-3σ isoform was evaluated, which possesses a unique Cys38, and a natural product-based fluorescent labeling agent was designed by introducing an acrylamide group and a fluorescent dye to fusicoccin (FC). In vitro evaluation demonstrated that 12-hydroxy 1 and 2 exhibit 14-3-3σ selective labeling activity over 14-3-3ζ in the presence of a mode-3 phospholigand. Furthermore, 2 was shown to label 14-3-3σ in cell lysate in the presence of a C-terminal mode-3 phosphopeptide derived from ERα, with no apparent nonspecific labeling. These results indicate that 2 is capable of selective fluorescent detection of 14-3-3σ upon binding to mode-3 phospholigand under biologically relevant conditions.
Collapse
Affiliation(s)
- Kenta Tanaka
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Yoshiya Hatano
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Junko Ohkanda
- Academic Assembly, Institute of Agriculture, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
- Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 8304 Minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| |
Collapse
|
27
|
Andlovic B, Heilmann G, Ninck S, Andrei SA, Centorrino F, Higuchi Y, Kato N, Brunsveld L, Arkin M, Menninger S, Choidas A, Wolf A, Klebl B, Kaschani F, Kaiser M, Eickhoff J, Ottmann C. IFNα primes cancer cells for Fusicoccin-induced cell death via 14-3-3 PPI stabilization. Cell Chem Biol 2023; 30:573-590.e6. [PMID: 37130519 DOI: 10.1016/j.chembiol.2023.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
The natural product family of the fusicoccanes (FCs) has been shown to display anti-cancer activity, especially when combined with established therapeutic agents. FCs stabilize 14-3-3 protein-protein interactions (PPIs). Here, we tested combinations of a small library of FCs with interferon α (IFNα) on different cancer cell lines and report a proteomics approach to identify the specific 14-3-3 PPIs that are induced by IFNα and stabilized by FCs in OVCAR-3 cells. Among the identified 14-3-3 target proteins are THEMIS2, receptor interacting protein kinase 2 (RIPK2), EIF2AK2, and several members of the LDB1 complex. Biophysical and structural biology studies confirm these 14-3-3 PPIs as physical targets of FC stabilization, and transcriptome as well as pathway analyses suggest possible explanations for the observed synergistic effect of IFNα/FC treatment on cancer cells. This study elucidates the polypharmacological effects of FCs in cancer cells and identifies potential targets from the vast interactome of 14-3-3s for therapeutic intervention in oncology.
Collapse
Affiliation(s)
- Blaž Andlovic
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands; Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Geronimo Heilmann
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Sabrina Ninck
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Sebastian A Andrei
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Federica Centorrino
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Yusuke Higuchi
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, Japan
| | - Nobuo Kato
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Ibaraki, Japan
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Michelle Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Axel Choidas
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Farnusch Kaschani
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands.
| |
Collapse
|
28
|
Somsen BA, Sijbesma E, Leysen S, Honzejkova K, Visser EJ, Cossar PJ, Obšil T, Brunsveld L, Ottmann C. Molecular basis and dual ligand regulation of tetrameric Estrogen Receptor α/14-3-3ζ protein complex. J Biol Chem 2023:104855. [PMID: 37224961 PMCID: PMC10302166 DOI: 10.1016/j.jbc.2023.104855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023] Open
Abstract
Therapeutic strategies targeting Nuclear Receptors (NRs) beyond their endogenous ligand binding pocket have gained significant scientific interest, driven by a need to circumvent problems associated with drug resistance and pharmacological profile. The hub protein 14-3-3 is an endogenous regulator of various NRs, providing a novel entry point for small molecule modulation of NR activity. Exemplified, 14-3-3 binding to the C-terminal F-domain of the Estrogen Receptor alpha (ERα), and small molecule stabilization of the ERα/14-3-3ζ protein complex by the natural product Fusicoccin A (FC-A), was demonstrated to downregulate ERα-mediated breast cancer proliferation. This presents a novel drug discovery approach to target ERα, however, structural and mechanistic insights into ERα/14-3-3 complex formation are lacking. Here, we provide an in-depth molecular understanding of the ERα/14-3-3ζ complex by isolating 14-3-3ζ in complex with an ERα protein construct comprising its Ligand Binding Domain (LBD) and phosphorylated F-domain. Bacterial co-expression and co-purification of the ERα/14-3-3ζ complex, followed by extensive biophysical and structural characterization, revealed a tetrameric complex between the ERα homodimer and the 14-3-3ζ homodimer. 