1
|
Matsumoto S, Isaka Y, Kanada R, Ma B, Araki M, Chiba S, Tokuhisa A, Iwata H, Ishida S, Akinaga Y, Terayama K, Kojima R, Harada Y, Takemura K, Honma T, Kitao A, Okuno Y. Precision spatiotemporal analysis of large-scale compound-protein interactions through molecular dynamics simulation. PNAS NEXUS 2025; 4:pgaf094. [PMID: 40161316 PMCID: PMC11949864 DOI: 10.1093/pnasnexus/pgaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Biological systems are composed of and regulated by intricate and diverse biomolecular interactions. Experimental and computational approaches have been developed to elucidate the mechanisms of these interactions; however, owing to cost, time, and accuracy issues, large-scale spatiotemporal analyses of molecular pairs remain challenging. Thus, the molecular recognition mechanisms underlying these diverse interactions remain unclear. We successfully simulated the large-scale molecular dynamics (MD) of 4,275 protein-compound pairs by combining a method to accelerate the MD simulations with the supercomputer Fugaku. Our spatiotemporal analysis of generated big MD data revealed universal features underlying molecular recognition and binding processes. This study expands our understanding of the concept of MD simulations from a technique to investigate the dynamic properties of individual protein-drug pairs to an approach to perform large-scale spatiotemporal analysis and compound screening. This study opens an avenue in biological research for subsequent drug discovery.
Collapse
Affiliation(s)
- Shigeyuki Matsumoto
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuta Isaka
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ryo Kanada
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Biao Ma
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shuntaro Chiba
- HPC- and AI-Driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Tokuhisa
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroaki Iwata
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shoichi Ishida
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Yoshinobu Akinaga
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kei Terayama
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Kanagawa 230-0045, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yohei Harada
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhiro Takemura
- School of Life Sciences and Technology, Institute of Science Tokyo, 2Chome 12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Teruki Honma
- HPC- and AI-Driven Drug Development Platform Division, RIKEN Center for Computational Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akio Kitao
- School of Life Sciences and Technology, Institute of Science Tokyo, 2Chome 12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
2
|
Tu G, Gong Y, Yao X, Liu Q, Xue W, Zhang R. Pathways and mechanism of MRTX1133 binding to KRAS G12D elucidated by molecular dynamics simulations and Markov state models. Int J Biol Macromol 2024; 274:133374. [PMID: 38925182 DOI: 10.1016/j.ijbiomac.2024.133374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
KRAS G12D is the most common oncogenic mutation identified in several types of cancer. Therefore, design of inhibitors targeting KRAS G12D represents a promising strategy for anticancer therapy. MRTX1133 is a highly potent inhibitor (approximate experiment Kd ≈ 0.0002 nM) of KRAS G12D and is currently in Phase 1/2 study, however, pathways of the compound binding to KRAS G12D has remained unknown, and the mechanism underlying the complicated dynamic process are challenging to capture experimentally, which hinder the structure-based anti-cancer drug design. Here, using MRTX1133 as a probe, unbiased molecular dynamics (MD) was used to simulate the process of MRTX1133 spontaneously binding to KRAS G12D. In six of 42 independent MD simulation (a total of 99 μs), MRTX1133 was observed to successfully associate with KRAS G12D. The kinetically metastable states refer to the potential pathways of MRTX1133 binding to KRAS G12D were revealed by Markov state models (MSM) analysis. Additionally, 8 key residues that are essential for MRTX1133 recognition and tight binding at the preferred low energy states were identified by MM/GBSA analysis. In sum, this study provides a new perspective on understanding the pathways and mechanism of MRTX1133 binding to KRAS G12D.
