1
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
2
|
Bu F, Wang X, Li M, Ma L, Wang C, Hu Y, Cao Z, Liu B. Cryo-EM Structure of Porphyromonas gingivalis RNA Polymerase. J Mol Biol 2024; 436:168568. [PMID: 38583515 DOI: 10.1016/j.jmb.2024.168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Porphyromonas gingivalis, an anaerobic CFB (Cytophaga, Fusobacterium, and Bacteroides) group bacterium, is the keystone pathogen of periodontitis and has been implicated in various systemic diseases. Increased antibiotic resistance and lack of effective antibiotics necessitate a search for new intervention strategies. Here we report a 3.5 Å resolution cryo-EM structure of P. gingivalis RNA polymerase (RNAP). The structure displays new structural features in its ω subunit and multiple domains in β and β' subunits, which differ from their counterparts in other bacterial RNAPs. Superimpositions with E. coli RNAP holoenzyme and initiation complex further suggest that its ω subunit may contact the σ4 domain, thereby possibly contributing to the assembly and stabilization of initiation complexes. In addition to revealing the unique features of P. gingivalis RNAP, our work offers a framework for future studies of transcription regulation in this important pathogen, as well as for structure-based drug development.
Collapse
Affiliation(s)
- Fan Bu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xiaoxuan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengke Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li Ma
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
3
|
Hu Q, Wang J, Liu C, Feng Y, Chen H. Determinants of mer Promoter Activity from Pseudomonas aeruginosa. Genes (Basel) 2024; 15:490. [PMID: 38674424 PMCID: PMC11049809 DOI: 10.3390/genes15040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Since the MerR family is known for its special regulatory mechanism, we aimed to explore which factors determine the expression activity of the mer promoter. The Tn501/Tn21 mer promoter contains an abnormally long spacer (19 bp) between the -35 and -10 elements, which is essential for the unique DNA distortion mechanism. To further understand the role of base sequences in the mer promoter spacer, this study systematically engineered a series of mutant derivatives and used luminescent and fluorescent reporter genes to investigate the expression activity of these derivatives. The results reveal that the expression activity of the mer promoter is synergistically modulated by the spacer length (17 bp is optimal) and the region upstream of -10 (especially -13G). The spacing is regulated by MerR transcription factors through symmetrical sequences, and -13G presumably functions through interaction with the RNA polymerase sigma-70 subunit.
Collapse
Affiliation(s)
| | | | | | | | - Hao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Q.H.); (J.W.); (C.L.); (Y.F.)
| |
Collapse
|
4
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
5
|
Kompaniiets D, He L, Wang D, Zhou W, Yang Y, Hu Y, Liu B. Structural basis for transcription activation by the nitrate-responsive regulator NarL. Nucleic Acids Res 2024; 52:1471-1482. [PMID: 38197271 PMCID: PMC10853779 DOI: 10.1093/nar/gkad1231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Transcription activation is a crucial step of regulation during transcription initiation and a classic check point in response to different stimuli and stress factors. The Escherichia coli NarL is a nitrate-responsive global transcription factor that controls the expression of nearly 100 genes. However, the molecular mechanism of NarL-mediated transcription activation is not well defined. Here we present a cryo-EM structure of NarL-dependent transcription activation complex (TAC) assembled on the yeaR promoter at 3.2 Å resolution. Our structure shows that the NarL dimer binds at the -43.5 site of the promoter DNA with its C-terminal domain (CTD) not only binding to the DNA but also making interactions with RNA polymerase subunit alpha CTD (αCTD). The key role of these NarL-mediated interactions in transcription activation was further confirmed by in vivo and in vitro transcription assays. Additionally, the NarL dimer binds DNA in a different plane from that observed in the structure of class II TACs. Unlike the canonical class II activation mechanism, NarL does not interact with σ4, while RNAP αCTD is bound to DNA on the opposite side of NarL. Our findings provide a structural basis for detailed mechanistic understanding of NarL-dependent transcription activation on yeaR promoter and reveal a potentially novel mechanism of transcription activation.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lina He
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Wang
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- Hubei JiangXia Laboratory, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
6
|
Hu Y, Liu B. The Copper Efflux Regulator (CueR). Subcell Biochem 2024; 104:17-31. [PMID: 38963481 DOI: 10.1007/978-3-031-58843-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The copper efflux regulator (CueR) is a classical member of the MerR family of metalloregulators and is common in gram-negative bacteria. Through its C-terminal effector-binding domain, CueR senses cytoplasmic copper ions to regulate the transcription of genes contributing to copper homeostasis, an essential process for survival of all cells. In this chapter, we review the regulatory roles of CueR in the model organism Escherichia coli and the mechanisms for CueR in copper binding, DNA recognition, and interplay with RNA polymerase in regulating transcription. In light of biochemical and structural analyses, we provide molecular details for how CueR represses transcription in the absence of copper ions, how copper ions mediate CueR conformational change to form holo CueR, and how CueR bends and twists promoter DNA to activate transcription. We also characterize the functional domains and key residues involved in these processes. Since CueR is a representative member of the MerR family, elucidating its regulatory mechanisms could help to understand the CueR-like regulators in other organisms and facilitate the understanding of other metalloregulators in the same family.
