1
|
Longhurst AD, Wang K, Suresh HG, Ketavarapu M, Ward HN, Jones IR, Narayan V, Hundley FV, Hassan AZ, Boone C, Myers CL, Shen Y, Ramani V, Andrews BJ, Toczyski DP. The PRC2.1 subcomplex opposes G1 progression through regulation of CCND1 and CCND2. eLife 2025; 13:RP97577. [PMID: 39903505 PMCID: PMC11793871 DOI: 10.7554/elife.97577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Progression through the G1 phase of the cell cycle is the most highly regulated step in cellular division. We employed a chemogenetic approach to discover novel cellular networks that regulate cell cycle progression. This approach uncovered functional clusters of genes that altered sensitivity of cells to inhibitors of the G1/S transition. Mutation of components of the Polycomb Repressor Complex 2 rescued proliferation inhibition caused by the CDK4/6 inhibitor palbociclib, but not to inhibitors of S phase or mitosis. In addition to its core catalytic subunits, mutation of the PRC2.1 accessory protein MTF2, but not the PRC2.2 protein JARID2, rendered cells resistant to palbociclib treatment. We found that PRC2.1 (MTF2), but not PRC2.2 (JARID2), was critical for promoting H3K27me3 deposition at CpG islands genome-wide and in promoters. This included the CpG islands in the promoter of the CDK4/6 cyclins CCND1 and CCND2, and loss of MTF2 lead to upregulation of both CCND1 and CCND2. Our results demonstrate a role for PRC2.1, but not PRC2.2, in antagonizing G1 progression in a diversity of cell linages, including chronic myeloid leukemia (CML), breast cancer, and immortalized cell lines.
Collapse
Affiliation(s)
- Adam D Longhurst
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Kyle Wang
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | | | - Mythili Ketavarapu
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Henry N Ward
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Ian R Jones
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Vivek Narayan
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
| | - Frances V Hundley
- University of California, San FranciscoSan FranciscoUnited States
- Tetrad Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Arshia Zernab Hassan
- Department of Computer Science and Engineering, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
| | - Charles Boone
- Department of Molecular Genetics, University of TorontoTorontoCanada
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Chad L Myers
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota – Twin Cities MinneapolisMinneapolisUnited States
- Department of Cell Biology, Blavatnik Institute of Harvard Medical SchoolBostonUnited States
| | - Yin Shen
- Institute for Human Genetics, University of California, San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Vijay Ramani
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone InstitutesSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda J Andrews
- The Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - David P Toczyski
- University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
2
|
Liang Y, Liu M, Liu B, Ziman B, Peng G, Mao Q, Wang X, Jiang L, Lin DC, Zheng Y. Comprehensive analysis of H3K27me3 LOCKs under different DNA methylation contexts reveal epigenetic redistribution in tumorigenesis. Epigenetics Chromatin 2025; 18:6. [PMID: 39833880 PMCID: PMC11748335 DOI: 10.1186/s13072-025-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Histone modification H3K27me3 plays a critical role in normal development and is associated with various diseases, including cancer. This modification forms large chromatin domains, known as Large Organized Chromatin Lysine Domains (LOCKs), which span several hundred kilobases. RESULT In this study, we identify and categorize H3K27me3 LOCKs in 109 normal human samples, distinguishing between long and short LOCKs. Our findings reveal that long LOCKs are predominantly associated with developmental processes, while short LOCKs are enriched in poised promoters and are most associated with low gene expression. Further analysis of LOCKs in different DNA methylation contexts shows that long LOCKs are primarily located in partially methylated domains (PMDs), particularly in short-PMDs, where they are most likely responsible for the low expressions of oncogenes. We observe that in cancer cell lines, including those from esophageal and breast cancer, long LOCKs shift from short-PMDs to intermediate-PMDs and long-PMDs. Notably, a significant subset of tumor-associated long LOCKs in intermediate- and long-PMDs exhibit reduced H3K9me3 levels, suggesting that H3K27me3 compensates for the loss of H3K9me3 in tumors. Additionally, we find that genes upregulated in tumors following the loss of short LOCKs are typically poised promoter genes in normal cells, and their transcription is regulated by the ETS1 transcription factor. CONCLUSION These results provide new insights into the role of H3K27me3 LOCKs in cancer and underscore their potential impact on epigenetic regulation and disease mechanisms.