Collapse
Affiliation(s)
- Gao Tu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400037, China; Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Yaguo Gong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, 999078, Macau
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, 999078, Macau.
| | - Qing Liu
- Suzhou Institute for Advance Research, University of Science and Technology of China, Suzhou, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400037, China.
| |
Collapse
|
3
|
Bahena Culhuac E, Bello M. Unveiling the Mechanisms of EGCG-p53 Interactions through Molecular Dynamics Simulations. ACS OMEGA 2024; 9:20066-20085. [PMID: 38737068 PMCID: PMC11080030 DOI: 10.1021/acsomega.3c10523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 05/14/2024]
Abstract
Green tea consumption is associated with protective and preventive effects against various types of cancer. These effects are attributed to polyphenols, particularly epigallocatechin-3-gallate (EGCG). EGCG acts by directly inhibiting tumor suppressor protein p53. The binding mechanism by which EGCG inhibits p53 activity is associated with residues Trp23-Lys24 and Pro47-Thr55 within the p53 N-terminal domain (NTD). However, the structural and thermodynamic aspects of the interaction between EGCG and p53 are poorly understood. Therefore, based on crystallographic data, we combine docking, molecular dynamics (MD) simulations, and molecular mechanics generalized Born surface area approaches to explore the intricacies of the EGCG-p53 binding mechanism. A triplicate microsecond MD simulation for each system is initially performed to capture diverse p53 NTD conformations. From the start, the most populated cluster of the second run (R2-1) stands out due to a unique opening between Trp23 and Trp53. During MD simulations, this conformation allows EGCG to sustain a high level of stability and affinity while interacting with both regions of interest and deepening the binding pocket. Structural analysis emphasizes the significance of pyrogallol motifs in EGCG binding. Therefore, the conformational shift in this gap is pivotal, enabling EGCG to impede p53 interactions and manifest its anticancer properties. These findings enhance the present comprehension of the anticancer properties of green tea polyphenols and pave the way for future therapeutic developments.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Laboratorio
de Diseño y Desarrollo de Nuevos Fármacos e Innovación
Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
- Universidad
Autónoma del Estado de México Facultad de Ciencias, Toluca 50000, Mexico
| | - Martiniano Bello
- Laboratorio
de Diseño y Desarrollo de Nuevos Fármacos e Innovación
Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
4
|
Price SEN, Einen C, Moultos OA, Vlugt TJH, Davies CDL, Eiser E, Lervik A. Ultrasound enhanced diffusion in hydrogels: An experimental and non-equilibrium molecular dynamics study. J Chem Phys 2024; 160:154906. [PMID: 38639314 DOI: 10.1063/5.0202182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Focused ultrasound has experimentally been found to enhance the diffusion of nanoparticles; our aim with this work is to study this effect closer using both experiments and non-equilibrium molecular dynamics. Measurements from single particle tracking of 40 nm polystyrene nanoparticles in an agarose hydrogel with and without focused ultrasound are presented and compared with a previous experimental study using 100 nm polystyrene nanoparticles. In both cases, we observed an increase in the mean square displacement during focused ultrasound treatment. We developed a coarse-grained non-equilibrium molecular dynamics model with an implicit solvent to investigate the increase in the mean square displacement and its frequency and amplitude dependencies. This model consists of polymer fibers and two sizes of nanoparticles, and the effect of the focused ultrasound was modeled as an external oscillating force field. A comparison between the simulation and experimental results shows similar mean square displacement trends, suggesting that the particle velocity is a significant contributor to the observed ultrasound-enhanced mean square displacement. The resulting diffusion coefficients from the model are compared to the diffusion equation for a two-time continuous time random walk. The model is found to have the same frequency dependency. At lower particle velocity amplitude values, the model has a quadratic relation with the particle velocity amplitude as described by the two-time continuous time random walk derived diffusion equation, but at higher amplitudes, the model deviates, and its diffusion coefficient reaches the non-hindered diffusion coefficient. This observation suggests that at higher ultrasound intensities in hydrogels, the non-hindered diffusion coefficient can be used.