Collapse
Affiliation(s)
- Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
7
|
Lou YC, Huang HY, Yeh HH, Chiang WH, Chen C, Wu KP. Structural basis of transcriptional activation by the OmpR/PhoB-family response regulator PmrA. Nucleic Acids Res 2023; 51:10049-10058. [PMID: 37665001 PMCID: PMC10570014 DOI: 10.1093/nar/gkad724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
PmrA, an OmpR/PhoB-family response regulator, triggers gene transcription responsible for polymyxin resistance in bacteria by recognizing promoters where the canonical-35 element is replaced by the pmra-box, representing the PmrA recognition sequence. Here, we report a cryo-electron microscopy (cryo-EM) structure of a bacterial PmrA-dependent transcription activation complex (TAC) containing a PmrA dimer, an RNA polymerase σ70 holoenzyme (RNAPH) and the pbgP promoter DNA. Our structure reveals that the RNAPH mainly contacts the PmrA C-terminal DNA-binding domain (DBD) via electrostatic interactions and reorients the DBD three base pairs upstream of the pmra-box, resulting in a dynamic TAC conformation. In vivo assays show that the substitution of the DNA-recognition residue eliminated its transcriptional activity, while variants with altered RNAPH-interacting residues resulted in enhanced transcriptional activity. Our findings suggest that both PmrA recognition-induced DNA distortion and PmrA promoter escape play crucial roles in its transcriptional activation.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Yu Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Hung Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
9
|
Kosol S, Rostock L, Barsig J, Tabarelli T, Hommernick K, Kulike M, Eulberg T, Seidel M, Behroz I, Kleebauer L, Grätz S, Mainz A, Süssmuth RD. Transcription activation by the resistance protein AlbA as a tool to evaluate derivatives of the antibiotic albicidin. Chem Sci 2023; 14:5069-5078. [PMID: 37206387 PMCID: PMC10189885 DOI: 10.1039/d3sc00955f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
The rising numbers of fatal infections with resistant pathogens emphasizes the urgent need for new antibiotics. Ideally, new antibiotics should be able to evade or overcome existing resistance mechanisms. The peptide antibiotic albicidin is a highly potent antibacterial compound with a broad activity spectrum but also with several known resistance mechanisms. In order to assess the effectiveness of novel albicidin derivatives in the presence of the binding protein and transcription regulator AlbA, a resistance mechanism against albicidin identified in Klebsiella oxytoca, we designed a transcription reporter assay. In addition, by screening shorter albicidin fragments, as well as various DNA-binders and gyrase poisons, we were able to gain insights into the AlbA target spectrum. We analysed the effect of mutations in the binding domain of AlbA on albicidin sequestration and transcription activation, and found that the signal transduction mechanism is complex but can be evaded. Further demonstrating AlbA's high level of specificity, we find clues for the logical design of molecules capable of avoiding the resistance mechanism.
Collapse
Affiliation(s)
- Simone Kosol
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Lida Rostock
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Jonas Barsig
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Theresa Tabarelli
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Kay Hommernick
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Marcel Kulike
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Tobias Eulberg
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Maria Seidel
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Iraj Behroz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Leonardo Kleebauer
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Stefan Grätz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Andi Mainz
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 124 10623 Berlin Germany
| |
Collapse
|
10
|
Wu X, Yu C, Mu W, Gu Z, Feng Y, Zhang Y. The structural mechanism for transcription activation by Caulobacter crescentus GcrA. Nucleic Acids Res 2023; 51:1960-1970. [PMID: 36715319 PMCID: PMC9976885 DOI: 10.1093/nar/gkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.