Collapse
Affiliation(s)
- Yuan Liang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Mengni Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Bingyuan Liu
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Benjamin Ziman
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Guanjie Peng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Qiong Mao
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Xingzhe Wang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - Lizhen Jiang
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China
| | - De-Chen Lin
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, and Norris Comprehensive Cancer Center, University of Southern California, 2250 Alcazar Street - CSA 207D, Los Angeles, CA, 90033, USA
| | - Yueyuan Zheng
- Clinical Big Data Research Center, Scientific Research Center, Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
3
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
4
|
Kim KA, Kim S, Wortzel I, Lee S, Han YD, Kim TM, Kim HS. Genome-wide methylation profiling reveals extracellular vesicle DNA as an ex vivo surrogate of cancer cell-derived DNA. Sci Rep 2024; 14:24110. [PMID: 39406948 PMCID: PMC11480397 DOI: 10.1038/s41598-024-75287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Extracellular vesicle-derived DNA (evDNA) encapsulates the complete genome and mutational status of cells; however, whether cancer cell-derived evDNA mirrors the epigenetic features of parental genomic DNA remains uncertain. This study aimed to assess and compare the DNA methylation patterns of evDNA from cancer cell lines and primary cancer tissues with those of the nuclear genomic DNA. We isolated evDNA secreted by two cancer cell lines (HCT116 and MDA-MB-231) from various subcellular compartments, including the nucleus and cytoplasm. Additionally, we obtained evDNA and nuclear DNA (nDNA) from the primary cancer tissues of colon cancer patients. We conducted a comprehensive genome-wide DNA methylation analysis using the Infinium Methylation EPIC BeadChip, examining > 850,000 CpG sites. Remarkable similarities were observed between evDNA and nDNA methylation patterns in cancer cell lines and patients. This concordance extended to clinical cancer tissue samples, showcasing the potential utility of evDNA methylation patterns in deducing cellular origin within heterogeneous populations through methylation-based deconvolution. The observed concordance underscores the potential of evDNA as a noninvasive surrogate marker for discerning tissue origin, particularly in cancer tissues, offering a promising future for cancer diagnostics. This finding enhances our understanding of cellular origins and would help develop innovative diagnostic and therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Kyung-A Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemungu, Seoul, 03722, Republic of Korea
| | - Sunmin Kim
- Department of Medical Informatics, College of Medicine, Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea
- College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Inbal Wortzel
- Children's Cancer and Blood Foundation Laboratories, Department of Pediatrics, Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Suho Lee
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoon Dae Han
- Division of Colorectal Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, Catholic University of Korea, 222, Banpo-Daero, Seocho-Gu, Seoul, 06591, Republic of Korea.
- College of Medicine, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Han Sang Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemungu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
5
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
6
|
Shu J, Jelinek J, Chen H, Zhang Y, Qin T, Li M, Liu L, Issa JPJ. Genome-wide screening and functional validation of methylation barriers near promoters. Nucleic Acids Res 2024; 52:4857-4871. [PMID: 38647050 PMCID: PMC11109949 DOI: 10.1093/nar/gkae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/13/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.
Collapse
Affiliation(s)
- Jingmin Shu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jaroslav Jelinek
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Yan Zhang
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Taichun Qin
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Ming Li
- Phoenix VA Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Jean-Pierre J Issa
- Fels Institute for Cancer Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Cooper Medical School at Rowan University, Camden, NJ 08103, USA
- Coriell Institute for Medical Research, Camden, NJ 08103, USA
| |
Collapse
|
7
|
Dolfini D, Gnesutta N, Mantovani R. Expression and function of NF-Y subunits in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189082. [PMID: 38309445 DOI: 10.1016/j.bbcan.2024.189082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
NF-Y is a Transcription Factor (TF) targeting the CCAAT box regulatory element. It consists of the NF-YB/NF-YC heterodimer, each containing an Histone Fold Domain (HFD), and the sequence-specific subunit NF-YA. NF-YA expression is associated with cell proliferation and absent in some post-mitotic cells. The review summarizes recent findings impacting on cancer development. The logic of the NF-Y regulome points to pro-growth, oncogenic genes in the cell-cycle, metabolism and transcriptional regulation routes. NF-YA is involved in growth/differentiation decisions upon cell-cycle re-entry after mitosis and it is widely overexpressed in tumors, the HFD subunits in some tumor types or subtypes. Overexpression of NF-Y -mostly NF-YA- is oncogenic and decreases sensitivity to anti-neoplastic drugs. The specific roles of NF-YA and NF-YC isoforms generated by alternative splicing -AS- are discussed, including the prognostic value of their levels, although the specific molecular mechanisms of activity are still to be deciphered.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy.
| |
Collapse
|
8
|
Seem K, Kaur S, Kumar S, Mohapatra T. Epigenome editing for targeted DNA (de)methylation: a new perspective in modulating gene expression. Crit Rev Biochem Mol Biol 2024; 59:69-98. [PMID: 38440883 DOI: 10.1080/10409238.2024.2320659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
Traditionally, it has been believed that inheritance is driven as phenotypic variations resulting from changes in DNA sequence. However, this paradigm has been challenged and redefined in the contemporary era of epigenetics. The changes in DNA methylation, histone modification, non-coding RNA biogenesis, and chromatin remodeling play crucial roles in genomic functions and regulation of gene expression. More importantly, some of these changes are inherited to the next generations as a part of epigenetic memory and play significant roles in gene expression. The sum total of all changes in DNA bases, histone proteins, and ncRNA biogenesis constitutes the epigenome. Continuous progress in deciphering epigenetic regulations and the existence of heritable epigenetic/epiallelic variations associated with trait of interest enables to deploy epigenome editing tools to modulate gene expression. DNA methylation marks can be utilized in epigenome editing for the manipulation of gene expression. Initially, genome/epigenome editing technologies relied on zinc-finger protein or transcriptional activator-like effector protein. However, the discovery of clustered regulatory interspaced short palindromic repeats CRISPR)/deadCRISPR-associated protein 9 (dCas9) enabled epigenome editing to be more specific/efficient for targeted DNA (de)methylation. One of the major concerns has been the off-target effects, wherein epigenome editing may unintentionally modify gene/regulatory element which may cause unintended change/harmful effects. Moreover, epigenome editing of germline cell raises several ethical/safety issues. This review focuses on the recent developments in epigenome editing tools/techniques, technological limitations, and future perspectives of this emerging technology in therapeutics for human diseases as well as plant improvement to achieve sustainable developmental goals.