Collapse
Affiliation(s)
- Sebastian E N Price
- PoreLab and Department of Chemistry, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Caroline Einen
- PoreLab and Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Othonas A Moultos
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Thijs J H Vlugt
- Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Catharina de Lange Davies
- Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Erika Eiser
- PoreLab and Department of Physics, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| | - Anders Lervik
- PoreLab and Department of Chemistry, The Norwegian University of Science and Technology, NTNU, N7491 Trondheim, Norway
| |
Collapse
|
5
|
Wu Y, Cui Y, Song W, Wei W, He Z, Tao J, Yin D, Chen X, Gao C, Liu J, Liu L, Wu J. Reprogramming the Transition States to Enhance C-N Cleavage Efficiency of Rhodococcus opacusl-Amino Acid Oxidase. JACS AU 2024; 4:557-569. [PMID: 38425913 PMCID: PMC10900486 DOI: 10.1021/jacsau.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/02/2024]
Abstract
l-Amino acid oxidase (LAAO) is an important biocatalyst used for synthesizing α-keto acids. LAAO from Rhodococcus opacus (RoLAAO) has a broad substrate spectrum; however, its low total turnover number limits its industrial use. To overcome this, we aimed to employ crystal structure-guided density functional theory calculations and molecular dynamic simulations to investigate the catalytic mechanism. Two key steps were identified: S → [TS1] in step 1 and Int1 → [TS2] in step 2. We reprogrammed the transition states [TS1] and [TS2] to reduce the identified energy barrier and obtain a RoLAAO variant capable of catalyzing 19 kinds of l-amino acids to the corresponding high-value α-keto acids with a high total turnover number, yield (≥95.1 g/L), conversion rate (≥95%), and space-time yields ≥142.7 g/L/d in 12-24 h, in a 5 L reactor. Our results indicated the promising potential of the developed RoLAAO variant for use in the industrial production of α-keto acids while providing a potential catalytic-mechanism-guided protein design strategy to achieve the desired physical and catalytic properties of enzymes.
Collapse
Affiliation(s)
- Yaoyun Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yaozhong Cui
- Jiangsu
Xishan Senior High School, Wuxi 214174, China
| | - Wei Song
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhizhen He
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinyang Tao
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Dejing Yin
- School
of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School
of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Zhang Z, Chu R, Wei W, Song W, Ye C, Chen X, Wu J, Liu L, Gao C. Systems engineering of Escherichia coli for high-level glutarate production from glucose. Nat Commun 2024; 15:1032. [PMID: 38310110 PMCID: PMC10838341 DOI: 10.1038/s41467-024-45448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Glutarate is a key monomer in polyester and polyamide production. The low efficiency of the current biosynthetic pathways hampers its production by microbial cell factories. Herein, through metabolic simulation, a lysine-overproducing E. coli strain Lys5 is engineered, achieving titer, yield, and productivity of 195.9 g/L, 0.67 g/g glucose, and 5.4 g/L·h, respectively. Subsequently, the pathway involving aromatic aldehyde synthase, monoamine oxidase, and aldehyde dehydrogenase (AMA pathway) is introduced into E. coli Lys5 to produce glutarate from glucose. To enhance the pathway's efficiency, rational mutagenesis on the aldehyde dehydrogenase is performed, resulting in the development of variant Mu5 with a 50-fold increase in catalytic efficiency. Finally, a glutarate tolerance gene cbpA is identified and genomically overexpressed to enhance glutarate productivity. With enzyme expression optimization, the glutarate titer, yield, and productivity of E. coli AMA06 reach 88.4 g/L, 0.42 g/g glucose, and 1.8 g/L·h, respectively. These findings hold implications for improving glutarate biosynthesis efficiency in microbial cell factories.