Collapse
Affiliation(s)
- Xiaoxian Wu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Mu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Fritsch VN, Linzner N, Busche T, Said N, Weise C, Kalinowski J, Wahl MC, Antelmann H. The MerR-family regulator NmlR is involved in the defense against oxidative stress in Streptococcus pneumoniae. Mol Microbiol 2023; 119:191-207. [PMID: 36349475 DOI: 10.1111/mmi.14999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/25/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.
Collapse
Affiliation(s)
| | - Nico Linzner
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany.,NGS Core Facility, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, Bielefeld, Germany
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.,Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
You L, Omollo EO, Yu C, Mooney RA, Shi J, Shen L, Wu X, Wen A, He D, Zeng Y, Feng Y, Landick R, Zhang Y. Structural basis for intrinsic transcription termination. Nature 2023; 613:783-789. [PMID: 36631609 PMCID: PMC10091898 DOI: 10.1038/s41586-022-05604-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/13/2023]
Abstract
Efficient and accurate termination is required for gene transcription in all living organisms1,2. Cellular RNA polymerases in both bacteria and eukaryotes can terminate their transcription through a factor-independent termination pathway3,4-called intrinsic termination transcription in bacteria-in which RNA polymerase recognizes terminator sequences, stops nucleotide addition and releases nascent RNA spontaneously. Here we report a set of single-particle cryo-electron microscopy structures of Escherichia coli transcription intrinsic termination complexes representing key intermediate states of the event. The structures show how RNA polymerase pauses at terminator sequences, how the terminator RNA hairpin folds inside RNA polymerase, and how RNA polymerase rewinds the transcription bubble to release RNA and then DNA. These macromolecular snapshots define a structural mechanism for bacterial intrinsic termination and a pathway for RNA release and DNA collapse that is relevant for factor-independent termination by all RNA polymerases.
Collapse
Affiliation(s)
- Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Expery O Omollo
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rachel A Mooney
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jing Shi
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei He
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Robert Landick
- Department of Biochemistry and Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
14
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide-Binding Protein Confers Antibiotic Self-Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022; 61:e202206168. [PMID: 35852818 PMCID: PMC9545259 DOI: 10.1002/anie.202206168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/04/2022]
Abstract
Understanding antibiotic resistance mechanisms is central to the development of anti-infective therapies and genomics-based drug discovery. Yet, many knowledge gaps remain regarding the resistance strategies employed against novel types of antibiotics from less-explored producers such as anaerobic bacteria, among them the Clostridia. Through the use of genome editing and functional assays, we found that CtaZ confers self-resistance against the copper chelator and gyrase inhibitor closthioamide (CTA) in Ruminiclostridium cellulolyticum. Bioinformatics, biochemical analyses, and X-ray crystallography revealed CtaZ as a founding member of a new group of GyrI-like proteins. CtaZ is unique in binding a polythioamide scaffold in a ligand-optimized hydrophobic pocket, thereby confining CTA. By genome mining using CtaZ as a handle, we discovered previously overlooked homologs encoded by diverse members of the phylum Firmicutes, including many pathogens. In addition to characterizing both a new role for a GyrI-like domain in self-resistance and unprecedented thioamide binding, this work aids in uncovering related drug-resistance mechanisms.
Collapse
Affiliation(s)
- Finn Gude
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Evelyn M Molloy
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Therese Horch
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Maria Dell
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Kyle L Dunbar
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Jana Krabbe
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
| | - Michael Groll
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Straße 8, 85747, Garching, Germany
| | - Christian Hertweck
- Research Unit Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Adolf-Reichwein-Straße 23, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
15
|
Yang X, Wang Y, Liu G, Deng Z, Lin S, Zheng J. Structural basis of Streptomyces transcription activation by zinc uptake regulator. Nucleic Acids Res 2022; 50:8363-8376. [PMID: 35871291 PMCID: PMC9371925 DOI: 10.1093/nar/gkac627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Streptomyces coelicolor (Sc) is a model organism of actinobacteria to study morphological differentiation and production of bioactive metabolites. Sc zinc uptake regulator (Zur) affects both processes by controlling zinc homeostasis. It activates transcription by binding to palindromic Zur-box sequences upstream of −35 elements. Here we deciphered the molecular mechanism by which ScZur interacts with promoter DNA and Sc RNA polymerase (RNAP) by cryo-EM structures and biochemical assays. The ScZur-DNA structures reveal a sequential and cooperative binding of three ScZur dimers surrounding a Zur-box spaced 8 nt upstream from a −35 element. The ScRNAPσHrdB-Zur-DNA structures define protein-protein and protein-DNA interactions involved in the principal housekeeping σHrdB-dependent transcription initiation from a noncanonical promoter with a −10 element lacking the critical adenine residue at position −11 and a TTGCCC −35 element deviating from the canonical TTGACA motif. ScZur interacts with the C-terminal domain of ScRNAP α subunit (αCTD) in a complex structure trapped in an active conformation. Key ScZur-αCTD interfacial residues accounting for ScZur-dependent transcription activation were confirmed by mutational studies. Together, our structural and biochemical results provide a comprehensive model for transcription activation of Zur family regulators.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Guiyang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University , Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