14-3-3ζ binding to ERα, and ERα/14-3-3ζ complex stabilization by FC-A, appeared to be orthogonal to ERα endogenous agonist (E2) binding, E2-induced conformational changes, and cofactor recruitment. Similarly, the ERα antagonist 4-hydroxytamoxifen inhibited cofactor recruitment to the ERα LBD while ERα was bound to 14-3-3ζ. Furthermore, stabilization of the ERα/14-3-3ζ protein complex by FC-A was not influenced by the disease-associated and 4-hydroxytamoxifen resistant ERα-Y537S mutant. Together, these molecular and mechanistic insights provide direction for targeting ERα via the ERα/14-3-3 complex as an alternative drug discovery approach.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Seppe Leysen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Karolina Honzejkova
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Tomáš Obšil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| |
Collapse
|
29
|
Li Z, Huang X, Li M, Chen YE, Wang Z, Liu L. A ubiquitination-mediated degradation system to target 14-3-3-binding phosphoproteins. Heliyon 2023; 9:e16318. [PMID: 37251884 PMCID: PMC10213371 DOI: 10.1016/j.heliyon.2023.e16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
The phosphorylation of 14-3-3 binding motif is involved in many cellular processes. A strategy that enables targeted degradation of 14-3-3-binding phosphoproteins (14-3-3-BPPs) for studying their functions is highly desirable for basic research. Here, we report a phosphorylation-induced, ubiquitin-proteasome-system-mediated targeted protein degradation (TPD) strategy that allows specific degradation of 14-3-3-BPPs. Specifically, by ligating a modified von Hippel-Lindau E3-ligase with an engineered 14-3-3 bait, we generated a protein chimera referred to as Targeted Degradation of 14-3-3-binding PhosphoProtein (TDPP). TDPP can serve as a universal degrader for 14-3-3-BPPs based on the specific recognition of the phosphorylation in 14-3-3 binding motifs. TDPP shows high efficiency and specificity to a difopein-EGFP reporter, general and specific 14-3-3-BPPs. TDPP can also be applied for the validation of 14-3-3-BPPs. These results strongly support TDPP as a powerful tool for 14-3-3 related research.
Collapse
Affiliation(s)
- Zhaokai Li
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Emergency Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoqiang Huang
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mohan Li
- Department of Geriatrics, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing 100730, China
| | - Y. Eugene Chen
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Advanced Models for Translational Sciences and Therapeutics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhong Wang
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liu Liu
- Department of Cardiac Surgery, Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
31
|
Somsen B, Schellekens RJ, Verhoef CJ, Arkin MR, Ottmann C, Cossar PJ, Brunsveld L. Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach. J Am Chem Soc 2023; 145:6741-6752. [PMID: 36926879 PMCID: PMC10064330 DOI: 10.1021/jacs.2c12781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 03/18/2023]
Abstract
Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.
Collapse
Affiliation(s)
- Bente
A. Somsen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rick J.C. Schellekens
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlo J.A. Verhoef
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J. Cossar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
32
|
Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, Lee H, Moore G, Lacoste J, Larsen B, Lin ZY, Selvabaskaran A, Liu K, Smibert C, Zhang Z, Greenblatt J, Peng J, Lee HO, Gingras AC, Taipale M. A central chaperone-like role for 14-3-3 proteins in human cells. Mol Cell 2023; 83:974-993.e15. [PMID: 36931259 DOI: 10.1016/j.molcel.2023.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
14-3-3 proteins are highly conserved regulatory proteins that interact with hundreds of structurally diverse clients and act as central hubs of signaling networks. However, how 14-3-3 paralogs differ in specificity and how they regulate client protein function are not known for most clients. Here, we map the interactomes of all human 14-3-3 paralogs and systematically characterize the effect of disrupting these interactions on client localization. The loss of 14-3-3 binding leads to the coalescence of a large fraction of clients into discrete foci in a client-specific manner, suggesting a central chaperone-like function for 14-3-3 proteins. Congruently, the engraftment of 14-3-3 binding motifs to nonclients can suppress their aggregation or phase separation. Finally, we show that 14-3-3s negatively regulate the localization of the RNA-binding protein SAMD4A to cytoplasmic granules and inhibit its activity as a translational repressor. Our work suggests that 14-3-3s have a more prominent role as chaperone-like molecules than previously thought.