Collapse
Affiliation(s)
- Zhilan Zhang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Ruyin Chu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210000, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Menchon G, Maveyraud L, Czaplicki G. Molecular Dynamics as a Tool for Virtual Ligand Screening. Methods Mol Biol 2024; 2714:33-83. [PMID: 37676592 DOI: 10.1007/978-1-0716-3441-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rational drug design is essential for new drugs to emerge, especially when the structure of a target protein or nucleic acid is known. To that purpose, high-throughput virtual ligand screening campaigns aim at discovering computationally new binding molecules or fragments to modulate particular biomolecular interactions or biological activities, related to a disease process. The structure-based virtual ligand screening process primarily relies on docking methods which allow predicting the binding of a molecule to a biological target structure with a correct conformation and the best possible affinity. The docking method itself is not sufficient as it suffers from several and crucial limitations (lack of full protein flexibility information, no solvation and ion effects, poor scoring functions, and unreliable molecular affinity estimation).At the interface of computer techniques and drug discovery, molecular dynamics (MD) allows introducing protein flexibility before or after a docking protocol, refining the structure of protein-drug complexes in the presence of water, ions, and even in membrane-like environments, describing more precisely the temporal evolution of the biological complex and ranking these complexes with more accurate binding energy calculations. In this chapter, we describe the up-to-date MD, which plays the role of supporting tools in the virtual ligand screening (VS) process.Without a doubt, using docking in combination with MD is an attractive approach in structure-based drug discovery protocols nowadays. It has proved its efficiency through many examples in the literature and is a powerful method to significantly reduce the amount of required wet experimentations (Tarcsay et al, J Chem Inf Model 53:2990-2999, 2013; Barakat et al, PLoS One 7:e51329, 2012; De Vivo et al, J Med Chem 59:4035-4061, 2016; Durrant, McCammon, BMC Biol 9:71-79, 2011; Galeazzi, Curr Comput Aided Drug Des 5:225-240, 2009; Hospital et al, Adv Appl Bioinforma Chem 8:37-47, 2015; Jiang et al, Molecules 20:12769-12786, 2015; Kundu et al, J Mol Graph Model 61:160-174, 2015; Mirza et al, J Mol Graph Model 66:99-107, 2016; Moroy et al, Future Med Chem 7:2317-2331, 2015; Naresh et al, J Mol Graph Model 61:272-280, 2015; Nichols et al, J Chem Inf Model 51:1439-1446, 2011; Nichols et al, Methods Mol Biol 819:93-103, 2012; Okimoto et al, PLoS Comput Biol 5:e1000528, 2009; Rodriguez-Bussey et al, Biopolymers 105:35-42, 2016; Sliwoski et al, Pharmacol Rev 66:334-395, 2014).
Collapse
Affiliation(s)
- Grégory Menchon
- Inserm U1242, Oncogenesis, Stress and Signaling (OSS), Université de Rennes 1, Rennes, France
| | - Laurent Maveyraud
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Georges Czaplicki
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France.
| |
Collapse
|
8
|
Wakabayashi T, Oide M, Kato T, Nakasako M. Coenzyme-binding pathway on glutamate dehydrogenase suggested from multiple-binding sites visualized by cryo-electron microscopy. FEBS J 2023; 290:5514-5535. [PMID: 37682540 DOI: 10.1111/febs.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 08/10/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The structure of hexameric glutamate dehydrogenase (GDH) in the presence of the coenzyme nicotinamide adenine dinucleotide phosphate (NADP) was visualized using cryogenic transmission electron microscopy to investigate the ligand-binding pathways to the active site of the enzyme. Each subunit of GDH comprises one hexamer-forming core domain and one nucleotide-binding domain (NAD domain), which spontaneously opens and closes the active-site cleft situated between the two domains. In the presence of NADP, the potential map of GDH hexamer, assuming D3 symmetry, was determined at a resolution of 2.4 Å, but the NAD domain was blurred due to the conformational variety. After focused classification with respect to the NAD domain, the potential maps interpreted as NADP molecules appeared at five different sites in the active-site cleft. The subunits associated with NADP molecules were close to one of the four metastable conformations in the unliganded state. Three of the five binding sites suggested a pathway of NADP molecules to approach the active-site cleft for initiating the enzymatic reaction. The other two binding modes may rarely appear in the presence of glutamate, as demonstrated by the reaction kinetics. Based on the visualized structures and the results from the enzymatic kinetics, we discussed the binding modes of NADP to GDH in the absence and presence of glutamate.
