1
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Munro JE, Coussens AK, Bahlo M. TBtypeR: Sensitive detection and sublineage classification of Mycobacterium tuberculosis complex mixed-strain infections. Commun Biol 2025; 8:260. [PMID: 39972208 PMCID: PMC11840096 DOI: 10.1038/s42003-025-07705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Tuberculosis (TB) is typically attributed to a single infecting strain of the Mycobacterium tuberculosis Complex (MTBC), however mixed-strain infections are more common than reported due to the limitations of conventional diagnostics. While whole genome sequencing (WGS) methods have improved the detection of mixed-strain infections, existing tools struggle to reliably identify mixed-strain infections with frequencies below 10%. TBtypeR, a new tool, addresses this challenge by comparing WGS data to a phylogenetic SNP panel of over 10,000 sites and 164 MTBC phylotypes and using a model based on the binomial distribution to classify sublineage mixtures at frequencies as low as 1%. Extensive benchmarking shows TBtypeR outperforms current methods. Application to a published dataset of 5000 WGS samples identified 305 mixed-strain infections, six-fold higher than previously reported. The TBtypeR R package and a Nextflow pipeline are available at github.com/bahlolab/TBtypeR, providing a powerful tool for studying TB epidemiology and mixed-strain infections.
Collapse
Affiliation(s)
- Jacob E Munro
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia.
| | - Anna K Coussens
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
- Infection and Global Health Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7925, Republic of South Africa
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
3
|
Marcon DJ, Sharma A, Souza AB, Barros RB, Andrade VDGD, Guimarães RJDPS, Lima LNG, Monteiro LHMT, Quaresma AJPG, Ribeiro LR, Suffys PN, Warren RM, Alberio CAA, Lima KVB, Conceição EC. Comprehensive genomic surveillance reveals transmission profiles of extensively drug-resistant tuberculosis cases in Pará, Brazil. Front Microbiol 2025; 15:1514862. [PMID: 39911713 PMCID: PMC11794272 DOI: 10.3389/fmicb.2024.1514862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/23/2024] [Indexed: 02/07/2025] Open
Abstract
Bedaquiline, an antimicrobial used to treat drug-resistant tuberculosis (DR-TB), was introduced in Brazil in October 2021. Monitoring the emergence and transmission of DR-TB is crucial for implementing public health to control the spread of DR strains of Mycobacterium tuberculosis. To measure its impact on the multi-drug treatment scheme in the state of Pará, we aimed to conduct genomic surveillance of DR-TB after bedaquiline was introduced in Brazil. Individuals treated for DR-TB between October 2021 and December 2022, in the reference hospital to treat DR-TB cases from the state of Pará, were included in the study. Clinical and bacteriological information was obtained from the National Laboratory Management Environment and the Special TB Treatment Information System. Genomic DNA was extracted from bacterial cultures performed at the Pará Central Laboratory (LACEN-PA). Whole-genome sequencing (WGS) was obtained using Illumina Nextera-XT and NextSeq 550 and genomes were analyzed using the MAGMA and TB-Profiler pipelines interpreted according to the World Health Organization (WHO) mutations catalog 2nd edition. Geoprocessing was performed based on the patient's residences. Cutoffs of 5-12 single nucleotide polymorphisms (SNPs) were used for transmission analysis. From the 103 patients reported as DR-TB, viable cultures were obtained from 67. Forty isolates were selected randomly for WGS. Among these, a mixed infection of M. tuberculosis L1 and L4 and a co-infection of M. tuberculosis and Mycobacterium chelonae were observed. The genotypic drug susceptibility profile of TB stains (39/40) was as follows: sensitive (1/2, 5%), rifampicin mono-resistant (RR) (4/10%), isoniazid mono-resistant (1/2%), multidrug-resistant (MDR) (21/52%), extensively drug-resistant (XDR) (3/7%), pre-XDR (8/20%), and other (1/2%). Among the 38 isolates of M. tuberculosis strains without mixed infection, using a cutoff of 12 SNPs and suggestive of recent TB transmission, 14 (37%) were grouped into five clusters (C1-C5) and included RR (C5), MDR (C3, C4, C5), pre-XDR, and XDR (C2) strains. We recommend greater attention from the regional public health authorities to detect and track resistance to new drugs, especially in areas with pre-XDR and XDR cases. This is the first report on the detection and transmission of XDR-TB in Pará, Brazil, after the recent re-definition of XDR-TB by the WHO in 2021.
Collapse
Affiliation(s)
- Davi Josué Marcon
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Belém, Brazil
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Abhinav Sharma
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Alex Brito Souza
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Belém, Brazil
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | | | | | - Luana Nepomuceno Gondim Lima
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Belém, Brazil
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | | | - Ana Judith Pires Garcia Quaresma
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Belém, Brazil
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Layana Rufino Ribeiro
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
- Programa de Pós-graduação em Epidemiologia e Vigilância em Saúde, Ananindeua, Brazil
| | - Philip Noel Suffys
- Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Robin Mark Warren
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carlos Augusto Abreu Alberio
- Hospital Universitário João de Barros Barreto, Ambulatório de Tuberculose Multiressistente, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Karla Valéria Batista Lima
- Programa de Pós-Graduação em Biologia Parasitária na Amazônia, Belém, Brazil
- Seção de Bacteriologia do Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Emilyn Costa Conceição
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
4
|
Qu J, Liu W, Chen S, Wu C, Lai W, Qin R, Ye F, Li Y, Fu L, Deng G, Liu L, Lin Q, Cui P. Deep Amplicon Sequencing Reveals Culture-dependent Clonal Selection of Mycobacterium tuberculosis in Clinical Samples. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae046. [PMID: 38870522 PMCID: PMC11978391 DOI: 10.1093/gpbjnl/qzae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 02/29/2024] [Indexed: 06/15/2024]
Abstract
The commonly-used drug susceptibility testing (DST) relies on bacterial culture and faces shortcomings such as long turnaround time and clonal/subclonal selection biases. Here, we developed a targeted deep amplicon sequencing (DAS) method directly applied to clinical specimens. In this DAS panel, we examined 941 drug-resistant mutations (DRMs) associated with 20 anti-tuberculosis drugs with only 4 pg of initial DNA input, and reduced the clinical testing time from 20 days to 2 days. A prospective study was conducted using 115 clinical specimens, predominantly positive for the Xpert® Mycobacterium tuberculosis/rifampicin (Xpert MTB/RIF) assay, to evaluate DRM detection. DAS was performed on culture-free specimens, while culture-dependent isolates were used for phenotypic DST, DAS, and whole-genome sequencing (WGS). For in silico molecular DST, our result based on DAS panel revealed the similar accuracy to three published reports based on WGS. For 82 isolates, application of DAS using the resistance-determining mutation method showed better accuracy (93.03% vs. 92.16%), sensitivity (96.10% vs. 95.02%), and specificity (91.33% vs. 90.62%) than WGS using the Mykrobe software. Compared to culture-dependent WGS, culture-free DAS provides a full picture of sequence variation at the population level, exhibiting in detail the gain-and-loss variants caused by bacterial culture. Our study performs a systematic verification of the advantages of DAS in clinical applications and comprehensively illustrates the discrepancies in Mycobacterium tuberculosis before and after culture.
