1
|
Pang X, Jiang Y, Yu J, Ran Z, Ma W. Genome-wide insights into the evolutionary history of conserved photosynthetic NDH-1 in cyanobacteria. FRONTIERS IN PLANT SCIENCE 2025; 16:1561629. [PMID: 40303863 PMCID: PMC12038448 DOI: 10.3389/fpls.2025.1561629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025]
Abstract
The integration of novel components into functional multi-subunit protein complexes is a key evolutionary strategy for enhancing stability, activity, and adaptation to oxidative stress. This is exemplified by the evolution of the conserved photosynthetic NDH-1 (cpNDH-1) complex, though its precise evolutionary history remains unresolved. In this study, we constructed a time-calibrated phylogenetic tree of cyanobacteria to trace the evolutionary trajectory of cpNDH-1. By mapping the orthologous of oxygenic photosynthesis-specific (OPS) subunits onto this tree, we found that the cpNDH-1 complex progressively acquired OPS subunits. Specifically, during the transition from non-photosynthetic to thylakoid-less photosynthetic cyanobacteria, cpNDH-1 incorporated OPS subunits NdhM, NdhN, NdhO, NdhP, and NdhS. Subsequently, NdhL, NdhQ, and NdhV were added as thylakoid-bearing photosynthetic cyanobacteria evolved. Our analysis reveals that the emergence of oxygenic photosynthesis was closely linked with the progressive incorporation of OPS subunits into cpNDH-1. We propose a two-step model for the evolution of these subunits, identifying potential driving factors behind this process. Genome-wide sequence analysis and structural predications further suggest that the OPS cpNDH-1 genes either evolved de novo or arose from modifications of existing genes. Collectively, these findings provide a robust framework for understanding the evolutionary emergence of OPS subunits in cyanobacterial cpNDH-1, underscoring the acquisition of new subunits as a critical adaptation to oxidative environments during the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
| | | | | | - Zhaoxing Ran
- College of Life Sciences, Shanghai Normal University,
Shanghai, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University,
Shanghai, China
| |
Collapse
|
2
|
Martin AN, Stüeken EE, Gehringer MM, Markowska M, Vonhof H, Weyer S, Hofmann A. Anomalous δ 15N values in the Neoarchean associated with an abundant supply of hydrothermal ammonium. Nat Commun 2025; 16:1873. [PMID: 39984454 PMCID: PMC11845595 DOI: 10.1038/s41467-025-57091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/11/2025] [Indexed: 02/23/2025] Open
Abstract
Unusually high δ15N values in the Neoarchean sedimentary record in the time period from 2.8 to 2.6 Ga, termed the Nitrogen Isotope Event (NIE), might be explained by aerobic N cycling prior to the Great Oxidation Event (GOE). Here we report strongly positive δ15N values up to +42.5 ‰ in ~2.75 - 2.73 Ga shallow-marine carbonates from Zimbabwe. As the corresponding deeper-marine shales exhibit negative δ15N values that are explained by partial biological uptake from a large ammonium reservoir, we interpret our data to have resulted from hydrothermal upwelling of 15N-rich ammonium into shallow, partially oxic waters, consistent with uranium isotope variations. This work shows that anomalous N isotope signatures at the onset of the NIE temporally correlate with extensive volcanic and hydrothermal activity both locally and globally, which may have stimulated primary production and spurred biological innovation in the lead-up to the GOE.
Collapse
Affiliation(s)
- Ashley N Martin
- Institute of Earth System Sciences, Leibniz University Hannover, 30167, Hanover, Germany.