Collapse
Affiliation(s)
- Dmitri Segal
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stefan Maier
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | | | - Wesley Wei Qian
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Syed Nabeel-Shah
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hyunmin Lee
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessica Lacoste
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Abeeshan Selvabaskaran
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Karen Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Craig Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Jack Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON M5G 1X5, Canada.
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
33
|
Tugaeva KV, Sysoev AA, Kapitonova AA, Smith JLR, Zhu P, Cooley RB, Antson AA, Sluchanko NN. Human 14-3-3 Proteins Site-selectively Bind the Mutational Hotspot Region of SARS-CoV-2 Nucleoprotein Modulating its Phosphoregulation. J Mol Biol 2023; 435:167891. [PMID: 36427566 PMCID: PMC9683861 DOI: 10.1016/j.jmb.2022.167891] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Phosphorylation of SARS-CoV-2 nucleoprotein recruits human cytosolic 14-3-3 proteins playing a well-recognized role in replication of many viruses. Here we use genetic code expansion to demonstrate that 14-3-3 binding is triggered by phosphorylation of SARS-CoV-2 nucleoprotein at either of two pseudo-repeats centered at Ser197 and Thr205. According to fluorescence anisotropy measurements, the pT205-motif,presentin SARS-CoV-2 but not in SARS-CoV, is preferred over the pS197-motif by all seven human 14-3-3 isoforms, which collectively display an unforeseen pT205/pS197 peptide binding selectivity hierarchy. Crystal structures demonstrate that pS197 and pT205 are mutually exclusive 14-3-3-binding sites, whereas SAXS and biochemical data obtained on the full protein-protein complex indicate that 14-3-3 binding occludes the Ser/Arg-rich region of the nucleoprotein, inhibiting its dephosphorylation. This Ser/Arg-rich region is highly prone to mutations, as exemplified by the Omicron and Delta variants, with our data suggesting that the strength of 14-3-3/nucleoprotein interaction can be linked with the replicative fitness of the virus.
Collapse
Affiliation(s)
- Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Andrey A Sysoev
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Jake L R Smith
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Phillip Zhu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, United Kingdom
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia.
| |
Collapse
|
34
|
Thurairajah B, Hudson AJ, Doveston RG. Contemporary biophysical approaches for studying 14-3-3 protein-protein interactions. Front Mol Biosci 2022; 9:1043673. [PMID: 36425654 PMCID: PMC9679655 DOI: 10.3389/fmolb.2022.1043673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 06/28/2024] Open
Abstract
14-3-3 proteins are a family of regulatory hubs that function through a vast network of protein-protein interactions. Their dysfunction or dysregulation is implicated in a wide range of diseases, and thus they are attractive drug targets, especially for molecular glues that promote protein-protein interactions for therapeutic intervention. However, an incomplete understanding of the molecular mechanisms that underpin 14-3-3 function hampers progress in drug design and development. Biophysical methodologies are an essential element of the 14-3-3 analytical toolbox, but in many cases have not been fully exploited. Here, we present a contemporary review of the predominant biophysical techniques used to study 14-3-3 protein-protein interactions, with a focus on examples that address key questions and challenges in the 14-3-3 field.
Collapse
Affiliation(s)
| | | | - Richard G. Doveston
- Leicester Institute for Structural and Chemical Biology and School of Chemistry, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
35
|
Structure-activity-relationship study of semi-synthetically modified fusicoccins on their stabilization effect for 14-3-3-phospholigand interactions. Bioorg Med Chem 2022; 73:117020. [DOI: 10.1016/j.bmc.2022.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022]
|
36
|
Gogl G, Zambo B, Kostmann C, Cousido-Siah A, Morlet B, Durbesson F, Negroni L, Eberling P, Jané P, Nominé Y, Zeke A, Østergaard S, Monsellier É, Vincentelli R, Travé G. Quantitative fragmentomics allow affinity mapping of interactomes. Nat Commun 2022; 13:5472. [PMID: 36115835 PMCID: PMC9482650 DOI: 10.1038/s41467-022-33018-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/24/2022] [Indexed: 12/18/2022] Open
Abstract
Human protein networks have been widely explored but most binding affinities remain unknown, hindering quantitative interactome-function studies. Yet interactomes rely on minimal interacting fragments displaying quantifiable affinities. Here, we measure the affinities of 65,000 interactions involving PDZ domains and their target PDZ-binding motifs (PBM) within a human interactome region particularly relevant for viral infection and cancer. We calculate interactomic distances, identify hot spots for viral interference, generate binding profiles and specificity logos, and explain selected cases by crystallographic studies. Mass spectrometry experiments on cell extracts and literature surveys show that quantitative fragmentomics effectively complements protein interactomics by providing affinities and completeness of coverage, putting a full human interactome affinity survey within reach. Finally, we show that interactome hijacking by the viral PBM of human papillomavirus E6 oncoprotein substantially impacts the host cell proteome beyond immediate E6 binders, illustrating the complex system-wide relationship between interactome and function. Protein networks have been widely explored but most binding affinities remain unknown, limiting the quantitative interpretation of interactomes. Here the authors measure affinities of 65,000 interactions involving human PDZ domains and target sequence motifs relevant for viral infection and cancer.