Collapse
Affiliation(s)
- Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Wanfei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuyan Chen
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Chi Wu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Wenjie Lai
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Rui Qin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Feidi Ye
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Liang Fu
- Division Two of Pulmonary Diseases Department, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Guofang Deng
- Division Two of Pulmonary Diseases Department, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Lei Liu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518114, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Peng Cui
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
5
|
Mariner-Llicer C, Goig GA, Torres-Puente M, Vashakidze S, Villamayor LM, Saavedra-Cervera B, Mambuque E, Khurtsilava I, Avaliani Z, Rosenthal A, Gabrielian A, Shurgaia M, Shubladze N, García-Basteiro AL, López MG, Comas I. Genetic diversity within diagnostic sputum samples is mirrored in the culture of Mycobacterium tuberculosis across different settings. Nat Commun 2024; 15:7114. [PMID: 39237504 PMCID: PMC11377819 DOI: 10.1038/s41467-024-51266-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Culturing and genomic sequencing of Mycobacterium tuberculosis (MTB) from tuberculosis (TB) cases is the basis for many research and clinical applications. The alternative, culture-free sequencing from diagnostic samples, is promising but poses challenges to obtain and analyse the MTB genome. Paradoxically, culture is assumed to impose a diversity bottleneck, which, if true, would entail unexplored consequences. To unravel this paradox we generate high-quality genomes of sputum-culture pairs from two different settings after developing a workflow for sequencing from sputum and a tailored bioinformatics analysis. Careful downstream comparisons reveal sources of sputum-culture incongruences due to false positive/negative variation associated with factors like low input MTB DNA or variable genomic depths. After accounting for these factors, contrary to the bottleneck dogma, we identify a 97% variant agreement within sputum-culture pairs, with a high correlation also in the variants' frequency (0.98). The combined analysis from five different settings and more than 100 available samples shows that our results can be extrapolated to different TB epidemic scenarios, demonstrating that for the cases tested culture accurately mirrors clinical samples.
Collapse
Affiliation(s)
| | - Galo A Goig
- University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
| | | | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- The University of Georgia, Tbilisi, Georgia
| | - Luis M Villamayor
- FISABIO, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, València, Spain
| | - Belén Saavedra-Cervera
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Wellcome Sanger Institute, Hinxton, UK
| | - Edson Mambuque
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Iza Khurtsilava
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Zaza Avaliani
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
- European University, Tbilisi, Georgia
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Marika Shurgaia
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Natalia Shubladze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Alberto L García-Basteiro
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- CIBERINFEC, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Barcelona, Spain
| | - Mariana G López
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
| | - Iñaki Comas
- Instituto de Biomedicina de Valencia, IBV, CSIC, València, Spain.
- CIBERESP, Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain.
| |
Collapse
|
6
|
Sanchini A, Lanni A, Giannoni F, Mustazzolu A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis (Edinb) 2024; 148:102522. [PMID: 38850839 DOI: 10.1016/j.tube.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Despite available global efforts and funding, Tuberculosis (TB) continues to affect a considerable number of patients worldwide. Policy makers and stakeholders set clear goals to reduce TB incidence and mortality, but the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) complicate the reach of these goals. Drug-resistance TB needs to be diagnosed rapidly and accurately to effectively treat patients, prevent the transmission of MDR-TB, minimise mortality, reduce treatment costs and avoid unnecessary hospitalisations. In this narrative review, we provide a comprehensive overview of laboratory methods for detecting drug resistance in MTB, focusing on phenotypic, molecular and other drug susceptibility testing (DST) techniques. We found a large variety of methods used, with the BACTEC MGIT 960 being the most common phenotypic DST and the Xpert MTB/RIF being the most common molecular DST. We emphasise the importance of integrating phenotypic and molecular DST to address issues like resistance to new drugs, heteroresistance, mixed infections and low-level resistance mutations. Notably, most of the analysed studies adhered to the outdated definition of XDR-TB and did not consider the pre-XDR definition, thus posing challenges in aligning diagnostic methods with the current landscape of TB resistance.
Collapse
Affiliation(s)
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | |
Collapse
|
7
|
Zhang X, Lam C, Sim E, Martinez E, Crighton T, Marais BJ, Sintchenko V. Genomic characteristics of prospectively sequenced Mycobacterium tuberculosis from respiratory and non-respiratory sources. iScience 2024; 27:110327. [PMID: 39055934 PMCID: PMC11269812 DOI: 10.1016/j.isci.2024.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Understanding the differences between Mycobacterium tuberculosis strains isolated from respiratory and non-respiratory sources may inform clinical care and control strategies. We examined demographic and genomic characteristics of all culture-confirmed M. tuberculosis cultures isolated from respiratory and non-respiratory sources in New South Wales, Australia, from January 2017 to December 2021, using logistic regression models. M. tuberculosis strains from 1,831 patients were sequenced; 64.7% were from respiratory, 32.1% from non-respiratory, and 2.2% from both sources. Female patients had more frequent isolation from a non-respiratory source (p = 0.03), and older adults (≧65 years) from a respiratory source (p < 0.0001). Lineage 2 strains were relatively over-represented among respiratory isolates (p = 0.01). Among 39 cases with sequenced isolates from both sources, 43.6% had 1-10 single nucleotide polymorphism differences. The finding that older adults were more likely to have M. tuberculosis isolated from respiratory sources has relevance for TB control given the expected rise of TB among older adults.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Connie Lam
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Eby Sim
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
| | - Elena Martinez
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Taryn Crighton
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Ben J. Marais
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
| | - Vitali Sintchenko
- Centre for Research Excellence in Tuberculosis (TB-CRE), Centenary Institute, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute (Sydney ID), The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Western Sydney Local Health District, Sydney, NSW, Australia
- NSW Mycobacterium Reference Laboratory, Centre for Infectious Diseases and Microbiology-Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| |
Collapse
|
8
|
Deb S, Basu J, Choudhary M. An overview of next generation sequencing strategies and genomics tools used for tuberculosis research. J Appl Microbiol 2024; 135:lxae174. [PMID: 39003248 DOI: 10.1093/jambio/lxae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/07/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Tuberculosis (TB) is a grave public health concern and is considered the foremost contributor to human mortality resulting from infectious disease. Due to the stringent clonality and extremely restricted genomic diversity, conventional methods prove inefficient for in-depth exploration of minor genomic variations and the evolutionary dynamics operating in Mycobacterium tuberculosis (M.tb) populations. Until now, the majority of reviews have primarily focused on delineating the application of whole-genome sequencing (WGS) in predicting antibiotic resistant genes, surveillance of drug resistance strains, and M.tb lineage classifications. Despite the growing use of next generation sequencing (NGS) and WGS analysis in TB research, there are limited studies that provide a comprehensive summary of there role in studying macroevolution, minor genetic variations, assessing mixed TB infections, and tracking transmission networks at an individual level. This highlights the need for systematic effort to fully explore the potential of WGS and its associated tools in advancing our understanding of TB epidemiology and disease transmission. We delve into the recent bioinformatics pipelines and NGS strategies that leverage various genetic features and simultaneous exploration of host-pathogen protein expression profile to decipher the genetic heterogeneity and host-pathogen interaction dynamics of the M.tb infections. This review highlights the potential benefits and limitations of NGS and bioinformatics tools and discusses their role in TB detection and epidemiology. Overall, this review could be a valuable resource for researchers and clinicians interested in NGS-based approaches in TB research.