Collapse
Affiliation(s)
- Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Simardeep Kaur
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Trilochan Mohapatra
- Protection of Plant Varieties and Farmers' Rights Authority, New Delhi, India
| |
Collapse
|
9
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. In silico analysis of differentially expressed-aberrantly methylated genes in breast cancer for prognostic and therapeutic targets. Clin Exp Med 2023; 23:3847-3866. [PMID: 37029310 DOI: 10.1007/s10238-023-01060-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/28/2023] [Indexed: 04/09/2023]
Abstract
Breast cancer (BC) is the leading cause of death among women across the globe. Abnormal gene expression plays a crucial role in tumour progression, carcinogenesis and metastasis of BC. The alteration of gene expression may be through aberrant gene methylation. In the present study, differentially expressed genes which may be regulated by DNA methylation and their pathways associated with BC have been identified. Expression microarray datasets GSE10780, GSE10797, GSE21422, GSE42568, GSE61304, GSE61724 and one DNA methylation profile dataset GSE20713 were downloaded from Gene Expression Omnibus database (GEO). Differentially expressed-aberrantly methylated genes were identified using online Venn diagram tool. Based on fold change expression of differentially expressed-aberrantly methylated genes were chosen through heat map. Protein-protein interaction (PPI) network of the hub genes was constructed by Search Tool for the Retrieval of Interacting Genes (STRING). Gene expression and DNA methylation level of the hub genes were validated through UALCAN. Overall survival analysis of the hub genes was analysed through Kaplan-Meier plotter database for BC. A total of 72 upregulated-hypomethylated genes and 92 downregulated-hypermethylated genes were obtained from GSE10780, GSE10797, GSE21422, GSE42568, GSE61304, GSE61724, and GSE20713 datasets by GEO2R and Venn diagram tool. PPI network of the upregulated-hypomethylated hub genes (MRGBP, MANF, ARF3, HIST1H3D, GSK3B, HJURP, GPSM2, MATN3, KDELR2, CEP55, GSPT1, COL11A1, and COL1A1) and downregulated-hypermethylated hub genes were constructed (APOD, DMD, RBPMS, NR3C2, HOXA9, AMKY2, KCTD9, and EDN1). All the differentially expressed hub genes expression was validated in UALCAN database. 4 in 13 upregulated-hypomethylated and 5 in 8 downregulated-hypermethylated hub genes to be significantly hypomethylated or hypermethylated in BC were confirmed using UALCAN database (p < 0.05). MANF, HIST1H3D, HJURP, GSK3B, GPSM2, MATN3, KDELR2, CEP55, COL1A1, APOD, RBPMS, NR3C2, HOXA9, ANKMY2, and EDN1 were significantly (p < 0.05) associated with poor overall survival (OS). The identified aberrantly methylated-differentially expressed genes and their related pathways and function in BC can serve as novel diagnostic and prognostic biomarkers and therapeutic targets.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 4 Given name: [Jeewan Ram] Last name [Vishnoi]. Also, kindly confirm the details in the metadata are correct.It is correct.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India.
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Basni Industrial Area, MIA 2nd Phase, Basni, Jodhpur, Rajasthan, 342005, India
| |
Collapse
|
11
|
Tejedor JR, Peñarroya A, Gancedo-Verdejo J, Santamarina-Ojeda P, Pérez RF, López-Tamargo S, Díez-Borge A, Alba-Linares JJ, González-Del-Rey N, Urdinguio RG, Mangas C, Roberti A, López V, Morales-Ruiz T, Ariza RR, Roldán-Arjona T, Meijón M, Valledor L, Cañal MJ, Fernández-Martínez D, Fernández-Hevia M, Jiménez-Fonseca P, García-Flórez LJ, Fernández AF, Fraga MF. CRISPR/dCAS9-mediated DNA demethylation screen identifies functional epigenetic determinants of colorectal cancer. Clin Epigenetics 2023; 15:133. [PMID: 37612734 PMCID: PMC10464368 DOI: 10.1186/s13148-023-01546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Promoter hypermethylation of tumour suppressor genes is frequently observed during the malignant transformation of colorectal cancer (CRC). However, whether this epigenetic mechanism is functional in cancer or is a mere consequence of the carcinogenic process remains to be elucidated. RESULTS In this work, we performed an integrative multi-omic approach to identify gene candidates with strong correlations between DNA methylation and gene expression in human CRC samples and a set of 8 colon cancer cell lines. As a proof of concept, we combined recent CRISPR-Cas9 epigenome editing tools (dCas9-TET1, dCas9-TET-IM) with a customized arrayed gRNA library to modulate the DNA methylation status of 56 promoters previously linked with strong epigenetic repression in CRC, and we monitored the potential functional consequences of this DNA methylation loss by means of a high-content cell proliferation screen. Overall, the epigenetic modulation of most of these DNA methylated regions had a mild impact on the reactivation of gene expression and on the viability of cancer cells. Interestingly, we found that epigenetic reactivation of RSPO2 in the tumour context was associated with a significant impairment in cell proliferation in p53-/- cancer cell lines, and further validation with human samples demonstrated that the epigenetic silencing of RSPO2 is a mid-late event in the adenoma to carcinoma sequence. CONCLUSIONS These results highlight the potential role of DNA methylation as a driver mechanism of CRC and paves the way for the identification of novel therapeutic windows based on the epigenetic reactivation of certain tumour suppressor genes.