Collapse
|
37
|
Obsilova V, Obsil T. Structural insights into the functional roles of 14-3-3 proteins. Front Mol Biosci 2022; 9:1016071. [PMID: 36188227 PMCID: PMC9523730 DOI: 10.3389/fmolb.2022.1016071] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022] Open
Abstract
Signal transduction cascades efficiently transmit chemical and/or physical signals from the extracellular environment to intracellular compartments, thereby eliciting an appropriate cellular response. Most often, these signaling processes are mediated by specific protein-protein interactions involving hundreds of different receptors, enzymes, transcription factors, and signaling, adaptor and scaffolding proteins. Among them, 14-3-3 proteins are a family of highly conserved scaffolding molecules expressed in all eukaryotes, where they modulate the function of other proteins, primarily in a phosphorylation-dependent manner. Through these binding interactions, 14-3-3 proteins participate in key cellular processes, such as cell-cycle control, apoptosis, signal transduction, energy metabolism, and protein trafficking. To date, several hundreds of 14-3-3 binding partners have been identified, including protein kinases, phosphatases, receptors and transcription factors, which have been implicated in the onset of various diseases. As such, 14-3-3 proteins are promising targets for pharmaceutical interventions. However, despite intensive research into their protein-protein interactions, our understanding of the molecular mechanisms whereby 14-3-3 proteins regulate the functions of their binding partners remains insufficient. This review article provides an overview of the current state of the art of the molecular mechanisms whereby 14-3-3 proteins regulate their binding partners, focusing on recent structural studies of 14-3-3 protein complexes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division BIOCEV, Vestec, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Veronika Obsilova, ; Tomas Obsil,
| |
Collapse
|
38
|
Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. FEBS J 2022; 289:5341-5358. [PMID: 35286747 PMCID: PMC9541495 DOI: 10.1111/febs.16433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023]
Abstract
p53 plays a critical role in regulating diverse biological processes: DNA repair, cell cycle arrest, apoptosis and senescence. The p53 pathway has therefore served as the focus of multiple drug-discovery efforts. p53 is negatively regulated by hDMX and hDM2; prior studies have identified 14-3-3 proteins as hDMX and hDM2 client proteins. 14-3-3 proteins are adaptor proteins that modulate localization, degradation and interactions of their targets in response to phosphorylation. Thus, 14-3-3 proteins may indirectly modulate the interaction between hDMX or hDM2 and p53 and represent potential targets for modulation of the p53 pathway. In this manuscript, we report on the biophysical and structural characterization of peptide/protein interactions that are representative of the interaction between 14-3-3 and hDMX or hDM2. The data establish that proximal phosphosites spaced ~20-25 residues apart in both hDMX and hDM2 co-operate to facilitate high-affinity 14-3-3 binding and provide structural insight that can be utilized in future stabilizer/inhibitor discovery efforts.