Collapse
Affiliation(s)
- Sushanta Deb
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman 99164, WA, United States
- All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jhinuk Basu
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Megha Choudhary
- All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
9
|
Zhang G, Sun X, Fleming J, Ran F, Luo J, Chen H, Ju H, Wang Z, Zhao H, Wang C, Zhang F, Dai X, Yang X, Li C, Liu Y, Wang Y, Zhang X, Jiang Y, Wu Z, Bi L, Zhang H. Genetic factors associated with acquired phenotypic drug resistance and its compensatory evolution during tuberculosis treatment. Clin Microbiol Infect 2024; 30:637-645. [PMID: 38286176 DOI: 10.1016/j.cmi.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVES We elucidated the factors, evolution, and compensation of antimicrobial resistance (AMR) in Mycobacterium tuberculosis (MTB) isolates under dual pressure from the intra-host environment and anti-tuberculosis (anti-TB) drugs. METHODS This retrospective case-control study included 337 patients with pulmonary tuberculosis from 15 clinics in Tianjin, China, with phenotypic drug susceptibility testing results available for at least two time points between January 1, 2009 and December 31, 2016. Patients in the case group exhibited acquired AMR to isoniazid (INH) or rifampicin (RIF), while those in the control group lacked acquired AMR. The whole-genome sequencing (WGS) was conducted on 149 serial longitudinal MTB isolates from 46 patients who acquired or reversed phenotypic INH/RIF-resistance during treatment. The genetic basis, associated factors, and intra-host evolution of acquired phenotypic INH/RIF-resistance were elucidated using a combined analysis. RESULTS Anti-TB interruption duration of ≥30 days showed association with acquired phenotypic INH/RIF resistance (aOR = 2·2, 95% CI, 1·0-5·1) and new rpoB mutations (p = 0·024). The MTB evolution was 1·2 (95% CI, 1·02-1·38) single nucleotide polymorphisms per genome per year under dual pressure from the intra-host environment and anti-TB drugs. AMR-associated mutations occurred before phenotypic AMR appearance in cases with acquired phenotypic INH (10 of 16) and RIF (9 of 22) resistances. DISCUSSION Compensatory evolution may promote the fixation of INH/RIF-resistance mutations and affect phenotypic AMR. The TB treatment should be adjusted based on gene sequencing results, especially in persistent culture positivity during treatment, which highlights the clinical importance of WGS in identifying reinfection and AMR acquisition before phenotypic drug susceptibility testing.
Collapse
Affiliation(s)
- Guoqin Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Tianjin Center for Tuberculosis Control, Tianjin, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Sun
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Joy Fleming
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fanlei Ran
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hanfang Ju
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Zhirui Wang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Hui Zhao
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Chunhua Wang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Fan Zhang
- Tianjin Center for Tuberculosis Control, Tianjin, China
| | - Xiaowei Dai
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xinyu Yang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Chuanyou Li
- Biobank of Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumour Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yi Liu
- Biobank of Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumour Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | | | - Xilin Zhang
- Foshan Fourth People's Hospital, Foshan, China
| | - Yuan Jiang
- Shanghai Municipal Center for Disease Prevention and Control, Beijing, China
| | - Zhilong Wu
- Foshan Fourth People's Hospital, Foshan, China
| | - Lijun Bi
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Guangzhou National Laboratory, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongtai Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China.
| |
Collapse
|
10
|
Zein-Eddine R, Hak F, Le Meur A, Genestet C, Dumitrescu O, Guyeux C, Senelle G, Sola C, Refrégier G. The paradoxes of Mycobacterium tuberculosis molecular evolution and consequences for the inference of tuberculosis emergence date. Tuberculosis (Edinb) 2023; 143S:102378. [PMID: 38012921 DOI: 10.1016/j.tube.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 11/29/2023]
Abstract
The date of Mycobacterium tuberculosis complex emergence has been the subject of long debates. New studies joining archaeological efforts with sequencing methods raise high hopes for solving whether this emergence is closer to 70,000 or to 6000 years before present. Inferring the date of emergence of this pathogen based on sequence data requires a molecular clock. Several clocks inferred from different types of loci and/or different samples, using both sound reasoning and reliable data, are actually very different, which we refer to as the paradoxes of M. tuberculosis molecular evolution. After having presented these paradoxes, we will remind the limits of the molecular clocks used in the different studies such as the assumption of homogeneous substitution rate. We will then review recent results that shed new light on the characteristics of M. tuberculosis molecular evolution: traces of diverse selection pressures, the impact of host dynamics, etc. We provide some ideas on what to do next to get nearer to a reliable dating of Mycobacterium tuberculosis complex emergence. Among them, the collection of additional remains from ancient tuberculosis seems still essential.