Collapse
Affiliation(s)
- Juan Ramón Tejedor
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Alfonso Peñarroya
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Javier Gancedo-Verdejo
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Pablo Santamarina-Ojeda
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Raúl F Pérez
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Sara López-Tamargo
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Ana Díez-Borge
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Viralgen Vector Core, 20009, San Sebastián, Gipuzkoa, Spain
| | - Juan J Alba-Linares
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Nerea González-Del-Rey
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Rocío G Urdinguio
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Cristina Mangas
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Annalisa Roberti
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
| | - Virginia López
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Teresa Morales-Ruiz
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071, Córdoba, Spain
- Department of Genetics, University of Córdoba, 14071, Córdoba, Spain
| | - Mónica Meijón
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Luis Valledor
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Department of Organisms and Systems Biology, Institute of Biotechnology of Asturias, University of Oviedo, 33071, Oviedo, Asturias, Spain
| | - Daniel Fernández-Martínez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - María Fernández-Hevia
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Paula Jiménez-Fonseca
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Division of Oncology, Department of Medical Oncology, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
| | - Luis J García-Flórez
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain
- Division of General Surgery, Department of Colorectal Surgery, Central University Hospital of Asturias (HUCA), 33011, Oviedo, Asturias, Spain
- Department of Surgery and Medical Surgical Specialties, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - Agustín F Fernández
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), 33940, El Entrego, Asturias, Spain.
- Health Research Institute of the Principality of Asturias (ISPA), Avenida de Roma S/N, 33011, Oviedo, Asturias, Spain.
- Spanish Biomedical Research Network in Rare Diseases (CIBERER), 28029, Madrid, Spain.
- Institute of Oncology of Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
12
|
Wang X, Dai L, Liu Y, Li C, Fan D, Zhou Y, Li P, Kong Q, Su J. Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas. Epigenetics Chromatin 2023; 16:13. [PMID: 37118755 PMCID: PMC10142198 DOI: 10.1186/s13072-023-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yang Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
13
|
Zhu Y, Pan B, Fei X, Hu Y, Yang M, Yu H, Li J, Xiong X. The Biological Characteristics and Differential Expression Patterns of TSSK1B Gene in Yak and Its Infertile Hybrid Offspring. Animals (Basel) 2023; 13:ani13020320. [PMID: 36670860 PMCID: PMC9854725 DOI: 10.3390/ani13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/05/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
This study aimed to investigate the spatially and temporally expressed patterns and biological characteristics of TSSK1B in male yaks and explore the potential correlation between TSSK1B and male sterility of the yak hybrid offspring (termed cattle-yak). First, the coding sequence (CDS) of TSSK1B was cloned by RT-PCR, and bioinformatics analysis was conducted with relevant software. Quantitative real-time PCR (RT-qPCR) was employed to detect the expression profile of TSSK1B in various tissues of male adult yaks, the spatiotemporal expression of TSSK1B in different stages of yak testes, and the differential expression of TSSK1B between yak and cattle-yak testes. The cellular localization of TSSK1B was determined by immunohistochemistry (IHC). Furthermore, the methylation status of the TSSK1B promoter region was analyzed by bisulfite-sequencing PCR (BSP). The results showed that TSSK1B was 1235 bp long, including 1104 bp of the CDS region, which encoded 367 amino acids. It was a conserved gene sharing the highest homology with Bos mutus (99.67%). In addition, the bioinformatics analysis revealed that TSSK1B was an unstable hydrophilic protein mainly containing the alpha helix of 34.06% and a random coil of 44.41%, with a transmembrane structure of 29 amino acids long. The RT-qPCR results demonstrated that TSSK1B was specifically expressed in yak testes compared with that in other tissues and especially highly expressed in adult yak testes. On the contrary, TSSK1B was hardly expressed in the testis of adult cattle-yak. IHC confirmed that TSSK1B protein was more strongly expressed in the testes of adult yaks than in their fetal and juvenile counterparts. Interestingly, nearly no expression was observed in the testes of cattle-yak compared with the corresponding testes of yak. Bisulfite-sequencing PCR (BSP) revealed that the methylated CpG sites in the TSSK1B promoter region of cattle-yak was significantly higher than that in the yak. Taken together, this study revealed that TSSK1B was specifically expressed in yak testes and highly expressed upon sexual maturity. Moreover, the rare expression in cattle-yak may be related to the hypermethylation of the promoter region, thereby providing a basis for further studies on the regulatory mechanism of TSSK1B in male cattle-yak sterility.