Collapse
Grants
- JPMJPR22E2 Japan Science and Technology Agency
- 18J11653 Japan Society for the Promotion of Science
- jp13480214 Japan Society for the Promotion of Science
- jp19204042 Japan Society for the Promotion of Science
- jp21H01050 Japan Society for the Promotion of Science
- jp22244054 Japan Society for the Promotion of Science
- jp26800227 Japan Society for the Promotion of Science
- jp15076210 Ministry of Education, Culture, Sports, Science and Technology
- jp15H01647 Ministry of Education, Culture, Sports, Science and Technology
- jp17H05891 Ministry of Education, Culture, Sports, Science and Technology
- jp20050030 Ministry of Education, Culture, Sports, Science and Technology
- jp22018027 Ministry of Education, Culture, Sports, Science and Technology
- jp23120525 Ministry of Education, Culture, Sports, Science and Technology
- jp25120725 Ministry of Education, Culture, Sports, Science and Technology
- 0436 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
- PRESTO, Japan Science and Technology Agency, Tokyo, Japan
| | - Takayuki Kato
- Protein Research Institute, Osaka University, Suita, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, Yokohama, Japan
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| |
Collapse
|
9
|
Kim H, Choi Y, Kim SY, Pahk KJ. Increased intracellular diffusivity of macromolecules within a mammalian cell by low-intensity pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106644. [PMID: 37844347 PMCID: PMC10587770 DOI: 10.1016/j.ultsonch.2023.106644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
Whilst a number of studies have demonstrated that low-intensity pulsed ultrasound (LIPUS) is a promising therapeutic ultrasound technique that can be used for delivering mild mechanical stimuli to target tissue non-invasively, the underlying biophysical mechanisms still remain unclear. Most mechanism studies have focused explicitly on the effects of LIPUS on the cell membrane and mechanosensitive receptors. In the present study, we propose an additional mechanism by which LIPUS propagation through living cells may directly impact intracellular dynamics, particularly the diffusion transport of biomolecules. To support our hypothesis, human epithelial-like cells (SaOS-2 and HeLa) seeded on a confocal dish placed on a microscope stage were exposed to LIPUS with various exposure conditions (ultrasound frequencies of 0.5, 1 and 3 MHz, peak acoustic pressure of 200 and 400 kPa, a pulse repetition frequency of 1 kHz and a 20 % duty cycle), and the diffusivities of various sizes of biomolecules in the cytoplasm area were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, giant unilamellar vesicles (GUVs) filled with macromolecules were used to examine the physical causal relationship between LIPUS and molecular diffusion changes. Nucleocytoplasmic transport coefficients were also measured by modified FRAP that bleaches the whole cell nuclear region. Extracellular signal-regulated kinases (ERK) activity (the phosphorylation dynamics) was monitored using fluorescence resonance energy transfer (FRET) microscopy. All the measurements were taken during, before and after the LIPUS exposure. Our experimental results clearly showed that the diffusion coefficients of macromolecules within the cell increased with acoustic pressure by 12.1 to 33.5 % during the sonication, and the increments were proportional to their molecular sizes regardless of the ultrasound frequency used. This observation in living cells was consistent with the GUVs exposed to the LIPUS, which indicated that the diffusivity increase was a passive physical response to the acoustic energy of LIPUS. Under the 1 MHz LIPUS exposure with 400 kPa, the passive nucleocytoplasmic transport of enhanced green fluorescent protein (EGFP) was accelerated by 21.4 %. With the same LIPUS exposure condition, both the diffusivity and phosphorylation of ERK induced by EGF treatment were significantly elevated simultaneously, which implied that LIPUS could also modify the kinase kinetics in the signal transduction process. Taken together, this study is the first attempt to uncover the physical link between LIPUS and the dynamics of intracellular macromolecules and related biological processes that LIPUS can possibly increase the diffusivity of intracellular macromolecules, leading to the changes in the basic cellular processes: passive nucleocytoplasmic transport and ERK. Our findings can provide a novel perspective that the mechanotransduction process that the intracellular region, in addition to the cell membrane, can convert the acoustic stimuli of LIPUS to biochemical signals.
