1
|
Nelson MG, Talavera D. Identification of coevolving positions by ancestral reconstruction. Commun Biol 2025; 8:329. [PMID: 40021815 PMCID: PMC11871020 DOI: 10.1038/s42003-025-07676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Coevolution within proteins occurs when changes in one position affect the selective pressure in another position to preserve the protein structure or function. The identification of coevolving positions within proteins remains contentious, with most methods disregarding the phylogenetic information. Here, we present a time-efficient approach for detecting coevolving pairs, which is almost perfect in terms of precision and specificity. It is based on maximum parsimony-based ancestral reconstruction followed by the identification of pairs with a depletion on separate changes when compared to their number of concurrent changes. Our analysis of a previously characterised biological dataset shows that the coevolving pairs that we identified tend to be close in the protein sequence and structure, slightly less solvent exposed and have a higher mutation rate. We also show how the ancestral reconstruction can be used to detect favourable and unfavourable amino acid combinations. Altogether, we demonstrate how this approach is essential for identifying pairs of positions with weak covariation patterns.
Collapse
Affiliation(s)
- Michael G Nelson
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
2
|
Beghiah A, Saura P, Badolato S, Kim H, Zipf J, Auman D, Gamiz-Hernandez AP, Berg J, Kemp G, Kaila VRI. Dissected antiporter modules establish minimal proton-conduction elements of the respiratory complex I. Nat Commun 2024; 15:9098. [PMID: 39438463 PMCID: PMC11496545 DOI: 10.1038/s41467-024-53194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.
Collapse
Affiliation(s)
- Adel Beghiah
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Patricia Saura
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Sofia Badolato
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Hyunho Kim
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johanna Zipf
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Dirk Auman
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Johan Berg
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Grant Kemp
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
Serrano GP, Echavarría CF, Mejias SH. Development of artificial photosystems based on designed proteins for mechanistic insights into photosynthesis. Protein Sci 2024; 33:e5164. [PMID: 39276008 PMCID: PMC11400635 DOI: 10.1002/pro.5164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
This review aims to provide an overview of the progress in protein-based artificial photosystem design and their potential to uncover the underlying principles governing light-harvesting in photosynthesis. While significant advances have been made in this area, a gap persists in reviewing these advances. This review provides a perspective of the field, pinpointing knowledge gaps and unresolved challenges that warrant further inquiry. In particular, it delves into the key considerations when designing photosystems based on the chromophore and protein scaffold characteristics, presents the established strategies for artificial photosystems engineering with their advantages and disadvantages, and underscores the recent breakthroughs in understanding the molecular mechanisms governing light-harvesting, charge separation, and the role of the protein motions in the chromophore's excited state relaxation. By disseminating this knowledge, this article provides a foundational resource for defining the field of bio-hybrid photosystems and aims to inspire the continued exploration of artificial photosystems using protein design.
Collapse
Affiliation(s)
- Gonzalo Pérez Serrano
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Claudia F. Echavarría
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| | - Sara H. Mejias
- Madrid Institute for Advanced Studies (IMDEA‐Nanoscience)Ciudad Universitaria de CantoblancoMadridSpain
| |
Collapse
|
4
|
Soliman BG, Nguyen AK, Gooding JJ, Kilian KA. Advancing Synthetic Hydrogels through Nature-Inspired Materials Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404235. [PMID: 38896849 PMCID: PMC11486603 DOI: 10.1002/adma.202404235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Synthetic extracellular matrix (ECM) mimics that can recapitulate the complex biochemical and mechanical nature of native tissues are needed for advanced models of development and disease. Biomedical research has heavily relied on the use of animal-derived biomaterials, which is now impeding their translational potential and convoluting the biological insights gleaned from in vitro tissue models. Natural hydrogels have long served as a convenient and effective cell culture tool, but advances in materials chemistry and fabrication techniques now present promising new avenues for creating xenogenic-free ECM substitutes appropriate for organotypic models and microphysiological systems. However, significant challenges remain in creating synthetic matrices that can approximate the structural sophistication, biochemical complexity, and dynamic functionality of native tissues. This review summarizes key properties of the native ECM, and discusses recent approaches used to systematically decouple and tune these properties in synthetic matrices. The importance of dynamic ECM mechanics, such as viscoelasticity and matrix plasticity, is also discussed, particularly within the context of organoid and engineered tissue matrices. Emerging design strategies to mimic these dynamic mechanical properties are reviewed, such as multi-network hydrogels, supramolecular chemistry, and hydrogels assembled from biological monomers.