Collapse
Affiliation(s)
- Yanjin Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Bangting Pan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Xixi Fei
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yulei Hu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Manzhen Yang
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Hailing Yu
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Reservation and Exploitation of Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
14
|
de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, Bogdanovic O, Oshlack A, Farnham PJ, Blancafort P, Lister R. Large-scale manipulation of promoter DNA methylation reveals context-specific transcriptional responses and stability. Genome Biol 2022; 23:163. [PMID: 35883107 PMCID: PMC9316731 DOI: 10.1186/s13059-022-02728-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background Cytosine DNA methylation is widely described as a transcriptional repressive mark with the capacity to silence promoters. Epigenome engineering techniques enable direct testing of the effect of induced DNA methylation on endogenous promoters; however, the downstream effects have not yet been comprehensively assessed. Results Here, we simultaneously induce methylation at thousands of promoters in human cells using an engineered zinc finger-DNMT3A fusion protein, enabling us to test the effect of forced DNA methylation upon transcription, chromatin accessibility, histone modifications, and DNA methylation persistence after the removal of the fusion protein. We find that transcriptional responses to DNA methylation are highly context-specific, including lack of repression, as well as cases of increased gene expression, which appears to be driven by the eviction of methyl-sensitive transcriptional repressors. Furthermore, we find that some regulatory networks can override DNA methylation and that promoter methylation can cause alternative promoter usage. DNA methylation deposited at promoter and distal regulatory regions is rapidly erased after removal of the zinc finger-DNMT3A fusion protein, in a process combining passive and TET-mediated demethylation. Finally, we demonstrate that induced DNA methylation can exist simultaneously on promoter nucleosomes that possess the active histone modification H3K4me3, or DNA bound by the initiated form of RNA polymerase II. Conclusions These findings have important implications for epigenome engineering and demonstrate that the response of promoters to DNA methylation is more complex than previously appreciated. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02728-5.
Collapse
Affiliation(s)
- Alex de Mendoza
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia. .,School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Trung Viet Nguyen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Ethan Ford
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Daniel Poppe
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sam Buckberry
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jahnvi Pflueger
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
| | - Matthew R Grimmer
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1450 Biggy St, Los Angeles, CA, 90089, USA.,Integrated Genetics and Genomics, University of California, Davis, 451 Health Sciences Dr, Davis, CA, 95616, USA.,Department of Neurological Surgery, University of California, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Sabine Stolzenburg
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Ozren Bogdanovic
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia.,Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Alicia Oshlack
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,School of BioScience, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peggy J Farnham
- Department of Biochemistry and Molecular Medicine, University of Southern California, 1450 Biggy St, Los Angeles, CA, 90089, USA
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.,School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia.,The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia. .,Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
15
|
Li J, Sun R, He L, Sui G, Di W, Yu J, Su W, Pan Z, Zhang Y, Zhang J, Ren F. A systematic pan-cancer analysis identifies RIOK3 as an immunological and prognostic biomarker. Am J Transl Res 2022; 14:3750-3768. [PMID: 35836879 PMCID: PMC9274588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Despite recent research highlighting the critical function of RIO kinase 3 (RIOK3) in a variety of malignancies, a comprehensive evaluation of RIOK3 in human tumors is absent. Our study helps to clarify the molecular mechanism of RIOK3 in carcinogenesis from multiple perspectives. METHODS Our research looked into the potential oncogenic role of RIOK3 in 33 cancers using TCGA (The Cancer Genome Atlas), GTEx (Genotype-Tissue Expression Project), GEO (Gene Expression Omnibus) datasets, and several bioinformatics tools. RESULTS RIOK3 expression in tumors is disordered compared to normal tissue, and it is highly linked with the level of MMR (Mismatch repair) gene mutations and DNA methyltransferase expression. According to univariate survival analysis, it could be used as an independent prognostic factor. Further investigation demonstrated that RIOK3 expression was correlated with cancer-associated fibroblast, neutrophil, and endothelial infiltration levels in kidney cancer and was positively correlated with the expression of immune checkpoint markers in different cancers. The functional pathways of RIOK3 also included cell-cell adhesion, protein phosphorylation, and innate immune-related functions. CONCLUSIONS These findings suggest that RIOK3 could be used as an immunological and prognostic biomarker in various malignant tumors.