Collapse
Affiliation(s)
- R Zein-Eddine
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, Institut National de la Santé et de la Recherche Médicale: U1182, Centre National de la Recherche Scientifique: UMR7645, France
| | - F Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - A Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France
| | - C Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - O Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Inserm U1111, CNRS UMR5308, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Lyon, France
| | - C Guyeux
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| | - G Senelle
- DISC Computer Science Department, FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), 16 Route de Gray, 25000, Besançon, France
| | - C Sola
- Université de Paris, IAME, UMR1137, INSERM, Paris, France; AP-HP, GHU Nord, Service de mycobactériologie spécialisée et de référence, Paris, France; Université Paris-Saclay, Saint-Aubin, France
| | - G Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Wang L, Campino S, Phelan J, Clark TG. Mixed infections in genotypic drug-resistant Mycobacterium tuberculosis. Sci Rep 2023; 13:17100. [PMID: 37816829 PMCID: PMC10564873 DOI: 10.1038/s41598-023-44341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023] Open
Abstract
Tuberculosis disease (TB), caused by Mycobacterium tuberculosis, is a major global public health problem, resulting in more than 1 million deaths each year. Drug resistance (DR), including multi-drug (MDR-TB), is making TB control difficult and accounts for 16% of new and 48% of previously treated cases. To further complicate treatment decision-making, many clinical studies have reported patients harbouring multiple distinct strains of M. tuberculosis across the main lineages (L1 to L4). The extent to which drug-resistant strains can be deconvoluted within mixed strain infection samples is understudied. Here, we analysed M. tuberculosis isolates with whole genome sequencing data (n = 50,723), which covered the main lineages (L1 9.1%, L2 27.6%, L3 11.8%, L4 48.3%), with genotypic resistance to isoniazid (HR-TB; n = 9546 (29.2%)), rifampicin (RR-TB; n = 7974 (24.4%)), and at least MDR-TB (n = 5385 (16.5%)). TB-Profiler software revealed 531 (1.0%) isolates with potential mixed sub-lineage infections, including some with DR mutations (RR-TB 21/531; HR-TB 59/531; at least MDR-TB 173/531). To assist with the deconvolution of such mixtures, we adopted and evaluated a statistical Gaussian Mixture model (GMM) approach. By simulating 240 artificial mixtures of different ratios from empirical data across L1 to L4, a GMM approach was able to accurately estimate the DR profile of each lineage, with a low error rate for the estimated mixing proportions (mean squared error 0.012) and high accuracy for the DR predictions (93.5%). Application of the GMM model to the clinical mixtures (n = 531), found that 33.3% (188/531) of samples consisted of DR and sensitive lineages, 20.2% (114/531) consisted of lineages with only DR mutations, and 40.6% (229/531) consisted of lineages with genotypic pan-susceptibility. Overall, our work demonstrates the utility of combined whole genome sequencing data and GMM statistical analysis approaches for providing insights into mono and mixed M. tuberculosis infections, thereby potentially assisting diagnosis, treatment decision-making, drug resistance and transmission mapping for infection control.
Collapse
Affiliation(s)
- Linfeng Wang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Jody Phelan
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
| | - Taane G Clark
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK.
| |
Collapse
|
12
|
Chen X, Gallagher F, Sellmyer MA, Ordonez AA, Kjaer A, Ohliger M, Wilson DM, Jain SK. Visualizing Bacterial Infections With Novel Targeted Molecular Imaging Approaches. J Infect Dis 2023; 228:S249-S258. [PMID: 37788506 PMCID: PMC10547462 DOI: 10.1093/infdis/jiad078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Although nearly a century has elapsed since the discovery of penicillin, bacterial infections remain a major global threat. Global antibiotic use resulted in an astounding 42 billion doses of antibiotics administered in 2015 with 128 billion annual doses expected by 2030. This overuse of antibiotics has led to the selection of multidrug-resistant "super-bugs," resulting in increasing numbers of patients being susceptible to life-threatening infections with few available therapeutic options. New clinical tools are therefore urgently needed to identify bacterial infections and monitor response to antibiotics, thereby limiting overuse of antibiotics and improving overall health. Next-generation molecular imaging affords unique opportunities to target and identify bacterial infections, enabling spatial characterization as well as noninvasive, temporal monitoring of the natural course of the disease and response to therapy. These emerging noninvasive imaging approaches could overcome several limitations of current tools in infectious disease, such as the need for biological samples for testing with their associated sampling bias. Imaging of living bacteria can also reveal basic biological insights about their behavior in vivo.
Collapse
Affiliation(s)
- Xueyi Chen
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ferdia Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Mark A Sellmyer
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Dlamini TC, Mkhize BT, Sydney C, Maningi NE, Malinga LA. Molecular investigations of Mycobacterium tuberculosis genotypes among baseline and follow-up strains circulating in four regions of Eswatini. BMC Infect Dis 2023; 23:566. [PMID: 37644382 PMCID: PMC10466871 DOI: 10.1186/s12879-023-08546-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND The tuberculosis (TB) epidemic remains a major global health problem and Eswatini is not excluded. Our study investigated the circulating genotypes in Eswatini and compared them at baseline (start of treatment) and follow-up during TB treatment. METHODS Three hundred and ninety (n = 390) participants were prospectively enrolled from referral clinics and patients who met the inclusion criteria, were included in the study. A total of 103 participants provided specimens at baseline and follow-up within six months. Mycobacterium tuberculosis (M.tb) strains were detected by GeneXpert® MTB/RIF assay (Cephied, USA) and Ziehl -Neelsen (ZN) microscopy respectively at baseline and follow-up time-points respectively. The 206 collected specimens were decontaminated and cultured on BACTEC™ MGIT™ 960 Mycobacteria Culture System (Becton Dickinson, USA). Drug sensitivity testing was performed at both baseline and follow-up time points. Spoligotyping was performed on both baseline and follow-up strains after DNA extraction. RESULTS Resistance to at least one first line drug was detected higher at baseline compared to follow-up specimens with most of them developing into multidrug-resistant (MDR)-TB. A total of four lineages and twenty genotypes were detected. The distribution of the lineages varied among the different regions in Eswatini. The Euro-American lineage was the most prevalent with 46.12% (95/206) followed by the East Asian with 24.27% (50/206); Indo-Oceanic at 9.71% (20/206) and Central Asian at 1.94% (4/206). Furthermore, a high proportion of the Beijing genotype at 24.27% (50/206) and S genotype at 16.50% (34/206) were detected. The Beijing genotype was predominant in follow-up specimens collected from the Manzini region with 48.9% (23/47) (p = 0.001). A significant proportion of follow-up specimens developed MDR-TB (p = 0.001) with Beijing being the major genotype in most follow-up specimens (p < 0.000). CONCLUSION Eswatini has a high M.tb genotypic diversity. A significant proportion of the TB infected participants had the Beijing genotype associated with MDR-TB in follow-up specimens and thus indicate community wide transmission.
Collapse
Affiliation(s)
- Talent C Dlamini
- Department of Medical Laboratory Sciences, Southern Africa Nazarene University, Manzini, Eswatini.