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Madita Wolter
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Chi H. Trinh
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Christian Ottmann
- Laboratory of Chemical BiologyDepartment of Biomedical EngineeringTechnische Universiteit EindhovenThe Netherlands,Institute for Complex Molecular SystemsTechnische Universiteit EindhovenThe Netherlands
| | - Stuart L. Warriner
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| | - Andrew J. Wilson
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK,School of ChemistryUniversity of LeedsUK
| |
Collapse
|
39
|
Kapitonova AA, Tugaeva KV, Varfolomeeva LA, Boyko KM, Cooley RB, Sluchanko NN. Structural basis for the recognition by 14-3-3 proteins of a conditional binding site within the oligomerization domain of human nucleophosmin. Biochem Biophys Res Commun 2022; 627:176-183. [PMID: 36041327 DOI: 10.1016/j.bbrc.2022.08.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022]
Abstract
Nucleophosmin 1 (NPM1) is a multifunctional protein regulating ribosome biogenesis, centrosome duplication and chromatin remodeling. Being a major nucleolar protein, NPM1 can migrate to the nucleus and the cytoplasm, which is controlled by changes of NPM1 oligomerization and interaction with other cell factors. NPM1 forms a stable pentamer with its N-terminal structured domain, where two nuclear export signals and several phosphorylation sites reside. This domain undergoes dissociation and disordering upon Ser48 phosphorylation in the subunit interface. Recent studies indicated that Ser48 is important for NPM1 interaction with other proteins including 14-3-3, the well-known phosphoserine/phosphothreonine binders, but the structural basis for 14-3-3/NPM1 interaction remained unaddressed. By fusing human 14-3-3ζ with an NPM1 segment surrounding Ser48, which was phosphorylated inside Escherichia coli cells by co-expressed protein kinase A, here we obtained the desired protein/phosphopeptide complex and determined its crystal structure. While biochemical data indicated that the interaction is driven by Ser48 phosphorylation, the crystallographic 14-3-3/phosphopeptide interface reveals an NPM1 conformation distinctly different from that in the NPM1 pentamer. Given the canonical phosphopeptide-binding mode observed in our crystal structure, Ser48 emerges as a conditional binding site whose recognition by 14-3-3 proteins is enabled by NPM1 phosphorylation, disassembly and disordering under physiological circumstances.
Collapse
Affiliation(s)
- Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| |
Collapse
|
40
|
Mathivanan S, Chunchagatta Lakshman PK, Singh M, Giridharan S, Sathish K, Hurakadli MA, Bharatham K, Kamariah N. Structure of a 14-3-3ε:FOXO3a pS253 Phosphopeptide Complex Reveals 14-3-3 Isoform-Specific Binding of Forkhead Box Class O Transcription Factor (FOXO) Phosphoproteins. ACS OMEGA 2022; 7:24344-24352. [PMID: 35874228 PMCID: PMC9301721 DOI: 10.1021/acsomega.2c01700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The transcriptional activity of Forkhead Box O3 (FOXO3a) is inactivated by AKT-mediated phosphorylation on Serine 253 (S253), which enables FOXO3a binding to 14-3-3. Phosphorylated FOXO3a binding to 14-3-3 facilitates the nuclear exclusion of FOXO3a, causing cancer cell proliferation. The FOXO3a/14-3-3 interaction has, therefore, emerged as an important therapeutic target. Here, we report a comprehensive analysis using fluorescence polarization, isothermal titration calorimetry, small-angle X-ray scattering, X-ray crystallography, and molecular dynamics simulations to gain molecular-level insights into the interaction of FOXO3apS253 phosphopeptide with 14-3-3ε. A high-resolution structure of the fluorophore-labeled FOXO3apS253:14-3-3ε complex revealed a distinct mode of interaction compared to other 14-3-3 phosphopeptide complexes. FOXO3apS253 phosphopeptide showed significant structural difference in the positions of the -3 and -4 Arg residues relative to pSer, compared to that of a similar phosphopeptide, FOXO1pS256 bound to 14-3-3σ. Moreover, molecular dynamics studies show that the significant structural changes and molecular interactions noticed in the crystal structure of FOXO3apS253:14-3-3ε are preserved over the course of the simulation. Thus, this study reveals structural differences between the binding to 14-3-3 isoforms of FOXO1pS256 versus FOXO3apS253, providing a framework for the rational design of isoform-specific FOXO/14-3-3 protein-protein interaction inhibitors for therapy.
Collapse
|
41
|
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins. J Struct Biol 2022; 214:107879. [PMID: 35781025 PMCID: PMC9245327 DOI: 10.1016/j.jsb.2022.107879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022]
Abstract
14-3-3 proteins are important dimeric scaffolds that regulate the function of hundreds of proteins in a phosphorylation-dependent manner. The SARS-CoV-2 nucleocapsid (N) protein forms a complex with human 14-3-3 proteins upon phosphorylation, which has also been described for other coronaviruses. Here, we report a high-resolution crystal structure of 14-3-3 bound to an N phosphopeptide bearing the phosphoserine 197 in the middle. The structure revealed two copies of the N phosphopeptide bound, each in the central binding groove of each 14-3-3 monomer. A complex network of hydrogen bonds and water bridges between the peptide and 14-3-3 was observed explaining the high affinity of the N protein for 14-3-3 proteins.