Collapse
Affiliation(s)
- Jian Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Lixiang He
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Guoyi Sui
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Wenyu Di
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Jian Yu
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Zenggang Pan
- Department of Pathology, Yale University School of MedicineNew Haven, CT 06520, US
| | - Yu Zhang
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Jinghang Zhang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
| | - Feng Ren
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical UniversityXinxiang 453003, Henan, China
- School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang 453003, Henan, China
- Henan International Joint Laboratory of Immunity and Targeted Therapy for liver-Intestinal TumorsXinxiang 453003, Henan, China
| |
Collapse
|
16
|
Kfoury-Beaumont N, Prakasam R, Pondugula S, Lagas JS, Matkovich S, Gontarz P, Yang L, Yano H, Kim AH, Rubin JB, Kroll KL. The H3K27M mutation alters stem cell growth, epigenetic regulation, and differentiation potential. BMC Biol 2022; 20:124. [PMID: 35637482 PMCID: PMC9153095 DOI: 10.1186/s12915-022-01324-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders increase brain tumor risk, suggesting that normal brain development may have protective properties. Mutations in epigenetic regulators are common in pediatric brain tumors, highlighting a potentially central role for disrupted epigenetic regulation of normal brain development in tumorigenesis. For example, lysine 27 to methionine mutation (H3K27M) in the H3F3A gene occurs frequently in Diffuse Intrinsic Pontine Gliomas (DIPGs), the most aggressive pediatric glioma. As H3K27M mutation is necessary but insufficient to cause DIPGs, it is accompanied by additional mutations in tumors. However, how H3K27M alone increases vulnerability to DIPG tumorigenesis remains unclear. RESULTS Here, we used human embryonic stem cell models with this mutation, in the absence of other DIPG contributory mutations, to investigate how H3K27M alters cellular proliferation and differentiation. We found that H3K27M increased stem cell proliferation and stem cell properties. It interfered with differentiation, promoting anomalous mesodermal and ectodermal gene expression during both multi-lineage and germ layer-specific cell specification, and blocking normal differentiation into neuroectoderm. H3K27M mutant clones exhibited transcriptomic diversity relative to the more homogeneous wildtype population, suggesting reduced fidelity of gene regulation, with aberrant expression of genes involved in stem cell regulation, differentiation, and tumorigenesis. These phenomena were associated with global loss of H3K27me3 and concordant loss of DNA methylation at specific genes in H3K27M-expressing cells. CONCLUSIONS Together, these data suggest that H3K27M mutation disrupts normal differentiation, maintaining a partially differentiated state with elevated clonogenicity during early development. This disrupted response to early developmental cues could promote tissue properties that enable acquisition of additional mutations that cooperate with H3K27M mutation in genesis of DMG/DIPG. Therefore, this work demonstrates for the first time that H3K27M mutation confers vulnerability to gliomagenesis through persistent clonogenicity and aberrant differentiation and defines associated alterations of histone and DNA methylation.
Collapse
Affiliation(s)
- N. Kfoury-Beaumont
- Department of Neurosurgery, University of California in San Diego, La Jolla, CA USA
| | - R. Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - S. Pondugula
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - J. S. Lagas
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - S. Matkovich
- Center for Cardiovascular Research, Department of Medicine, Washington University School of Medicine, St Louis, MO USA
| | - P. Gontarz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
| | - L. Yang
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
| | - H. Yano
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
| | - A. H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| | - J. B. Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO USA
| | - K. L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO USA
- The Brain Tumor Center, Washington University School of Medicine, Siteman Cancer Center, St. Louis, MO USA
| |
Collapse
|
17
|
Huang Z, Zhang Z, Zhou C, Liu L, Huang C. Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities. MedComm (Beijing) 2022; 3:e144. [PMID: 35601657 PMCID: PMC9115588 DOI: 10.1002/mco2.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a program wherein epithelial cells lose their junctions and polarity while acquiring mesenchymal properties and invasive ability. Originally defined as an embryogenesis event, EMT has been recognized as a crucial process in tumor progression. During EMT, cell–cell junctions and cell–matrix attachments are disrupted, and the cytoskeleton is remodeled to enhance mobility of cells. This transition of phenotype is largely driven by a group of key transcription factors, typically Snail, Twist, and ZEB, through epigenetic repression of epithelial markers, transcriptional activation of matrix metalloproteinases, and reorganization of cytoskeleton. Mechanistically, EMT is orchestrated by multiple pathways, especially those involved in embryogenesis such as TGFβ, Wnt, Hedgehog, and Hippo, suggesting EMT as an intrinsic link between embryonic development and cancer progression. In addition, redox signaling has also emerged as critical EMT modulator. EMT confers cancer cells with increased metastatic potential and drug resistant capacity, which accounts for tumor recurrence in most clinic cases. Thus, targeting EMT can be a therapeutic option providing a chance of cure for cancer patients. Here, we introduce a brief history of EMT and summarize recent advances in understanding EMT mechanisms, as well as highlighting the therapeutic opportunities by targeting EMT in cancer treatment.