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa.
| | - Brenda T Mkhize
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | - Clive Sydney
- Biomedical and Clinical Technology, Department, Durban University of Technology, Durban, South Africa
| | | | - Lesibana A Malinga
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
14
|
Bui VCB, Yaniv Z, Harris M, Yang F, Kantipudi K, Hurt D, Rosenthal A, Jaeger S. Combining Radiological and Genomic TB Portals Data for Drug Resistance Analysis. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2023; 11:84228-84240. [PMID: 37663145 PMCID: PMC10473876 DOI: 10.1109/access.2023.3298750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Tuberculosis (TB) drug resistance is a worldwide public health problem. It decreases the likelihood of a positive outcome for the individual patient and increases the likelihood of disease spread. Therefore, early detection of TB drug resistance is crucial for improving outcomes and controlling disease transmission. While drug-sensitive tuberculosis cases are declining worldwide because of effective treatment, the threat of drug-resistant tuberculosis is growing, and the success rate of drug-resistant tuberculosis treatment is only around 60%. The TB Portals program provides a publicly accessible repository of TB case data with an emphasis on collecting drug-resistant cases. The dataset includes multi-modal information such as socioeconomic/geographic data, clinical characteristics, pathogen genomics, and radiological features. The program is an international collaboration whose participants are typically under a substantial burden of drug-resistant tuberculosis, with data collected from standard clinical care provided to the patients. Consequentially, the TB Portals dataset is heterogenous in nature, with data representing multiple treatment centers in different countries and containing cross-domain information. This study presents the challenges and methods used to address them when working with this real-world dataset. Our goal was to evaluate whether combining radiological features derived from a chest X-ray of the host and genomic features from the pathogen can potentially improve the identification of the drug susceptibility type, drug-sensitive (DS-TB) or drug-resistant (DR-TB), and the length of the first successful drug regimen. To perform these studies, significantly imbalanced data needed to be processed, which included a much larger number of DR-TB cases than DS-TB, many more cases with radiological findings than genomic ones, and the sparse high dimensional nature of the genomic information. Three evaluation studies were carried out. First, the DR-TB/DS-TB classification model achieved an average accuracy of 92.4% when using genomic features alone or when combining radiological and genomic features. Second, the regression model for the length of the first successful treatment had a relative error of 53.5% using radiological features, 25.6% using genomic features, and 22.0% using both radiological and genomic features. Finally, the relative error of the third regression model predicting the length of the first treatment using the most common drug combination varied depending on the feature type used. When using radiological features alone, the relative error was 17.8%. For genomic features alone, the relative error increased to 19.9%. The model had a relative error of 19.0% when both radiological and genomic features were combined. Although combining radiological and genomic features did not improve upon the use of genomic features when classifying DR-TB/DS-TB, the combination of the two feature types improved the relative error of the predictive model for the length of the first successful treatment. Furthermore, the regression model trained on radiological features achieved the best performance when predicting the treatment length of the most common drug combination.
Collapse
Affiliation(s)
- Vy C B Bui
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Ziv Yaniv
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Harris
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feng Yang
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Karthik Kantipudi
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darrell Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefan Jaeger
- Lister Hill National Center for Biomedical Communications, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
15
|
Domínguez J, Boeree MJ, Cambau E, Chesov D, Conradie F, Cox V, Dheda K, Dudnyk A, Farhat MR, Gagneux S, Grobusch MP, Gröschel MI, Guglielmetti L, Kontsevaya I, Lange B, van Leth F, Lienhardt C, Mandalakas AM, Maurer FP, Merker M, Miotto P, Molina-Moya B, Morel F, Niemann S, Veziris N, Whitelaw A, Horsburgh CR, Lange C. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a 2023 TBnet/RESIST-TB consensus statement. THE LANCET. INFECTIOUS DISEASES 2023; 23:e122-e137. [PMID: 36868253 PMCID: PMC11460057 DOI: 10.1016/s1473-3099(22)00875-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 03/05/2023]
Abstract
Drug-resistant tuberculosis is a substantial health-care concern worldwide. Despite culture-based methods being considered the gold standard for drug susceptibility testing, molecular methods provide rapid information about the Mycobacterium tuberculosis mutations associated with resistance to anti-tuberculosis drugs. This consensus document was developed on the basis of a comprehensive literature search, by the TBnet and RESIST-TB networks, about reporting standards for the clinical use of molecular drug susceptibility testing. Review and the search for evidence included hand-searching journals and searching electronic databases. The panel identified studies that linked mutations in genomic regions of M tuberculosis with treatment outcome data. Implementation of molecular testing for the prediction of drug resistance in M tuberculosis is key. Detection of mutations in clinical isolates has implications for the clinical management of patients with multidrug-resistant or rifampicin-resistant tuberculosis, especially in situations when phenotypic drug susceptibility testing is not available. A multidisciplinary team including clinicians, microbiologists, and laboratory scientists reached a consensus on key questions relevant to molecular prediction of drug susceptibility or resistance to M tuberculosis, and their implications for clinical practice. This consensus document should help clinicians in the management of patients with tuberculosis, providing guidance for the design of treatment regimens and optimising outcomes.
Collapse
Affiliation(s)
- José Domínguez
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain.