Collapse
|
42
|
Han Y, Ye H, Li P, Zeng Y, Yang J, Gao M, Su Z, Huang Y. In vitro characterization and molecular dynamics simulation reveal mechanism of 14-3-3ζ regulated phase separation of the tau protein. Int J Biol Macromol 2022; 208:1072-1081. [PMID: 35381286 DOI: 10.1016/j.ijbiomac.2022.03.215] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
As a major microtubule-associated protein, tau is involved in the assembly of microtubules in the central nervous system. However, under pathological conditions tau assembles into amyloid filaments. Liquid droplets formed by liquid-liquid phase separation (LLPS) are a recently identified assembly state of tau and may have a major effect on the physiological function of tau and the formation of tau aggregates. 14-3-3 proteins are ubiquitously expressed in various tissues and regulate a wide variety of biological processes. In this work, we demonstrate that 14-3-3ζ is recruited into tau droplets and regulates tau LLPS by in vitro assays. While the mobility of tau molecules inside the droplets is not affected in the presence of 14-3-3ζ, the amount and size of droplets can vary significantly. Mechanistic studies reveal that 14-3-3ζ regulates tau LLPS by electrostatic interactions and hydrophobic interactions with the proline-rich domain and the microtubule-binding domain of tau. Surprisingly, the disordered C-terminal tail rather than the amphipathic binding groove of 14-3-3ζ plays a key role. Our findings not only provide a novel dimension to understand the interactions between 14-3-3 proteins and tau, but also suggest that 14-3-3 proteins may play an important role in regulating the LLPS of their binding partners.
Collapse
Affiliation(s)
- Yue Han
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Haiqiong Ye
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Ping Li
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Department of Biological Engineering, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
43
|
Sluchanko NN. Recent advances in structural studies of 14-3-3 protein complexes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 130:289-324. [PMID: 35534110 DOI: 10.1016/bs.apcsb.2021.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Being phosphopeptide-binding hubs, 14-3-3 proteins coordinate multiple cellular processes in eukaryotes, including the regulation of apoptosis, cell cycle, ion channels trafficking, transcription, signal transduction, and hormone biosynthesis. Forming constitutive α-helical dimers, 14-3-3 proteins predominantly recognize specifically phosphorylated Ser/Thr sites within their partners; this generally stabilizes phosphotarget conformation and affects its activity, intracellular distribution, dephosphorylation, degradation and interactions with other proteins. Not surprisingly, 14-3-3 complexes are involved in the development of a range of diseases and are considered promising drug targets. The wide interactome of 14-3-3 proteins encompasses hundreds of different phosphoproteins, for many of which the interaction is well-documented in vitro and in vivo but lack the structural data that would help better understand underlying regulatory mechanisms and develop new drugs. Despite obtaining structural information on 14-3-3 complexes is still lagging behind the research of 14-3-3 interactions on a proteome-wide scale, recent works provided some advances, including methodological improvements and accumulation of new interesting structural data, that are discussed in this review.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russian Federation.
| |
Collapse
|
44
|
Bramel EE, Creamer TJ, Saqib M, Camejo Nunez WA, Bagirzadeh R, Roker LA, Goff LA, MacFarlane EG. Postnatal Smad3 Inactivation in Murine Smooth Muscle Cells Elicits a Temporally and Regionally Distinct Transcriptional Response. Front Cardiovasc Med 2022; 9:826495. [PMID: 35463747 PMCID: PMC9033237 DOI: 10.3389/fcvm.2022.826495] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Heterozygous, loss of function mutations in positive regulators of the Transforming Growth Factor-β (TGF-β) pathway cause hereditary forms of thoracic aortic aneurysm. It is unclear whether and how the initial signaling deficiency triggers secondary signaling upregulation in the remaining functional branches of the pathway, and if this contributes to maladaptive vascular remodeling. To examine this process in a mouse model in which time-controlled, partial interference with postnatal TGF-β signaling in vascular smooth muscle cells (VSMCs) could be assessed, we used a VSMC-specific tamoxifen-inducible system, and a conditional allele, to inactivate Smad3 at 6 weeks of age, after completion of perinatal aortic development. This intervention induced dilation and histological abnormalities in the aortic root, with minor involvement of the ascending aorta. To analyze early and late events associated with disease progression, we performed a comparative single cell transcriptomic analysis at 10- and 18-weeks post-deletion, when aortic dilation is undetectable and moderate, respectively. At the early time-point, Smad3-inactivation resulted in a broad reduction in the expression of extracellular matrix components and critical components of focal adhesions, including integrins and anchoring proteins, which was reflected histologically by loss of connections between VSMCs and elastic lamellae. At the later time point, however, expression of several transcripts belonging to the same functional categories was normalized or even upregulated; this occurred in association with upregulation of transcripts coding for TGF-β ligands, and persistent downregulation of negative regulators of the pathway. To interrogate how VSMC heterogeneity may influence this transition, we examined transcriptional changes in each of the four VSMC subclusters identified, regardless of genotype, as partly reflecting the proximal-to-distal anatomic location based on in situ RNA hybridization. The response to Smad3-deficiency varied depending on subset, and VSMC subsets over-represented in the aortic root, the site most vulnerable to dilation, most prominently upregulated TGF-β ligands and pro-pathogenic factors such as thrombospondin-1, angiotensin converting enzyme, and pro-inflammatory mediators. These data suggest that Smad3 is required for maintenance of focal adhesions, and that loss of contacts with the extracellular matrix has consequences specific to each VSMC subset, possibly contributing to the regional susceptibility to dilation in the aorta.
