1
|
Sun T, Chen R, Ma W, Wang H, Yan Q, Luo J, Zhao S, Zhang X, Li P. Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics. NATURE NANOTECHNOLOGY 2024; 19:758-765. [PMID: 38429492 DOI: 10.1038/s41565-024-01628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
The discovery of ultraconfined polaritons with extreme anisotropy in a number of van der Waals (vdW) materials has unlocked new prospects for nanophotonic and optoelectronic applications. However, the range of suitable materials for specific applications remains limited. Here we introduce tellurite molybdenum quaternary oxides-which possess non-centrosymmetric crystal structures and extraordinary nonlinear optical properties-as a highly promising vdW family of materials for tunable low-loss anisotropic polaritonics. By employing chemical flux growth and exfoliation techniques, we successfully fabricate high-quality vdW layers of various compounds, including MgTeMoO6, ZnTeMoO6, MnTeMoO6 and CdTeMoO6. We show that these quaternary vdW oxides possess two distinct types of in-plane anisotropic polaritons: slab-confined and edge-confined modes. By leveraging metal cation substitutions, we establish a systematic strategy to finely tune the in-plane polariton propagation, resulting in the selective emergence of circular, elliptical or hyperbolic polariton dispersion, accompanied by ultraslow group velocities (0.0003c) and long lifetimes (5 ps). Moreover, Reststrahlen bands of these quaternary oxides naturally overlap that of α-MoO3, providing opportunities for integration. As an example, we demonstrate that combining α-MoO3 (an in-plane hyperbolic material) with CdTeMoO6 (an in-plane isotropic material) in a heterostructure facilitates collimated, diffractionless polariton propagation. Quaternary oxides expand the family of anisotropic vdW polaritons considerably, and with it, the range of nanophotonics applications that can be envisioned.
Collapse
Affiliation(s)
- Tian Sun
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Runkun Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weiliang Ma
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Han Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Qizhi Yan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Xinliang Zhang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China
- Optics Valley Laboratory, Wuhan, China
- Xidian University, Xi'an, China
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, China.
- Optics Valley Laboratory, Wuhan, China.
| |
Collapse
|
2
|
Wehmeier L, Liu M, Park S, Jang H, Basov DN, Homes CC, Carr GL. Ultrabroadband Terahertz Near-Field Nanospectroscopy with a HgCdTe Detector. ACS PHOTONICS 2023; 10:4329-4339. [PMID: 38145170 PMCID: PMC10739990 DOI: 10.1021/acsphotonics.3c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
While near-field infrared nanospectroscopy provides a powerful tool for nanoscale material characterization, broadband nanospectroscopy of elementary material excitations in the single-digit terahertz (THz) range remains relatively unexplored. Here, we study liquid-Helium-cooled photoconductive Hg1-XCdXTe (MCT) for use as a fast detector in near-field nanospectroscopy. Compared to the common T = 77 K operation, liquid-Helium cooling reduces the MCT detection threshold to ∼22 meV, improves the noise performance, and yields a response bandwidth exceeding 10 MHz. These improved detector properties have a profound impact on the near-field technique, enabling unprecedented broadband nanospectroscopy across a range of 5 to >50 THz (175 to >1750 cm-1, or <6 to 57 μm), i.e., covering what is commonly known as the "THz gap". Our approach has been implemented as a user program at the National Synchrotron Light Source II, Upton, USA, where we showcase ultrabroadband synchrotron nanospectroscopy of phonons in ZnSe (∼7.8 THz) and BaF2 (∼6.7 THz), as well as hyperbolic phonon polaritons in GeS (6-8 THz).
Collapse
Affiliation(s)
- Lukas Wehmeier
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
- Department
of Physics and Astronomy, Stony Brook University; Stony Brook, New York 11794, United States
| | - Mengkun Liu
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
- Department
of Physics and Astronomy, Stony Brook University; Stony Brook, New York 11794, United States
| | - Suji Park
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Houk Jang
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - D. N. Basov
- Department
of Physics, Columbia University; New York, New York 10027, United States
| | - Christopher C. Homes
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
| | - G. Lawrence Carr
- National
Synchrotron Light Source II, Brookhaven
National Laboratory; Upton, New York 11973, United States
| |
Collapse
|
3
|
Nonlinear nanoelectrodynamics of a Weyl metal. Proc Natl Acad Sci U S A 2021; 118:2116366118. [PMID: 34819380 DOI: 10.1073/pnas.2116366118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.
Collapse
|
4
|
Chen X, Yao Z, Stanciu SG, Basov DN, Hillenbrand R, Liu M. Rapid simulations of hyperspectral near-field images of three-dimensional heterogeneous surfaces. OPTICS EXPRESS 2021; 29:39648-39668. [PMID: 34809324 DOI: 10.1364/oe.440821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
The scattering-type scanning near-field optical microscope (s-SNOM) has emerged as a powerful tool for resolving nanoscale inhomogeneities in laterally heterogeneous samples. However, most analytical models used to predict the scattering near-field signals are assuming homogenous landscapes (bulk materials), resulting in inconsistencies when applied to samples with more complex configurations. In this work, we combine the point-dipole model (PDM) to the finite-element method (FEM) to account for the lateral and vertical heterogeneities while keeping the computation time manageable. Full images, spectra, or hyperspectral line profiles can be simulated by calculating the self-consistent dipole radiation demodulated at higher harmonics of the tip oscillation, mimicking real experimental procedures. Using this formalism, we clarify several important yet puzzling experimental observations in near-field images on samples with rich typography and complex material compositions, heterostructures of two-dimensional material flakes, and plasmonic antennas. The developed method serves as a basis for future investigations of nano-systems with nontrivial topography.
Collapse
|