| | - Martin J Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Emmanuelle Cambau
- Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France, APHP-Hôpital Bichat, Mycobacteriology Laboratory, INSERM, University Paris Cite, IAME UMR1137, Paris, France
| | - Dumitru Chesov
- Department of Pneumology and Allergology, Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova; Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany
| | - Francesca Conradie
- Department of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Vivian Cox
- Centre for Infectious Disease Epidemiology and Research, School of Public Health and Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrii Dudnyk
- Department of Tuberculosis, Clinical Immunology and Allergy, National Pirogov Memorial Medical University, Vinnytsia, Ukraine; Public Health Center, Ministry of Health of Ukraine, Kyiv, Ukraine
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Amsterdam, Netherlands
| | - Matthias I Gröschel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Guglielmetti
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Irina Kontsevaya
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Berit Lange
- Department for Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre for Infection Research, TI BBD, Braunschweig, Germany
| | - Frank van Leth
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Christian Lienhardt
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK; UMI 233 IRD-U1175 INSERM - Université de Montpellier, Institut de Recherche pour le Développement, Montpellier, France
| | - Anna M Mandalakas
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Merker
- Division of Evolution of the Resistome, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany
| | - Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias, INNOVA4TB Consortium, Barcelona, Spain
| | - Florence Morel
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Stefan Niemann
- Division of Molecular and Experimental Mycobacteriology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Department of Human, Biological and Translational Medical Sciences, School of Medicine, University of Namibia, Windhoek, Namibia
| | - Nicolas Veziris
- Sorbonne Université, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, (Cimi-Paris), APHP Sorbonne Université, Department of Bacteriology Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Andrew Whitelaw
- Division of Medical Microbiology, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| | - Charles R Horsburgh
- Departments of Epidemiology, Biostatistics, Global Health and Medicine, Boston University Schools of Public Health and Medicine, Boston, MA, USA
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Leibniz Lung Center, Borstel, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg- Lübeck-Borstel-Riems, Borstel, Germany; Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
16
|
Morey-León G, Andrade-Molina D, Fernández-Cadena JC, Berná L. Comparative genomics of drug-resistant strains of Mycobacterium tuberculosis in Ecuador. BMC Genomics 2022; 23:844. [PMID: 36544084 PMCID: PMC9769008 DOI: 10.1186/s12864-022-09042-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tuberculosis is a serious infectious disease affecting millions of people. In spite of efforts to reduce the disease, increasing antibiotic resistance has contributed to persist in the top 10 causes of death worldwide. In fact, the increased cases of multi (MDR) and extreme drug resistance (XDR) worldwide remains the main challenge for tuberculosis control. Whole genome sequencing is a powerful tool for predicting drug resistance-related variants, studying lineages, tracking transmission, and defining outbreaks. This study presents the identification and characterization of resistant clinical isolates of Mycobacterium tuberculosis including a phylogenetic and molecular resistance profile study by sequencing the complete genome of 24 strains from different provinces of Ecuador. RESULTS Genomic sequencing was used to identify the variants causing resistance. A total of 15/21 isolates were identified as MDR, 4/21 as pre-XDR and 2/21 as XDR, with three isolates discarded due to low quality; the main sub-lineage was LAM (61.9%) and Haarlem (19%) but clades X, T and S were identified. Of the six pre-XDR and XDR strains, it is noteworthy that five come from females; four come from the LAM sub-lineage and two correspond to the X-class sub-lineage. A core genome of 3,750 genes, distributed in 295 subsystems, was determined. Among these, 64 proteins related to virulence and implicated in the pathogenicity of M. tuberculosis and 66 possible pharmacological targets stand out. Most variants result in nonsynonymous amino acid changes and the most frequent genotypes were identified as conferring resistance to rifampicin, isoniazid, ethambutol, para-aminosalicylic acid and streptomycin. However, an increase in the resistance to fluoroquinolones was detected. CONCLUSION This work shows for the first time the variability of circulating resistant strains between men and women in Ecuador, highlighting the usefulness of genomic sequencing for the identification of emerging resistance. In this regard, we found an increase in fluoroquinolone resistance. Further sampling effort is needed to determine the total variability and associations with the metadata obtained to generate better health policies.
Collapse
Affiliation(s)
- Gabriel Morey-León
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Universidad de Guayaquil, Guayaquil, Ecuador.
- Facultad de Ciencias de la Salud, Universidad Espíritu Santo, Samborondón, Ecuador.
| | - Derly Andrade-Molina
- Laboratorio de Ciencias Ómicas, Universidad Espíritu Santo, Samborondón, Ecuador
| | | | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Facultad de Ciencias, Unidad de Genómica Evolutiva, Universidad de La República, Montevideo, Uruguay.
| |
Collapse
|
17
|
Dookie N, Ngema SL, Perumal R, Naicker N, Padayatchi N, Naidoo K. The Changing Paradigm of Drug-Resistant Tuberculosis Treatment: Successes, Pitfalls, and Future Perspectives. Clin Microbiol Rev 2022; 35:e0018019. [PMID: 36200885 PMCID: PMC9769521 DOI: 10.1128/cmr.00180-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Drug-resistant tuberculosis (DR-TB) remains a global crisis due to the increasing incidence of drug-resistant forms of the disease, gaps in detection and prevention, models of care, and limited treatment options. The DR-TB treatment landscape has evolved over the last 10 years. Recent developments include the remarkable activity demonstrated by the newly approved anti-TB drugs bedaquiline and pretomanid against Mycobacterium tuberculosis. Hence, treatment of DR-TB has drastically evolved with the introduction of the short-course regimen for multidrug-resistant TB (MDR-TB), transitioning to injection-free regimens and the approval of the 6-month short regimens for rifampin-resistant TB and MDR-TB. Moreover, numerous clinical trials are under way with the aim to reduce pill burden and shorten the DR-TB treatment duration. While there have been apparent successes in the field, some challenges remain. These include the ongoing inclusion of high-dose isoniazid in DR-TB regimens despite a lack of evidence for its efficacy and the inclusion of ethambutol and pyrazinamide in the standard short regimen despite known high levels of background resistance to both drugs. Furthermore, antimicrobial heteroresistance, extensive cavitary disease and intracavitary gradients, the emergence of bedaquiline resistance, and the lack of biomarkers to monitor DR-TB treatment response remain serious challenges to the sustained successes. In this review, we outline the impact of the new drugs and regimens on patient treatment outcomes, explore evidence underpinning current practices on regimen selection and duration, reflect on the disappointments and pitfalls in the field, and highlight key areas that require continued efforts toward improving treatment approaches and rapid biomarkers for monitoring treatment response.
Collapse
Affiliation(s)
- Navisha Dookie
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Senamile L. Ngema
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Rubeshan Perumal
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nikita Naicker
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- South African Medical Research Council–CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Durban, South Africa
| |
Collapse
|
18
|
Jäger HY, Maixner F, Pap I, Szikossy I, Pálfi G, Zink AR. Metagenomic analysis reveals mixed Mycobacterium tuberculosis infection in a 18th century Hungarian midwife. Tuberculosis (Edinb) 2022; 137:102181. [PMID: 35210171 DOI: 10.1016/j.tube.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023]
Abstract
The Vác Mummy Collection comprises 265 well documented mummified individuals from the late 16th to the early 18th century that were discovered in 1994 inside a crypt in Vác, Hungary. This collection offers a unique opportunity to study the relationship between humans and pathogens in the pre-antibiotic era, as previous studies have shown a high proportion of tuberculosis (TB) infections among the individuals. In this study, we recovered ancient DNA with shotgun sequencing from a rib bone sample of a 18th century midwife. This individual is part of the collection and shows clear skeletal changes that are associated with tuberculosis and syphilis. To provide molecular proof, we applied a metagenomic approach to screen for ancient pathogen DNA. While we were unsuccessful to recover any ancient Treponema pallidum DNA, we retrieved high coverage ancient TB DNA and identified a mixed infection with two distinct TB strains by detailed single-nucleotide polymorphism and phylogenetic analysis. Thereby, we have obtained comprehensive results demonstrating the long-time prevalence of mixed infections with the sublineages L4.1.2.1/Haarlem and L4.10/PGG3 within the local community in preindustrial Hungary and put them in context of sociohistorical factors.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Ildikó Pap
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary; Department of Biological Anthropology, Eötvös Loránd University, Faculty of Science, 1117, Budapest, Pázmány Péter sétány 1/c, Hungary.