Collapse
Affiliation(s)
- Bram G Soliman
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Ashley K Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - J Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
| | - Kristopher A Kilian
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Ji Z, Huo H, Duan L, Wang S. Design of robust malate dehydrogenases by assembly of motifs of halophilic and thermophilic enzyme based on interaction network. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chu AE, Fernandez D, Liu J, Eguchi RR, Huang PS. De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design. BIODESIGN RESEARCH 2022; 2022:9842315. [PMID: 37850141 PMCID: PMC10521652 DOI: 10.34133/2022/9842315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 10/19/2023] Open
Abstract
The ability to finely control the structure of protein folds is an important prerequisite to functional protein design. The TIM barrel fold is an important target for these efforts as it is highly enriched for diverse functions in nature. Although a TIM barrel protein has been designed de novo, the ability to finely alter the curvature of the central beta barrel and the overall architecture of the fold remains elusive, limiting its utility for functional design. Here, we report the de novo design of a TIM barrel with ovoid (twofold) symmetry, drawing inspiration from natural beta and TIM barrels with ovoid curvature. We use an autoregressive backbone sampling strategy to implement our hypothesis for elongated barrel curvature, followed by an iterative enrichment sequence design protocol to obtain sequences which yield a high proportion of successfully folding designs. Designed sequences are highly stable and fold to the designed barrel curvature as determined by a 2.1 Å resolution crystal structure. The designs show robustness to drastic mutations, retaining high melting temperatures even when multiple charged residues are buried in the hydrophobic core or when the hydrophobic core is ablated to alanine. As a scaffold with a greater capacity for hosting diverse hydrogen bonding networks and installation of binding pockets or active sites, the ovoid TIM barrel represents a major step towards the de novo design of functional TIM barrels.
Collapse
Affiliation(s)
- Alexander E. Chu
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, And Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
| | - Jingjia Liu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Raphael R. Eguchi
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Po-Ssu Huang
- Biophysics Program, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford ChEM-H, Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Allgöwer F, Gamiz-Hernandez AP, Rutherford AW, Kaila VRI. Molecular Principles of Redox-Coupled Protonation Dynamics in Photosystem II. J Am Chem Soc 2022; 144:7171-7180. [PMID: 35421304 PMCID: PMC9052759 DOI: 10.1021/jacs.1c13041] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water oxidization, releasing O2 into the atmosphere and transferring the electrons for the synthesis of biomass. However, despite decades of structural and functional studies, the water oxidation mechanism of PSII has remained puzzling and a major challenge for modern chemical research. Here, we show that PSII catalyzes redox-triggered proton transfer between its oxygen-evolving Mn4O5Ca cluster and a nearby cluster of conserved buried ion-pairs, which are connected to the bulk solvent via a proton pathway. By using multi-scale quantum and classical simulations, we find that oxidation of a redox-active Tyrz (Tyr161) lowers the reaction barrier for the water-mediated proton transfer from a Ca2+-bound water molecule (W3) to Asp61 via conformational changes in a nearby ion-pair (Asp61/Lys317). Deprotonation of this W3 substrate water triggers its migration toward Mn1 to a position identified in recent X-ray free-electron laser (XFEL) experiments [Ibrahim et al. Proc. Natl. Acad. Sci. USA 2020, 117, 12,624-12,635]. Further oxidation of the Mn4O5Ca cluster lowers the proton transfer barrier through the water ligand sphere of the Mn4O5Ca cluster to Asp61 via a similar ion-pair dissociation process, while the resulting Mn-bound oxo/oxyl species leads to O2 formation by a radical coupling mechanism. The proposed redox-coupled protonation mechanism shows a striking resemblance to functional motifs in other enzymes involved in biological energy conversion, with an interplay between hydration changes, ion-pair dynamics, and electric fields that modulate the catalytic barriers.