Collapse
Affiliation(s)
- Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Muzna Saqib
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy A. Camejo Nunez
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rustam Bagirzadeh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - LaToya Ann Roker
- School of Medicine Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Loyal A. Goff
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
45
|
Kozeleková A, Náplavová A, Brom T, Gašparik N, Šimek J, Houser J, Hritz J. Phosphorylated and Phosphomimicking Variants May Differ—A Case Study of 14-3-3 Protein. Front Chem 2022; 10:835733. [PMID: 35321476 PMCID: PMC8935074 DOI: 10.3389/fchem.2022.835733] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Protein phosphorylation is a critical mechanism that biology uses to govern cellular processes. To study the impact of phosphorylation on protein properties, a fully and specifically phosphorylated sample is required although not always achievable. Commonly, this issue is overcome by installing phosphomimicking mutations at the desired site of phosphorylation. 14-3-3 proteins are regulatory protein hubs that interact with hundreds of phosphorylated proteins and modulate their structure and activity. 14-3-3 protein function relies on its dimeric nature, which is controlled by Ser58 phosphorylation. However, incomplete Ser58 phosphorylation has obstructed the detailed study of its effect so far. In the present study, we describe the full and specific phosphorylation of 14-3-3ζ protein at Ser58 and we compare its characteristics with phosphomimicking mutants that have been used in the past (S58E/D). Our results show that in case of the 14-3-3 proteins, phosphomimicking mutations are not a sufficient replacement for phosphorylation. At physiological concentrations of 14-3-3ζ protein, the dimer-monomer equilibrium of phosphorylated protein is much more shifted towards monomers than that of the phosphomimicking mutants. The oligomeric state also influences protein properties such as thermodynamic stability and hydrophobicity. Moreover, phosphorylation changes the localization of 14-3-3ζ in HeLa and U251 human cancer cells. In summary, our study highlights that phosphomimicking mutations may not faithfully represent the effects of phosphorylation on the protein structure and function and that their use should be justified by comparing to the genuinely phosphorylated counterpart.
Collapse
Affiliation(s)
- Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Tomáš Brom
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Norbert Gašparik
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jan Šimek
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czechia
- *Correspondence: Jozef Hritz,
| |
Collapse
|
46
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
47
|
Trošanová Z, Louša P, Kozeleková A, Brom T, Gašparik N, Tungli J, Weisová V, Župa E, Žoldák G, Hritz J. Quantitation of human 14-3-3ζ dimerization and the effect of phosphorylation on dimer-monomer equilibria. J Mol Biol 2022; 434:167479. [DOI: 10.1016/j.jmb.2022.167479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
|
48
|
Joshi R, Pohl P, Strachotova D, Herman P, Obsil T, Obsilova V. Nedd4-2 binding to 14-3-3 modulates the accessibility of its catalytic site and WW domains. Biophys J 2022; 121:1299-1311. [PMID: 35189105 PMCID: PMC9034186 DOI: 10.1016/j.bpj.2022.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 02/15/2022] [Indexed: 11/02/2022] Open
Abstract
Neural precursor cells expressed developmentally downregulated protein 4-2 (Nedd4-2), a homologous to the E6-AP carboxyl terminus (HECT) ubiquitin ligase, triggers the endocytosis and degradation of its downstream target molecules by regulating signal transduction through interactions with other targets, including 14-3-3 proteins. In our previous study, we found that 14-3-3 binding induces a structural rearrangement of Nedd4-2 by inhibiting interactions between its structured domains. Here, we used time-resolved fluorescence intensity and anisotropy decay measurements, together with fluorescence quenching and mass spectrometry, to further characterize interactions between Nedd4-2 and 14-3-3 proteins. The results showed that 14-3-3 binding affects the emission properties of AEDANS-labeled WW3, WW4, and, to a lesser extent, WW2 domains, and reduces their mobility, but not those of the WW1 domain, which remains mobile. In contrast, 14-3-3 binding has the opposite effect on the active site of the HECT domain, which is more solvent exposed and mobile in the complexed form than in the apo form of Nedd4-2. Overall, our results suggest that steric hindrance of the WW3 and WW4 domains combined with conformational changes in the catalytic domain may account for the 14-3-3 binding-mediated regulation of Nedd4-2.