- Department of Geography and Environmental Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews, KY16 9TS, UK
| | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), 67663, Kaiserslautern, Germany
| | - Monika Markowska
- Department of Geography and Environmental Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
- Max Planck Institut für Chemie, 55128, Mainz, Germany
| | - Hubert Vonhof
- Max Planck Institut für Chemie, 55128, Mainz, Germany
| | - Stefan Weyer
- Institute of Earth System Sciences, Leibniz University Hannover, 30167, Hanover, Germany
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, APK Campus, Auckland Park, PO Box 524, 2006, Johannesburg, South Africa
| |
Collapse
|
3
|
Tamanna SS, Boden JS, Kaiser KM, Wannicke N, Höring J, Sánchez‐Baracaldo P, Deponte M, Frankenberg‐Dinkel N, Gehringer MM. Early-Branching Cyanobacteria Grow Faster and Upregulate Superoxide Dismutase Activity Under a Simulated Early Earth Anoxic Atmosphere. GEOBIOLOGY 2024; 22:e70005. [PMID: 39665522 PMCID: PMC11636452 DOI: 10.1111/gbi.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
The evolution of oxygenic photosynthesis during the Archean (4-2.5 Ga) required the presence of complementary reducing pathways to maintain the cellular redox balance. While the timing of the evolution of superoxide dismutases (SODs), enzymes that convert superoxide to hydrogen peroxide and O2, within bacteria and archaea is not resolved, the first SODs appearing in cyanobacteria contained copper and zinc in the reaction center (CuZnSOD). Here, we analyse growth characteristics, SOD gene expression (qRT-PCR) and cellular enzyme activity in the deep branching strain, Pseudanabaena sp. PCC7367, previously demonstrated to release significantly more O2 under anoxic conditions. The observed significantly higher growth rates (p < 0.001) and protein and glycogen contents (p < 0.05) in anoxically cultured Pseudanabaena PCC7367 compared to control cultures grown under present-day oxygen-rich conditions prompted the following question: Is the growth of Pseudanabaena sp. PCC7367 correlated to atmospheric pO2 and cellular SOD activity? Expression of sodB (encoding FeSOD) and sodC (encoding CuZnSOD) strongly correlated with medium O2 levels (p < 0.001). Expression of sodA (encoding MnSOD) correlated significantly to SOD activity during the day (p = 0.019) when medium O2 concentrations were the highest. The cellular SOD enzyme activity of anoxically grown cultures was significantly higher (p < 0.001) 2 h before the onset of the dark phase compared to O2-rich growth conditions. The expression of SOD encoding genes was significantly reduced (p < 0.05) under anoxic conditions in stirred cultures, as were medium O2 levels (p ≤ 0.001), compared to oxic-grown cultures, whereas total cellular SOD activity remained comparable. Our data suggest that increasing pO2 negatively impacts the viability of early cyanobacteria, possibly by increasing photorespiration. Additionally, the increased expression of superoxide-inactivating genes during the dark phase suggests the increased replacement rates of SODs under modern-day conditions compared to those on early Earth.
Collapse
Affiliation(s)
- Sadia S. Tamanna
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
- Department of Molecular BotanyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Joanne S. Boden
- School of Geographical Sciences, Faculty of ScienceUniversity of BristolBristolUK
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
| | - Kimberly M. Kaiser
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | - Nicola Wannicke
- Plasma BioengineeringLeibniz Institute of Plasma Science and TechnologyGreifswaldGermany
| | - Jonas Höring
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Marcel Deponte
- Department of ChemistryUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| | | | - Michelle M. Gehringer
- Department of MicrobiologyUniversity of Kaiserslautern‐Landau RPTUKaiserslauternGermany
| |
Collapse
|
4
|
Enzingmüller-Bleyl TC, Boden JS, Herrmann AJ, Ebel KW, Sánchez-Baracaldo P, Frankenberg-Dinkel N, Gehringer MM. On the trail of iron uptake in ancestral Cyanobacteria on early Earth. GEOBIOLOGY 2022; 20:776-789. [PMID: 35906866 DOI: 10.1111/gbi.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.
Collapse
Affiliation(s)
| | - Joanne S Boden
- School of Geographical Sciences, Faculty of Science, University of Bristol, Bristol, UK
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, UK
| | - Achim J Herrmann
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Katharina W Ebel
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | - Michelle M Gehringer
- Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
5
|
Hudson JM, Luther GW, Chin YP. Influence of Organic Ligands on the Redox Properties of Fe(II) as Determined by Mediated Electrochemical Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9123-9132. [PMID: 35675652 DOI: 10.1021/acs.est.2c01782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fe(II) has been extensively studied due to its importance as a reductant in biogeochemical processes and contaminant attenuation. Previous studies have shown that ligands can alter aqueous Fe(II) redox reactivity but their data interpretation is constrained by the use of probe compounds. Here, we employed mediated electrochemical oxidation (MEO) as an approach to directly quantify the extent of Fe(II) oxidation in the absence and presence of three model organic ligands (citrate, nitrilotriacetic acid, and ferrozine) across a range of potentials (EH) and pH, thereby manipulating oxidation over a broad range of fixed thermodynamic conditions. Fe(III)-stabilizing ligands enhanced Fe(II) reactivity in thermodynamically unfavorable regions (i.e., low pH and EH) while an Fe(II) stabilizing ligand (ferrozine) prevented oxidation across all thermodynamic regions. We experimentally derived apparent standard redox potentials, EHϕ, for these and other (oxalate, oxalate2, NTA2, EDTA, and OH2) Fe-ligand redox couples via oxidative current integration. Preferential stabilization of Fe(III) over Fe(II) decreased EHϕ values, and a Nernstian correlation between EHϕ and log(KFe(III)/KFe(II)) exists across a wide range of potentials and stability constants. We used this correlation to estimate log(KFe(III)/KFe(II)) for a natural organic matter isolate, demonstrating that MEO can be used to measure iron stability constant ratios for unknown ligands.