Collapse
Affiliation(s)
- Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| | - Chengwei Zhou
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Lin Liu
- Department of Thoracic Surgery the Affiliated Hospital of Medical School of Ningbo University Ningbo China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu 610041 China
| |
Collapse
|
18
|
Age-Related DNA Methylation in Normal Kidney Tissue Identifies Epigenetic Cancer Risk Susceptibility Loci in the ANKRD34B and ZIC1 Genes. Int J Mol Sci 2022; 23:ijms23105327. [PMID: 35628134 PMCID: PMC9141100 DOI: 10.3390/ijms23105327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Both age-dependent and age-independent alteration of DNA methylation in human tissues are functionally associated with the development of many malignant and non-malignant human diseases. TCGA-KIRC data were biometrically analyzed to identify new loci with age-dependent DNA methylation that may contribute to tumor risk in normal kidney tissue. ANKRD34B and ZIC1 were evaluated as candidate genes by pyrosequencing of 539 tissues, including 239 normal autopsy, 157 histopathologically tumor-adjacent normal, and 143 paired tumor kidney samples. All candidate CpG loci demonstrated a strong correlation between relative methylation levels and age (R = 0.70−0.88, p < 2 × 10−16) and seven out of 10 loci were capable of predicting chronological age in normal kidney tissues, explaining 84% of the variance (R = 0.92). Moreover, significantly increased age-independent methylation was found for 9 out of 10 CpG loci in tumor-adjacent tissues, compared to normal autopsy tissues (p = 0.001−0.028). Comparing tumor and paired tumor-adjacent tissues revealed two patient clusters showing hypermethylation, one cluster without significant changes in methylation, and a smaller cluster demonstrating hypomethylation in the tumors (p < 1 × 10−10). Taken together, our results show the presence of additional methylation risk factors besides age for renal cancer in normal kidney tissue. Concurrent tumor-specific hypermethylation suggests a subset of these loci are candidates for epigenetic renal cancer susceptibility.
Collapse
|
19
|
Fang X, Wang J, Chen J, Zhuang M, Huang T, Chen Z, Huang Y, Zheng B, Wang X. Identification and Validation of Chromobox Family Members as Potential Prognostic Biomarkers and Therapeutic Targets for Human Esophageal Cancer. Front Genet 2022; 13:851390. [PMID: 35464847 PMCID: PMC9019303 DOI: 10.3389/fgene.2022.851390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Chromobox family proteins (CBXs) are vital components of epigenetic regulation complexes and transcriptionally inhibit target genes by modifying the chromatin. Accumulating evidence indicates that CBXs are involved in the initiation and progression of multiple malignancies. However, the expression, function, and clinical relevance such as the prognostic and diagnostic values of different CBXs in esophageal carcinoma (ESCA) are still unclear. Methods: We applied Oncomine, TCGA, GEO, GEPIA, UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, and TIMER to investigate the roles of CBX family members in ESCA. Additionally, quantitative real-time PCR (RT-PCR), western blot, and immunofluorescence were used to verify the expression of CBX family members in ESCA clinical samples. Results: Compared with normal tissues, the mRNA expression levels of CBX1/3/8 were significantly increased in ESCA, whereas CBX7 mRNA expression was reduced in both the TCGA cohort and GEO cohort. In the TCGA cohort, ROC curves suggested that CBX1/2/3/4/8 had great diagnostic value in ESCA, and the AUCs were above 0.9. Furthermore, upregulation of CBX1/3/8 and downregulation of CBX7 were closely related to the clinicopathological parameters in ESCA patients, such as tumor grades, tumor nodal metastasis status, and TP53 mutation status. The survival analysis indicated that higher CBX1/3/8 mRNA expressions and lower CBX7 expression suggested an unfavorable prognosis in ESCA. High genetic change rate (52%) of CBXs was found in ESCA patients. Functions and pathways of mutations in CBXs and their 50 frequently altered neighbor genes in ESCA patients were investigated; the results showed that DNA repair and DNA replication were correlated to CBX alterations. Moreover, we found a significant correlation between the expression level of CBX family members and the infiltration of immune cells in ESCA. Finally, we verified the expression of CBX family members in clinical samples and found the results were consistent with the databases. Conclusion: Our study implied that CBX1/3/7/8 are potential targets of precision therapy for ESCA patients and new biomarkers for the prognosis.