16
|
Gude F, Molloy EM, Horch T, Dell M, Dunbar KL, Krabbe J, Groll M, Hertweck C. A Specialized Polythioamide‐Binding Protein Confers Antibiotic Self‐Resistance in Anaerobic Bacteria. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Finn Gude
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Evelyn M. Molloy
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Therese Horch
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Maria Dell
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Kyle L. Dunbar
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Jana Krabbe
- Leibniz-Institut fur Naturstoff-Forschung und Infektionsbiologie eV Hans-Knoll-Institut Biomolecular Chemistry GERMANY
| | - Michael Groll
- TU München: Technische Universitat Munchen Center for Protein Assemblies GERMANY
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI Department of Biomolecular Chemistry Beutenbergstr. 11a 07745 Jena GERMANY
| |
Collapse
|
17
|
Shi J, Wang F, Li F, Wang L, Xiong Y, Wen A, Jin Y, Jin S, Gao F, Feng Z, Li J, Zhang Y, Shang Z, Wang S, Feng Y, Lin W. Structural basis of transcription activation by Rob, a pleiotropic AraC/XylS family regulator. Nucleic Acids Res 2022; 50:5974-5987. [PMID: 35641097 PMCID: PMC9178005 DOI: 10.1093/nar/gkac433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/14/2022] Open
Abstract
Rob, which serves as a paradigm of the large AraC/XylS family transcription activators, regulates diverse subsets of genes involved in multidrug resistance and stress response. However, the underlying mechanism of how it engages bacterial RNA polymerase and promoter DNA to finely respond to environmental stimuli is still elusive. Here, we present two cryo-EM structures of Rob-dependent transcription activation complex (Rob-TAC) comprising of Escherichia coli RNA polymerase (RNAP), Rob-regulated promoter and Rob in alternative conformations. The structures show that a single Rob engages RNAP by interacting with RNAP αCTD and σ70R4, revealing their generally important regulatory roles. Notably, by occluding σ70R4 from binding to -35 element, Rob specifically binds to the conserved Rob binding box through its consensus HTH motifs, and retains DNA bending by aid of the accessory acidic loop. More strikingly, our ligand docking and biochemical analysis demonstrate that the large Rob C-terminal domain (Rob CTD) shares great structural similarity with the global Gyrl-like domains in effector binding and allosteric regulation, and coordinately promotes formation of competent Rob-TAC. Altogether, our structural and biochemical data highlight the detailed molecular mechanism of Rob-dependent transcription activation, and provide favorable evidences for understanding the physiological roles of the other AraC/XylS-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ying Xiong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fei Gao
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhenzhen Feng
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiacong Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Zhang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhuo Shang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuang Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China.,Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210023, China.,State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
18
|
Yakobov I, Mandato A, Hofmann L, Singewald K, Shenberger Y, Gevorkyan‐Airapetov L, Saxena S, Ruthstein S. Allostery-driven changes in dynamics regulate the activation of bacterial copper transcription factor. Protein Sci 2022; 31:e4309. [PMID: 35481642 PMCID: PMC9004249 DOI: 10.1002/pro.4309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/27/2022]
Abstract
Metalloregulators bind and respond to metal ions by regulating the transcription of metal homeostasis genes. Copper efflux regulator (CueR) is a copper-responsive metalloregulator that is found in numerous Gram-negative bacteria. Upon Cu(I) coordination, CueR initiates transcription by bending the bound DNA promoter regions facilitating interaction with RNA polymerase. The structure of Escherichia coli CueR in presence of DNA and metal ion has been reported using X-ray crystallography and cryo-EM, providing information about the mechanism of action. However, the specific role of copper in controlling this transcription mechanism remains elusive. Herein, we use room temperature electron paramagnetic resonance (EPR) experiments to follow allosterically driven dynamical changes in E. coli CueR induced by Cu(I) binding. We suggest that more than one Cu(I) ion binds per CueR monomer, leading to changes in site-specific dynamics at the Cu(I) binding domain and at the distant DNA binding site. Interestingly, Cu(I) binding leads to an increase in dynamics about 27 Å away at the DNA binding domain. These changes in the dynamics of the DNA binding domain are important for exact coordination with the DNA. Thus, Cu(I) binding is critical to initiate a series of conformational changes that regulate and initiate gene transcription. BROAD AUDIENCE STATEMENT: The dynamics of metal transcription factors as a function of metal and DNA binding are complex. In this study, we use EPR spectroscopy to measure dynamical changes of Escherichia coli CueR as a function of copper and DNA binding. We show that copper controls the activation of the transcription processes by initiation a series of dynamical changes over the protein.