Collapse
Affiliation(s)
- Hyojun Kim
- LAAS-CNRS, University of Toulouse, CNRS, Toulouse, France
| | - Yeonho Choi
- Department of Bioengineering, Korea University, Seoul, Republic of Korea
| | - So Yeon Kim
- Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Ki Joo Pahk
- Department of Biomedical Engineering, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
10
|
Liu C, Kutchukian P, Nguyen ND, AlQuraishi M, Sorger PK. A Hybrid Structure-Based Machine Learning Approach for Predicting Kinase Inhibition by Small Molecules. J Chem Inf Model 2023; 63:5457-5472. [PMID: 37595065 PMCID: PMC10498990 DOI: 10.1021/acs.jcim.3c00347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 08/20/2023]
Abstract
Kinases have been the focus of drug discovery programs for three decades leading to over 70 therapeutic kinase inhibitors and biophysical affinity measurements for over 130,000 kinase-compound pairs. Nonetheless, the precise target spectrum for many kinases remains only partly understood. In this study, we describe a computational approach to unlocking qualitative and quantitative kinome-wide binding measurements for structure-based machine learning. Our study has three components: (i) a Kinase Inhibitor Complex (KinCo) data set comprising in silico predicted kinase structures paired with experimental binding constants, (ii) a machine learning loss function that integrates qualitative and quantitative data for model training, and (iii) a structure-based machine learning model trained on KinCo. We show that our approach outperforms methods trained on crystal structures alone in predicting binary and quantitative kinase-compound interaction affinities; relative to structure-free methods, our approach also captures known kinase biochemistry and more successfully generalizes to distant kinase sequences and compound scaffolds.
Collapse
Affiliation(s)
- Changchang Liu
- Laboratory
of Systems Pharmacology, Department of Systems Biology, Harvard Program
in Therapeutic Science, Harvard Medical
School, Boston, Massachusetts 02115, United States
| | - Peter Kutchukian
- Novartis
Institutes for Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Nhan D. Nguyen
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United
States
| | - Mohammed AlQuraishi
- Department
of Systems Biology, Columbia University, New York, New York 10032, United States
| | - Peter K. Sorger
- Laboratory
of Systems Pharmacology, Department of Systems Biology, Harvard Program
in Therapeutic Science, Harvard Medical
School, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Al-Qatatsheh A, Capricho JC, Raiteri P, Juodkazis S, Salim N, Hameed N. Crosslinking Rapidly Cured Epoxy Resin Thermosets: Experimental and Computational Modeling and Simulation Study. Polymers (Basel) 2023; 15:polym15051325. [PMID: 36904565 PMCID: PMC10007365 DOI: 10.3390/polym15051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
The power of computational modeling and simulation for establishing clear links between materials' intrinsic properties and their atomic structure has more and more increased the demand for reliable and reproducible protocols. Despite this increased demand, no one approach can provide reliable and reproducible outcomes to predict the properties of novel materials, particularly rapidly cured epoxy-resins with additives. This study introduces the first computational modeling and simulation protocol for crosslinking rapidly cured epoxy resin thermosets based on solvate ionic liquid (SIL). The protocol combines several modeling approaches, including quantum mechanics (QMs) and molecular dynamics (MDs). Furthermore, it insightfully provides a wide range of thermo-mechanical, chemical, and mechano-chemical properties, which agree with experimental data.