Collapse
Affiliation(s)
- Xuefen Fang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Junjun Wang
- Department of Clinical Laboratory, Fujian Provincial Hospital Southern Branch, Fuzhou, China
| | - Jiabing Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Mingkai Zhuang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Tingxuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Biyun Zheng
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Department of Endoscopy Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
20
|
Javaid A, Zahra D, Rashid F, Mashraqi M, Alzamami A, Khurshid M, Ali Ashfaq U. Regulation of micro-RNA, epigenetic factor by natural products for the treatment of cancers: Mechanistic insight and translational Association. Saudi J Biol Sci 2022; 29:103255. [PMID: 35495735 PMCID: PMC9052154 DOI: 10.1016/j.sjbs.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
From onset to progression, cancer is a ailment that might take years to grow. All common epithelial malignancies, have a long latency period, frequently 20 years or more, different gene may contain uncountable mutations if they are clinically detectable. MicroRNAs (miRNAs) are around 22nt non-coding RNAs that control gene expression sequence-specifically through translational inhibition or messenger degradation of RNA (mRNA). Epigenetic processes of miRNA control genetic variants through genomic DNA methylation, post-translation histone modification, rework of the chromatin, and microRNAs. The field of miRNAs has opened a new era in understanding small non-coding RNAs since discovering their fundamental mechanisms of action. MiRNAs have been found in viruses, plants, and animals through molecular cloning and bioinformatics approaches. Phytochemicals can invert the epigenetic aberrations, a leading cause of the cancers of various organs, and act as an inhibitor of these changes. The advantage of phytochemicals is that they only function on cells that cause cancer without affecting normal cells. Phytochemicals appear to play a significant character in modulating miRNA expression, which is linked to variations in oncogenes, tumor suppressors, and cancer-derived protein production, according to several studies. In addition to standard anti-oxidant or anti-inflammatory properties, the initial epigenetic changes associated with cancer prevention may be modulated by many polyphenols. In correlation with miRNA and epigenetic factors to treat cancer some of the phytochemicals, including polyphenols, curcumin, resveratrol, indole-3-carbinol are studied in this article.
Collapse
|
21
|
BOP1 Used as a Novel Prognostic Marker and Correlated with Tumor Microenvironment in Pan-Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3603030. [PMID: 34603446 PMCID: PMC8481050 DOI: 10.1155/2021/3603030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/04/2021] [Indexed: 01/18/2023]
Abstract
Previous studies have indicated the important role of block of proliferation 1 (BOP1) in the progression of several malignant tumors; no comprehensive pan-cancer analysis of BOP1 has been performed. Here, we aim to systematically identify the expression, prognostic value, and potential immunological functions of BOP1 in 33 malignancies. We obtained the gene expression data and clinical information from multiple public databases to assess the expression level and prognostic value of BOP1 in 33 cancers. We also analyzed the relationship between BOP1 expression and DNA methylation, tumor microenvironment (TME), microsatellite instability (MSI), tumor mutational burden (TMB), and immune checkpoints. Moreover, we conducted gene set enrichment analysis (GSEA) to investigate the biological function and signal transduction pathways of BOP1 in different types of tumors. Finally, we validated the expression of BOP1 in lung cancer cell line and detected the influence of BOP1 on lung cancer cell migration and the expression of epithelial-mesenchymal transition- (EMT-) related genes. Collectively, our findings elucidated that BOP1 has the potential to be a promising molecular prognostic biomarker for predicting poor survival in various malignant tumors, as well as a cancer-promoting gene involved in tumorigenesis and tumor immunity.
Collapse
|
22
|
Yaşar P, Kars G, Yavuz K, Ayaz G, Oğuztüzün Ç, Bilgen E, Suvacı Z, Çetinkol ÖP, Can T, Muyan M. A CpG island promoter drives the CXXC5 gene expression. Sci Rep 2021; 11:15655. [PMID: 34341443 PMCID: PMC8329181 DOI: 10.1038/s41598-021-95165-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
CXXC5 is a member of the zinc-finger CXXC family that binds to unmethylated CpG dinucleotides. CXXC5 modulates gene expressions resulting in diverse cellular events mediated by distinct signaling pathways. However, the mechanism responsible for CXXC5 expression remains largely unknown. We found here that of the 14 annotated CXXC5 transcripts with distinct 5' untranslated regions encoding the same protein, transcript variant 2 with the highest expression level among variants represents the main transcript in cell models. The DNA segment in and at the immediate 5'-sequences of the first exon of variant 2 contains a core promoter within which multiple transcription start sites are present. Residing in a region with high G-C nucleotide content and CpG repeats, the core promoter is unmethylated, deficient in nucleosomes, and associated with active RNA polymerase-II. These findings suggest that a CpG island promoter drives CXXC5 expression. Promoter pull-down revealed the association of various transcription factors (TFs) and transcription co-regulatory proteins, as well as proteins involved in histone/chromatin, DNA, and RNA processing with the core promoter. Of the TFs, we verified that ELF1 and MAZ contribute to CXXC5 expression. Moreover, the first exon of variant 2 may contain a G-quadruplex forming region that could modulate CXXC5 expression.
Collapse
Affiliation(s)
- Pelin Yaşar
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Epigenetics and Stem Cell Biology Laboratory, Single Cell Dynamics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - Gizem Kars
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Kerim Yavuz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Gamze Ayaz
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey
- Cancer and Stem Cell Epigenetics Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Çerağ Oğuztüzün
- Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Ecenaz Bilgen
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | - Zeynep Suvacı
- Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey
| | | | - Tolga Can
- Department of Computer Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Mesut Muyan
- Department of Biological Sciences, Middle East Technical University, Ankara, 06800, Turkey.
- Cansyl Laboratories, Middle East Technical University, Ankara, 06800, Turkey.
| |
Collapse
|