Collapse
Affiliation(s)
- Idan Yakobov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Alysia Mandato
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Lukas Hofmann
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Kevin Singewald
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Yulia Shenberger
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Lada Gevorkyan‐Airapetov
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| | - Sunil Saxena
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sharon Ruthstein
- Department of Chemistry and the Institute of Nanotechnology & Advanced Materials, Faculty of exact sciencesBar Ilan UniversityRamat‐GanIsrael
| |
Collapse
|
19
|
Hu S, Yang J, Liao A, Lin Y, Liang S. Fluorescent indicators for live-cell and in vitro detection of inorganic cadmium dynamics. J Fluoresc 2022; 32:1397-1404. [PMID: 35438371 DOI: 10.1007/s10895-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cadmium contamination is a severe threat to the environment and food safety. Thus, there is an urgent need to develop highly sensitive and selective cadmium detection tools. The engineered fluorescent indicator is a powerful tool for the rapid detection of inorganic cadmium in the environment. In this study, the development of yellow fluorescent indicators of cadmium chloride by inserting a fluorescent protein at different positions of the high cadmium-specific repressor and optimizing the flexible linker between the connection points is reported. These indicators provide a fast, sensitive, specific, high dynamic range, and real-time readout of cadmium ion dynamics in solution. The excitation and emission wavelength of this indicator used in this work are 420/485 and 528 nm, respectively. Fluorescent indicators N0C0/N1C1 showed a linear response to cadmium concentration within the range from 10/30 to 50/100 nM and with a detection limit of 10/33 nM under optimal condition. Escherichia coli cells containing the indicator were used to further study the response of cadmium ion concentration in living cells. E. coli N1C1 could respond to different concentrations of cadmium ions. This study provides a rapid and straightforward method for cadmium ion detection in vitro and the potential for biological imaging.
Collapse
Affiliation(s)
- Shulin Hu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Jun Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Anqi Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China. .,School of Biology and Biological Engineering, South China University of Technology, 510006, Guangzhou, People's Republic of China.
| |
Collapse
|
20
|
A Feedback Regulatory Loop Containing McdR and WhiB2 Controls Cell Division and DNA Repair in Mycobacteria. mBio 2022; 13:e0334321. [PMID: 35357209 PMCID: PMC9040748 DOI: 10.1128/mbio.03343-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell division must be coordinated with DNA repair, which is strictly regulated in response to different drugs and environmental stresses in bacteria. However, the mechanisms by which mycobacteria orchestrate these two processes remain largely uncharacterized. Here, we report a regulatory loop between two essential mycobacterial regulators, McdR (Rv1830) and WhiB2, in coordinating the processes of cell division and DNA repair. McdR inhibits cell division-associated whiB2 expression by binding to the AATnACAnnnnTGTnATT motif in the promoter region. Furthermore, McdR overexpression simultaneously activates imuAB and dnaE2 expression to promote error-prone DNA repair, which facilitates genetic adaptation to stress conditions. Through a feedback mechanism, WhiB2 activates mcdR expression by binding to the cGACACGc motif in the promoter region. Importantly, analyses of mutations in clinical Mycobacterium tuberculosis strains indicate that disruption of this McdR-WhiB2 feedback regulatory loop influences expression of both cell growth- and DNA repair-associated genes, which further supports the contribution of McdR-WhiB2 regulatory loop in regulating mycobacterial cell growth and drug resistance. This highly conserved feedback regulatory loop provides fresh insight into the link between mycobacterial cell growth control and stress responses. IMPORTANCE Drug-resistant M. tuberculosis poses a threat to the control and prevention of tuberculosis (TB) worldwide. Thus, there is a need to identify the mechanisms enabling M. tuberculosis to adapt and grow under drug-induced stress. Rv1830 has been shown to be associated with drug resistance in M. tuberculosis, but its mechanisms have not yet been elucidated. Here, we reveal a regulatory role of Rv1830, which coordinates cell division and DNA repair in mycobacteria, and rename it McdR (mycobacterial cell division regulator). An increase in McdR levels represses the expression of cell division-associated whiB2 but activates the DNA repair-associated, error-prone enzymes ImuA/B and DnaE2, which in turn facilitates adaptation to stress responses and drug resistance. Furthermore, WhiB2 activates the transcription of mcdR to form a conserved regulatory loop. These data provide new insights into the mechanisms controlling mycobacterial cell growth and stress responses.