Collapse
Affiliation(s)
- Friederike Allgöwer
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Ana P Gamiz-Hernandez
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - A William Rutherford
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ville R I Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
8
|
Dong F, Zhang M, Ma R, Lu C, Xu F. Insights of conformational dynamics on catalytic activity in the computational stability design of Bacillus subtilis LipA. Arch Biochem Biophys 2022; 722:109196. [PMID: 35339426 DOI: 10.1016/j.abb.2022.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
Abstract
In protein engineering, the contributions of individual mutations to designed combinatorial mutants are unpredictable. Screening designed mutations that affect enzyme catalytic activity enables evolutions towards efficient activities. Here, Bacillus subtilis LipA (BSLA) was selected as a model protein for thermostabilization designs, and the circular dichroism measurements showed six combinatorial designs with improved stability (from 5.81 °C to 13.61 °C). Based on molecular dynamic simulations, the conformational dynamics of the mutants revealed that mutations alter the populations of conformational states and the increased ensembles of inactive conformations might lead to a reduction in activity. We further demonstrated that the mutations responsible for the reduced enzyme catalytic activity involved a short dynamic correlation path to disturbing the equilibrium conformation of active sites. By removing N82V, which had a close dynamic correlation to the active sites in mutant D3, the redesigned mutant RD3 had an increased activity of 57.6%. By combining computational simulation with experimental verification, this work established that essential sites to counteract the activity-stability trade-off in multipoint combinatorial mutants could be computationally predicted and thus provide a possible strategy by which to indirectly or directly guide protein design.
Collapse
Affiliation(s)
- Fangying Dong
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Meng Zhang
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Rui Ma
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Cheng Lu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Fei Xu
- Ministry of Education Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
9
|
Deng J, Cui Q. Electronic Polarization Is Essential for the Stabilization and Dynamics of Buried Ion Pairs in Staphylococcal Nuclease Mutants. J Am Chem Soc 2022; 144:4594-4610. [PMID: 35239338 PMCID: PMC9616648 DOI: 10.1021/jacs.2c00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Buried charged residues play important roles in the modulation of protein stabilities and conformational dynamics and make crucial contributions to protein functions. Considering the generally nonpolar nature of protein interior, a key question concerns the contribution of electronic polarization to the stabilization and properties of buried charges. We answer this question by conducting free energy simulations using the latest polarizable CHARMM force field based on Drude oscillators for a series of Staphylococcal nuclease mutants that involve a buried Glu-Lys pair in different titration states and orientations. While a nonpolarizable model suggests that the ionized form of the buried Glu-Lys pair is more than 40 kcal/mol less stable than the charge-neutral form, the two titration states are comparable in stability when electronic polarization is included explicitly, a result better reconcilable with available experimental data. Analysis of free energy components suggests that additional stabilization of the ionized Glu-Lys pair has contributions from both the enhanced salt-bridge strength and stronger interaction between the ion-pair and surrounding protein residues and penetrated water. Despite the stronger direct interaction between Glu and Lys, the ion-pair exhibits considerably larger and faster structural fluctuations when polarization is included, due to compensation of interactions in the cavity. Collectively, observations from this work provide compelling evidence that electronic polarization is essential to the stability, hydration, dynamics, and therefore function of buried charges in proteins. Therefore, our study advocates for the explicit consideration of electronic polarization for mechanistic and engineering studies that implicate buried charged residues, such as enzymes and ion transporters.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States.,Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
10
|
Kaila VRI. Resolving Chemical Dynamics in Biological Energy Conversion: Long-Range Proton-Coupled Electron Transfer in Respiratory Complex I. Acc Chem Res 2021; 54:4462-4473. [PMID: 34894649 PMCID: PMC8697550 DOI: 10.1021/acs.accounts.1c00524] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
![]()
Biological energy conversion is catalyzed by membrane-bound proteins