Collapse
Affiliation(s)
- Jeffrey M Hudson
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George W Luther
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958, United States
| | - Yu-Ping Chin
- Department of Civil & Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Swanner ED, Wüstner M, Leung T, Pust J, Fatka M, Lambrecht N, Chmiel HE, Strauss H. Seasonal phytoplankton and geochemical shifts in the subsurface chlorophyll maximum layer of a dimictic ferruginous lake. Microbiologyopen 2022; 11:e1287. [PMID: 35765183 PMCID: PMC9108440 DOI: 10.1002/mbo3.1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Subsurface chlorophyll maxima layers (SCML) are ubiquitous features of stratified aquatic systems. Availability of the micronutrient iron is known to influence marine SCML, but iron has not been explored in detail as a factor in the development of freshwater SCML. This study investigates the relationship between dissolved iron and the SCML within the dimictic, ferruginous lake Grosses Heiliges Meer in northern Germany. The occurrence of the SCML under nonferruginous conditions in the spring and ferruginous conditions in the fall are context to explore temporal changes in the phytoplankton community and indicators of primary productivity. Results indicate that despite more abundant chlorophyll in the spring, the SCML sits below a likely primary productivity maximum within the epilimnion, inferred based on colocated dissolved oxygen, δ13 CDIC , and pH maxima. The peak amount of chlorophyll in the SCML is lower in the fall than in the spring, but in the fall the SCML is colocated with elevated dissolved iron concentrations and a local δ13 CDIC maximum. Cyanobacteria and Chlorophyta have elevated abundances within the SCML in the fall. Further investigation of the relationship of iron to primary productivity within ferruginous SCML may help to understand the environmental controls on primary productivity in past ferruginous oceans.
Collapse
Affiliation(s)
| | - Marina Wüstner
- Center for Applied GeoscienceUniversity of TübingenTübingenGermany
| | - Tania Leung
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Jürgen Pust
- Naturschutzgebietes Heiliges MeerLandschaftsverband Westfalen‐Lippe (LWL) Museum für NaturkundeReckeGermany
| | - Micah Fatka
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Nick Lambrecht
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Hannah E. Chmiel
- Environmental Engineering InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Harald Strauss
- Institute for Geology and PaleontologyUniversity of MünsterMünsterGermany
| |
Collapse
|
7
|
Zhao M, Zhao Y, Lin W, Xiao KQ. An overview of experimental simulations of microbial activity in early Earth. Front Microbiol 2022; 13:1052831. [PMID: 36713221 PMCID: PMC9878457 DOI: 10.3389/fmicb.2022.1052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial activity has shaped the evolution of the ocean and atmosphere throughout the Earth history. Thus, experimental simulations of microbial metabolism under the environment conditions of the early Earth can provide vital information regarding biogeochemical cycles and the interaction and coevolution between life and environment, with important implications for extraterrestrial exploration. In this review, we discuss the current scope and knowledge of experimental simulations of microbial activity in environments representative of those of early Earth, with perspectives on future studies. Inclusive experimental simulations involving multiple species, and cultivation experiments with more constraints on environmental conditions similar to early Earth would significantly advance our understanding of the biogeochemical cycles of the geological past.
Collapse
Affiliation(s)
- Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Chen S, Shi N, Huang M, Tan X, Yan X, Wang A, Huang Y, Ji R, Zhou D, Zhu YG, Keller AA, Gardea-Torresdey JL, White JC, Zhao L. MoS 2 Nanosheets-Cyanobacteria Interaction: Reprogrammed Carbon and Nitrogen Metabolism. ACS NANO 2021; 15:16344-16356. [PMID: 34569785 DOI: 10.1021/acsnano.1c05656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fully understanding the environmental implications of engineered nanomaterials is crucial for their safe and sustainable use. Cyanobacteria, as the pioneers of the planet earth, play important roles in global carbon and nitrogen cycling. Here, we evaluated the biological effects of molybdenum disulfide (MoS2) nanosheets on a N2-fixation cyanobacteria (Nostoc sphaeroides) by monitoring growth and metabolome changes. MoS2 nanosheets did not exert overt toxicity to Nostoc at the tested doses (0.1 and 1 mg/L). On the contrary, the intrinsic enzyme-like activities and semiconducting properties of MoS2 nanosheets promoted the metabolic processes of Nostoc, including enhancing CO2-fixation-related Calvin cycle metabolic pathway. Meanwhile, MoS2 boosted the production of a range of biochemicals, including sugars, fatty acids, amino acids, and other valuable end products. The altered carbon metabolism subsequently drove proportional changes in nitrogen metabolism in Nostoc. These intracellular metabolic changes could potentially alter global C and N cycles. The findings of this study shed light on the nature and underlying mechanisms of bio-nanoparticle interactions, and offer the prospect of utilization bio-nanomaterials for efficient CO2 sequestration and sustainable biochemical production.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Nibin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xianjun Tan
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xin Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aodi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuxiong Huang
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Arturo A Keller
- Chemistry and Biochemistry Department, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jorge L Gardea-Torresdey
- Bren School of Environmental Science & Management and Center for Environmental Implications of Nanotechnology, University of California, Santa Barbara, California 93106, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), New Haven, Connecticut 06504, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|