Collapse
Affiliation(s)
- Ahmed Al-Qatatsheh
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Jaworski C. Capricho
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Paolo Raiteri
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Perth, WA 6845, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Nisa Salim
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Nishar Hameed
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
- Correspondence:
| |
Collapse
|
12
|
Bekker GJ, Kamiya N. Advancing the field of computational drug design using multicanonical molecular dynamics-based dynamic docking. Biophys Rev 2022; 14:1349-1358. [PMID: 36659995 PMCID: PMC9842809 DOI: 10.1007/s12551-022-01010-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/20/2022] Open
Abstract
Multicanonical molecular dynamics (McMD)-based dynamic docking is a powerful tool to not only predict the native binding configuration between two flexible molecules, but it can also be used to accurately simulate the binding/unbinding pathway. Furthermore, it can also predict alternative binding sites, including allosteric ones, by employing an exhaustive sampling approach. Since McMD-based dynamic docking accurately samples binding/unbinding events, it can thus be used to determine the molecular mechanism of binding between two molecules. We developed the McMD-based dynamic docking methodology based on the powerful, but woefully underutilized McMD algorithm, combined with a toolset to perform the docking and to analyze the results. Here, we showcase three of our recent works, where we have applied McMD-based dynamic docking to advance the field of computational drug design. In the first case, we applied our method to perform an exhaustive search between Hsp90 and one of its inhibitors to successfully predict the native binding configuration in its binding site, as we refined our analysis methods. For our second case, we performed an exhaustive search of two medium-sized ligands and Bcl-xL, which has a cryptic binding site that differs greatly between the apo and holo structures. Finally, we performed a dynamic docking simulation between a membrane-embedded GPCR molecule and a high affinity ligand that binds deep within its receptor's pocket. These advanced simulations showcase the power that the McMD-based dynamic docking method has, and provide a glimpse of the potential our methodology has to unravel and solve the medical and biophysical issues in the modern world. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-022-01010-z.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan
| |
Collapse
|
13
|
Khan SH, Braet SM, Koehler SJ, Elacqua E, Anand GS, Okafor CD. Ligand-induced shifts in conformational ensembles that describe transcriptional activation. eLife 2022; 11:e80140. [PMID: 36222302 PMCID: PMC9555869 DOI: 10.7554/elife.80140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/15/2022] Open
Abstract
Nuclear receptors function as ligand-regulated transcription factors whose ability to regulate diverse physiological processes is closely linked with conformational changes induced upon ligand binding. Understanding how conformational populations of nuclear receptors are shifted by various ligands could illuminate strategies for the design of synthetic modulators to regulate specific transcriptional programs. Here, we investigate ligand-induced conformational changes using a reconstructed, ancestral nuclear receptor. By making substitutions at a key position, we engineer receptor variants with altered ligand specificities. We combine cellular and biophysical experiments to characterize transcriptional activity, as well as elucidate mechanisms underlying altered transcription in receptor variants. We then use atomistic molecular dynamics (MD) simulations with enhanced sampling to generate ensembles of wildtype and engineered receptors in combination with multiple ligands, followed by conformational analysis and correlation of MD-based predictions with functional ligand profiles. We determine that conformational ensembles accurately describe ligand responses based on observed population shifts. These studies provide a platform which will allow structural characterization of physiologically-relevant conformational ensembles, as well as provide the ability to design and predict transcriptional responses in novel ligands.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
| | - Sean M Braet
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - Elizabeth Elacqua
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| | | | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State UniversityState CollegeUnited States
- Department of Chemistry, Pennsylvania State UniversityState ParkUnited States
| |
Collapse
|
14
|