| | - Ildikó Szikossy
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary.
| | - György Pálfi
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary.
| | - Albert R Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| |
Collapse
|
19
|
Vashakidze SA, Chandrakumaran A, Japaridze M, Gogishvili G, Collins JM, Rekhviashvili M, Kempker RR. A case report of persistent drug-sensitive pulmonary tuberculosis after treatment completion. BMC Infect Dis 2022; 22:864. [PMID: 36401164 PMCID: PMC9675100 DOI: 10.1186/s12879-022-07836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) has been found to persist within cavities in patients who have completed their anti-tuberculosis therapy. The clinical implications of Mtb persistence after therapy include recurrence of disease and destructive changes within the lungs. Data on residual changes in patients who completed anti-tuberculosis therapy are scarce. This case highlights the radiological and pathological changes that persist after anti-tuberculosis therapy completion and the importance of achieving sterilization of cavities in order to prevent these changes. CASE PRESENTATION This is a case report of a 33 year old female with drug-sensitive pulmonary tuberculosis who despite successfully completing standard 6-month treatment had persistent changes in her lungs on radiological imaging. The patient underwent multiple adjunctive surgeries to resect cavitary lesions, which were culture positive for Mtb. After surgical treatment, the patient's chest radiographies improved, symptoms subsided, and she was given a definition of cure. CONCLUSIONS Medical therapy alone, in the presence of severe cavitary lung lesions may not be able to achieve sterilizing cure in all cases. Cavities can not only cause reactivation but also drive inflammatory changes and subsequent lung damage leading to airflow obstruction, bronchiectasis, and fibrosis. Surgical removal of these foci of bacilli can be an effective adjunctive treatment necessary for a sterilizing cure and improved long term lung health.
Collapse
Affiliation(s)
- Sergo A Vashakidze
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, 50 Maruashvili, 0101, Tbilisi, Georgia.
- The University of Georgia, Tbilisi, Georgia.
| | | | - Merab Japaridze
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, 50 Maruashvili, 0101, Tbilisi, Georgia
| | - Giorgi Gogishvili
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, 50 Maruashvili, 0101, Tbilisi, Georgia
| | - Jeffrey M Collins
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Manana Rekhviashvili
- Thoracic Surgery Department, National Center for Tuberculosis and Lung Diseases, 50 Maruashvili, 0101, Tbilisi, Georgia
| | - Russell R Kempker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Chen X, Han J, Cai X, Wang S. Antimicrobial peptides: Sustainable application informed by evolutionary constraints. Biotechnol Adv 2022; 60:108012. [PMID: 35752270 DOI: 10.1016/j.biotechadv.2022.108012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/19/2022] [Indexed: 01/10/2023]
Abstract
The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future.
Collapse
Affiliation(s)
- Xuan Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinzhi Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xixi Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
21
|
Genestet C, Refrégier G, Hodille E, Zein-Eddine R, Le Meur A, Hak F, Barbry A, Westeel E, Berland JL, Engelmann A, Verdier I, Lina G, Ader F, Dray S, Jacob L, Massol F, Venner S, Dumitrescu O. Mycobacterium tuberculosis genetic features associated with pulmonary tuberculosis severity. Int J Infect Dis 2022; 125:74-83. [PMID: 36273524 DOI: 10.1016/j.ijid.2022.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical presentations but without proven Mtb genetic determinants. Herein, we hypothesized that the genetic features of Mtb clinical isolates, such as specific polymorphisms or microdiversity, may be linked to tuberculosis (TB) severity. METHODS A total of 234 patients with pulmonary TB (including 193 drug-susceptible and 14 monoresistant cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 2010 and 2020) were stratified according to TB disease severity, and Mtb genetic features were explored using whole genome sequencing, including heterologous single-nucleotide polymorphism (SNP), calling to explore microdiversity. Finally, we performed a structural equation modeling analysis to relate TB severity to Mtb genetic features. RESULTS The clinical isolates from patients with mild TB carried mutations in genes associated with host-pathogen interaction, whereas those from patients with moderate/severe TB carried mutations associated with regulatory mechanisms. Genome-wide association study identified an SNP in the promoter of the gene coding for the virulence regulator espR, statistically associated with moderate/severe disease. Structural equation modeling and model comparisons indicated that TB severity was associated with the detection of Mtb microdiversity within clinical isolates and to the espR SNP. CONCLUSION Taken together, these results provide a new insight to better understand TB pathophysiology and could provide a new prognosis tool for pulmonary TB severity.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France.
| | - Guislaine Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Elisabeth Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Rima Zein-Eddine
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France; Laboratory of Optics and Biosciences, CNRS-INSERM-Ecole Polytechnique, Île-de-France, Palaiseau, France
| | - Adrien Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Fiona Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Alexia Barbry
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Emilie Westeel
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Jean-Luc Berland
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Astrid Engelmann
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Isabelle Verdier
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Gérard Lina
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | - Florence Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Rhône-Alpes, Lyon, France
| | - Stéphane Dray
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Laurent Jacob
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - François Massol
- UMR 8198 Evo-Eco-Paleo, SPICI Group, University of Lille, Hauts-de-France, Lille, France; CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, Hauts-de-France, Lille, France
| | - Samuel Venner
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | | |
Collapse
|
22
|
Comín J, Cebollada A, Samper S. Estimation of the mutation rate of Mycobacterium tuberculosis in cases with recurrent tuberculosis using whole genome sequencing. Sci Rep 2022; 12:16728. [PMID: 36202945 PMCID: PMC9537313 DOI: 10.1038/s41598-022-21144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 12/04/2022] Open
Abstract
The study of tuberculosis latency is problematic due to the difficulty of isolating the bacteria in the dormancy state. Despite this, several in vivo approaches have been taken to mimic the latency process. Our group has studied the evolution of the bacteria in 18 cases of recurrent tuberculosis. We found that HIV positive patients develop recurrent tuberculosis earlier, generally in the first two years (p value = 0.041). The genome of the 36 Mycobacterium tuberculosis paired isolates (first and relapsed isolates) showed that none of the SNPs found within each pair was observed more than once, indicating that they were not directly related to the recurrence process. Moreover, some IS6110 movements were found in the paired isolates, indicating the presence of different clones within the patient. Finally, our results suggest that the mutation rate remains constant during all the period as no correlation was found between the number of SNPs and the time to relapse.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, C/de San Juan Bosco, 13, 50009, Zaragoza, Spain.