Collapse
|
21
|
Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci 2022; 47:710-724. [DOI: 10.1016/j.tibs.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023]
|
22
|
Wood DM, Dobson RC, Horne CR. Using cryo-EM to uncover mechanisms of bacterial transcriptional regulation. Biochem Soc Trans 2021; 49:2711-2726. [PMID: 34854920 PMCID: PMC8786299 DOI: 10.1042/bst20210674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
Transcription is the principal control point for bacterial gene expression, and it enables a global cellular response to an intracellular or environmental trigger. Transcriptional regulation is orchestrated by transcription factors, which activate or repress transcription of target genes by modulating the activity of RNA polymerase. Dissecting the nature and precise choreography of these interactions is essential for developing a molecular understanding of transcriptional regulation. While the contribution of X-ray crystallography has been invaluable, the 'resolution revolution' of cryo-electron microscopy has transformed our structural investigations, enabling large, dynamic and often transient transcription complexes to be resolved that in many cases had resisted crystallisation. In this review, we highlight the impact cryo-electron microscopy has had in gaining a deeper understanding of transcriptional regulation in bacteria. We also provide readers working within the field with an overview of the recent innovations available for cryo-electron microscopy sample preparation and image reconstruction of transcription complexes.
Collapse
Affiliation(s)
- David M. Wood
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
23
|
Fang C, Zhang Y. Bacterial MerR family transcription regulators: activationby distortion. Acta Biochim Biophys Sin (Shanghai) 2021; 54:25-36. [PMID: 35130613 PMCID: PMC9909328 DOI: 10.3724/abbs.2021003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) modulate gene expression by regulating the accessibility of promoter DNA to RNA polymerases (RNAPs) in bacteria. The MerR family TFs are a large class of bacterial proteins unique in their physiological functions and molecular action: they function as transcription repressors under normal circumstances, but rapidly transform to transcription activators under various cellular triggers, including oxidative stress, imbalance of cellular metal ions, and antibiotic challenge. The promoters regulated by MerR TFs typically contain an abnormal long spacer between the -35 and -10 elements, where MerR TFs bind and regulate transcription activity through unique mechanisms. In this review, we summarize the function, ligand reception, DNA recognition, and molecular mechanism of transcription regulation of MerR-family TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
24
|
Wang P, Wang T, Ismael M, Wang X, Yi Y, Lü X. Development of an electroporation method and expression patterns of bacteriocin-encoding genes in Companilactobacillus crustorum MN047. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Shi W, Zhou W, Chen M, Yang Y, Hu Y, Liu B. Structural basis for activation of Swi2/Snf2 ATPase RapA by RNA polymerase. Nucleic Acids Res 2021; 49:10707-10716. [PMID: 34428297 PMCID: PMC8501970 DOI: 10.1093/nar/gkab744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/14/2022] Open
Abstract
RapA is a bacterial RNA polymerase (RNAP)-associated Swi2/Snf2 ATPase that stimulates RNAP recycling. The ATPase activity of RapA is autoinhibited by its N-terminal domain (NTD) but activated with RNAP bound. Here, we report a 3.4-Å cryo-EM structure of Escherichia coli RapA-RNAP elongation complex, in which the ATPase active site of RapA is structurally remodeled. In this process, the NTD of RapA is wedged open by RNAP β' zinc-binding domain (ZBD). In addition, RNAP β flap tip helix (FTH) forms extensive hydrophobic interactions with RapA ATPase core domains. Functional assay demonstrates that removing the ZBD or FTH of RNAP significantly impairs its ability to activate the ATPase activity of RapA. Our results provide the structural basis of RapA ATPase activation by RNAP, through the active site remodeling driven by the ZBD-buttressed large-scale opening of NTD and the direct interactions between FTH and ATPase core domains.
Collapse
Affiliation(s)
- Wei Shi
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|