that transduce chemical or light energy into energy forms that power
endergonic processes in the cell. At a molecular level, these catalytic
processes involve elementary electron-, proton-, charge-, and energy-transfer
reactions that take place in the intricate molecular machineries of
cell respiration and photosynthesis. Recent developments in structural
biology, particularly cryo-electron microscopy (cryoEM), have resolved
the molecular architecture of several energy transducing proteins,
but detailed mechanistic principles of their charge transfer reactions
still remain poorly understood and a major challenge for modern biochemical
research. To this end, multiscale molecular simulations provide a
powerful approach to probe mechanistic principles on a broad range
of time scales (femtoseconds to milliseconds) and spatial resolutions
(101–106 atoms), although technical challenges
also require balancing between the computational accuracy, cost, and
approximations introduced within the model. Here we discuss how the
combination of atomistic (aMD) and hybrid quantum/classical molecular
dynamics (QM/MM MD) simulations with free energy (FE) sampling methods
can be used to probe mechanistic principles of enzymes responsible
for biological energy conversion. We present mechanistic explorations
of long-range proton-coupled electron transfer (PCET) dynamics in
the highly intricate respiratory chain enzyme Complex I, which functions
as a redox-driven proton pump in bacterial and mitochondrial respiratory
chains by catalyzing a 300 Å fully reversible PCET process. This
process is initiated by a hydride (H–) transfer
between NADH and FMN, followed by long-range (>100 Å) electron
transfer along a wire of 8 FeS centers leading to a quinone biding
site. The reduction of the quinone to quinol initiates dissociation
of the latter to a second membrane-bound binding site, and triggers
proton pumping across the membrane domain of complex I, in subunits
up to 200 Å away from the active site. Our simulations across
different size and time scales suggest that transient charge transfer
reactions lead to changes in the internal hydration state of key regions,
local electric fields, and the conformation of conserved ion pairs,
which in turn modulate the dynamics of functional steps along the
reaction cycle. Similar functional principles, which operate on much
shorter length scales, are also found in some unrelated proteins,
suggesting that enzymes may employ conserved principles in the catalysis
of biological energy transduction processes.
Collapse
Affiliation(s)
- Ville R. I. Kaila
- Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
11
|
Deng J, Cui Q. Reverse Protonation of Buried Ion-Pairs in Staphylococcal Nuclease Mutants. J Chem Theory Comput 2021; 17:4550-4563. [PMID: 34143626 DOI: 10.1021/acs.jctc.1c00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although buried titratable residues in protein cavities are often of major functional importance, it is generally challenging to understand their properties such as the ionization state and factors of stabilization based on experimental studies alone. A specific set of examples involve buried Glu-Lys pairs in a series of variants of Staphylococcal nuclease, for which recent structural and thermodynamic studies appeared to suggest that both the stability and the ionization state of the buried Glu-Lys pair are sensitive to its orientation (i.e., Glu23-Lys36 vs Lys23-Glu36). To further clarify the situation, especially ionization states of the buried Glu-Lys pairs, we have conducted extensive molecular dynamics simulations and free energy computations. Microsecond molecular dynamics simulations show that the hydration level of the cavity depends on the orientation of the buried ion-pair therein as well as its ionization state; free energy simulations recapitulate the relative stability of Glu23-Lys36 (EK) vs Lys23-Glu36 (KE) mutants measured experimentally, although the difference is similar in magnitude regardless of the ionization state of the Glu-Lys pair. A complementary set of free energy simulations strongly suggests that, in contrast to the original suggestion in the experimental analysis, the Glu and Lys residues prefer to adopt their charge-neutral rather than the ionized states. This result is consistent with the low dielectric constant computed for water in the cavity, which makes it difficult for the protein cavity to stabilize a pair of charged Glu-Lys residues, even with water penetration. The current study highlights the role of free energy simulations in understanding the ionization state of buried titratable residues and the relevant energetic contributions, forming the basis for the rational design of buried charge networks in proteins.
Collapse
Affiliation(s)
- Jiahua Deng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Departments of Chemistry, Physics, and Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|