Collapse
|
49
|
Fragment-based exploration of the 14-3-3/Amot-p130 interface. Curr Res Struct Biol 2022; 4:21-28. [PMID: 35036934 PMCID: PMC8743172 DOI: 10.1016/j.crstbi.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
The modulation of protein-protein interactions (PPIs) has developed into a well-established field of drug discovery. Despite the advances achieved in the field, many PPIs are still deemed as ‘undruggable’ targets and the design of PPIs stabilizers remains a significant challenge. The application of fragment-based methods for the identification of drug leads and to evaluate the ‘tractability’ of the desired protein target has seen a remarkable development in recent years. In this study, we explore the molecular characteristics of the 14-3-3/Amot-p130 PPI and the conceptual possibility of targeting this interface using X-ray crystallography fragment-based screening. We report the first structural elucidation of the 14-3-3 binding motif of Amot-p130 and the characterization of the binding mode and affinities involved. We made use of fragments to probe the ‘ligandability’ of the 14-3-3/Amot-p130 composite binding pocket. Here we disclose initial hits with promising stabilizing activity and an early-stage selectivity toward the Amot-p130 motifs over other representatives 14-3-3 partners. Our findings highlight the potential of using fragments to characterize and explore proteins' surfaces and might provide a starting point toward the development of small molecules capable of acting as molecular glues. Phosphorylation of Ser 175 mediates binding of Amot-p130 to 14-3-3. The crystal structure of the 14-3-3σΔC/Amot-p130 peptide complex describes the interface. A fragment-based exploration of the interface assesses ‘ligandability’. Fragments binding at the 14-3-3/Amot-p130 interface display an initial stabilizing activity.
Collapse
Key Words
- 14-3-3 /protein-protein interactions stabilizers
- AIP4, Atrophin-1 interacting protein 4
- Amot, Angiomotin
- Amot-p130
- AmotL1/2, Angiomotin-like 1/2
- FBDD, Fragment-based drug discovery
- FP, Fluorescence polarization
- Fragment-based drug discovery
- Lats 1/2, Large tumor suppressor 1/2
- Ligandability
- MST, Microscale thermophoresis
- PPI, Protein-protein interaction
- PTMs, post-translational modifications
- X-ray crystallography
- YAP1, Yes-associated protein 1
Collapse
|
50
|
Kliche J, Ivarsson Y. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Biochem J 2022; 479:1-22. [PMID: 34989786 PMCID: PMC8786283 DOI: 10.1042/bcj20200714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
Cellular function is based on protein-protein interactions. A large proportion of these interactions involves the binding of short linear motifs (SLiMs) by folded globular domains. These interactions are regulated by post-translational modifications, such as phosphorylation, that create and break motif binding sites or tune the affinity of the interactions. In addition, motif-based interactions are involved in targeting serine/threonine kinases and phosphatases to their substrate and contribute to the specificity of the enzymatic actions regulating which sites are phosphorylated. Here, we review how SLiM-based interactions assist in determining the specificity of serine/threonine kinases and phosphatases, and how phosphorylation, in turn, affects motif-based interactions. We provide examples of SLiM-based interactions that are turned on/off, or are tuned by serine/threonine phosphorylation and exemplify how this affects SLiM-based protein complex formation.
Collapse
Affiliation(s)
- Johanna Kliche
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, Box 576 751 23 Uppsala, Sweden
| |
Collapse
|