| | - Alberto Cebollada
- grid.419040.80000 0004 1795 1427Unidad de Biocomputación, Instituto Aragonés de Ciencias de la Salud, C/de San Juan Bosco, 13, 50009 Zaragoza, Spain
| | | | - Sofía Samper
- grid.419040.80000 0004 1795 1427Instituto Aragonés de Ciencias de la Salud, C/de San Juan Bosco, 13, 50009 Zaragoza, Spain ,grid.488737.70000000463436020Fundación IIS Aragón, C/de San Juan Bosco, 13, 50009 Zaragoza, Spain ,grid.512891.6CIBER de Enfermedades Respiratorias, Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| |
Collapse
|
23
|
Alebouyeh S, Weinrick B, Achkar JM, García MJ, Prados-Rosales R. Feasibility of novel approaches to detect viable Mycobacterium tuberculosis within the spectrum of the tuberculosis disease. Front Med (Lausanne) 2022; 9:965359. [PMID: 36072954 PMCID: PMC9441758 DOI: 10.3389/fmed.2022.965359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) is a global disease caused by Mycobacterium tuberculosis (Mtb) and is manifested as a continuum spectrum of infectious states. Both, the most common and clinically asymptomatic latent tuberculosis infection (LTBI), and the symptomatic disease, active tuberculosis (TB), are at opposite ends of the spectrum. Such binary classification is insufficient to describe the existing clinical heterogeneity, which includes incipient and subclinical TB. The absence of clinically TB-related symptoms and the extremely low bacterial burden are features shared by LTBI, incipient and subclinical TB states. In addition, diagnosis relies on cytokine release after antigenic T cell stimulation, yet several studies have shown that a high proportion of individuals with immunoreactivity never developed disease, suggesting that they were no longer infected. LTBI is estimated to affect to approximately one fourth of the human population and, according to WHO data, reactivation of LTBI is the main responsible of TB cases in developed countries. Assuming the drawbacks associated to the current diagnostic tests at this part of the disease spectrum, properly assessing individuals at real risk of developing TB is a major need. Further, it would help to efficiently design preventive treatment. This quest would be achievable if information about bacterial viability during human silent Mtb infection could be determined. Here, we have evaluated the feasibility of new approaches to detect viable bacilli across the full spectrum of TB disease. We focused on methods that specifically can measure host-independent parameters relying on the viability of Mtb either by its direct or indirect detection.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
| | | | - Jacqueline M. Achkar
- Departments of Medicine, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- *Correspondence: Maria J. García,
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Autonoma University of Madrid, Madrid, Spain
- Rafael Prados-Rosales,
| |
Collapse
|
24
|
Wollenberg KR, Jeffrey BM, Harris MA, Gabrielian A, Hurt DE, Rosenthal A. Patterns of genomic interrelatedness of publicly available samples in the TB portals database. Tuberculosis (Edinb) 2022; 133:102171. [PMID: 35101846 PMCID: PMC8997244 DOI: 10.1016/j.tube.2022.102171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
The TB Portals program is an international collaboration for the collection and dissemination of tuberculosis data from patient cases focused on drug resistance. The central database is a patient-oriented resource containing both patient and pathogen clinical and genomic information. Herein we provide a summary of the pathogen genomic data available through the TB Portals and show one potential application by examining patterns of genomic pairwise distances. Distributions of pairwise distances highlight overall patterns of genome variability within and between Mycobacterium tuberculosis phylogenomic lineages. Closely related isolates (based on whole-genome pairwise distances and time between sample collection dates) from different countries were identified as potential evidence of international transmission of drug-resistant tuberculosis. These high-level views of genomic relatedness provide information that can stimulate hypotheses for further and more detailed research.
Collapse
Affiliation(s)
- Kurt R. Wollenberg
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Brendan M. Jeffrey
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A. Harris
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA,To whom correspondence should be addressed: . Telephone: 301-761-6746
| | - Andrei Gabrielian
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Darrell E. Hurt
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Rosenthal
- Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Pinto M, Borges V, Nascimento M, Martins F, Pessanha MA, Faria I, Rodrigues J, Matias R, Gomes JP, Jordao L. Insights on catheter-related bloodstream infections: a prospective observational study on the catheter colonization and multi-drug resistance. J Hosp Infect 2022; 123:43-51. [DOI: 10.1016/j.jhin.2022.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
|
26
|
Goossens SN, Heupink TH, De Vos E, Dippenaar A, De Vos M, Warren R, Van Rie A. Detection of minor variants in Mycobacterium tuberculosis whole genome sequencing data. Brief Bioinform 2021; 23:6484510. [PMID: 34962257 PMCID: PMC8769888 DOI: 10.1093/bib/bbab541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
The study of genetic minority variants is fundamental to the understanding of complex processes such as evolution, fitness, transmission, virulence, heteroresistance and drug tolerance in Mycobacterium tuberculosis (Mtb). We evaluated the performance of the variant calling tool LoFreq to detect de novo as well as drug resistance conferring minor variants in both in silico and clinical Mtb next generation sequencing (NGS) data. The in silico simulations demonstrated that LoFreq is a conservative variant caller with very high precision (≥96.7%) over the entire range of depth of coverage tested (30x to1000x), independent of the type and frequency of the minor variant. Sensitivity increased with increasing depth of coverage and increasing frequency of the variant, and was higher for calling insertion and deletion (indel) variants than for single nucleotide polymorphisms (SNP). The variant frequency limit of detection was 0.5% and 3% for indel and SNP minor variants, respectively. For serial isolates from a patient with DR-TB; LoFreq successfully identified all minor Mtb variants in the Rv0678 gene (allele frequency as low as 3.22% according to targeted deep sequencing) in whole genome sequencing data (median coverage of 62X). In conclusion, LoFreq can successfully detect minor variant populations in Mtb NGS data, thus limiting the need for filtering of possible false positive variants due to sequencing error. The observed performance statistics can be used to determine the limit of detection in existing whole genome sequencing Mtb data and guide the required depth of future studies that aim to investigate the presence of minor variants.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tim H Heupink
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Elise De Vos
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Anzaan Dippenaar
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Rob Warren
- Department of Science and Innovation-National Research Foundation Centre for Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
27
|
Tracking down polyclonal tuberculosis. Nat Rev Microbiol 2021; 19:406. [PMID: 34017088 DOI: 10.1038/s41579-021-00580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|