Bai F, Jiang H. Computationally Elucidating the Binding Kinetics for Different AChE Inhibitors to Access the Rationale for Improving the Drug Efficacy. J Phys Chem B 2022; 126:7797-7805. [PMID: 36170055 DOI: 10.1021/acs.jpcb.2c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional drug discovery is based on a binding affinity (thermodynamics)-driven paradigm. Numerous examples, however, demonstrated that drug efficacy does not always depend only on binding affinity but positively correlates with binding kinetics, that is, the dissociation rate constant (koff). Binding free energy landscape (BFEL) constructor is a computational binding kinetics prediction method, previously developed by us, that estimates the binding kinetics for ligand-protein based on their constructed binding free energy landscape, but it also reveals the detailed molecular mechanism of the binding event, hence, providing the position of transition states at the molecular level to modify/improve the binding kinetics. Acetylcholinesterase (AChE) is a well-known Alzheimer's disease (AD) target for which there is still not an ideal drug on the market. Therefore, to improve the drug design strategy for AD, the binding kinetics and binding molecular mechanisms of the four inhibitors of AChE, that is, E2020 (Aricept), HupA, Rivastigmine, and Galantamine, were studied. Also, the differentiation of the binding kinetics between mAChE and TcAChE was studied to evaluate the sensitiveness of BFEL constructor. The flexibility of molecules has a noticeable effect on the nature of BFEL. To the same target, flexible molecules (i.e., E2020 and Rivastigmine) which contain more rotatable bonds tend to have more complicated BFELs reflecting more complicated molecular action mechanisms than the rigid ones (i.e., HupA and Galantamine), which therefore could be more challenging to be optimized. The binding kinetics is highly dependent on the structure of the molecules, such as the length and the functional groups. Therefore, E2020 presents better binding kinetic and thermodynamic properties with either TcAChE or mAChE. Therefore, it is the most promising lead drug for binding kinetics-based drug design. In addition, the binding kinetics of a drug may present different values in the proteins of different organisms because the residue compositions of the binding gorges of the targets are variant, that is, E2020 shows lower binding affinity and association energy barrier in binding with mAChE than TcAChE. However, HupA presents a better binding property with TcAChE than mAChE.
Collapse
Affiliation(s)
| | - Hualiang Jiang
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong Shanghai 201203, China
| |
Collapse
|
15
|
Dong Y, Lemay JC, Zeng Y, Garcia JL, Groves MN, McBreen PH. Substrate Tumbling in a Chemisorbed Diastereomeric α‐Ketoester/1‐(1‐Naphthyl)ethylamine Complex. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yi Dong
- Laval University: Universite Laval Department of Chemistry CANADA
| | | | - Yang Zeng
- Laval University: Universite Laval Department of Chemistry CANADA
| | - James L. Garcia
- California State University Fullerton Department of Chemistry and Biochemistry UNITED STATES
| | - Michael N. Groves
- California State University Fullerton Department of Chemistry and Biochemistry CANADA
| | | |
Collapse
|
16
|
Dong Y, Lemay JC, Zeng Y, Groves MN, McBreen PH. Substrate Tumbling in a Chemisorbed Diastereomeric α-Ketoester/1-(1-Naphthyl)ethylamine Complex. Angew Chem Int Ed Engl 2022; 61:e202210076. [PMID: 36087075 DOI: 10.1002/anie.202210076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/11/2022]
Abstract
Scanning tunneling microscopy (STM) data for α-ketoester/1-(1-naphthyl)ethylamine complexes on Pt(111) reveal a tumbling motion that couples two neighboring binding states. The interconversion, resulting in prochiral inversion of the α-ketoester, occurs in single complexes without breaking them apart. This is a surprising observation because the overall motion requires rotation of the α-ketoester away from the surface without branching exclusively into diffusion away from the complex or desorption. The multi-step interconversion is rationalized in terms of sequences of bound states that combine transient H-bond interactions with the chiral molecule and weakened adsorption interactions with the metal. The observation of tumbling in single long-lived complexes is of relevance to self-assembly and directed molecular motion on surfaces, to ligand-controlled surface reactions, and most directly to stereocontrol in asymmetric heterogeneous catalysis.
Collapse
Affiliation(s)
- Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| | - Michael N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA
| | - Peter H McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Qc., G1V 0A6, Canada
| |
Collapse
|
17
|
Han Y, Lafleur RPM, Zhou J, Xu W, Lin Z, Richardson JJ, Caruso F. Role of Molecular Interactions in Supramolecular Polypeptide-Polyphenol Networks for Engineering Functional Materials. J Am Chem Soc 2022; 144:12510-12519. [PMID: 35775928 DOI: 10.1021/jacs.2c05052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Supramolecular assembly affords the development of a wide range of polypeptide-based biomaterials for drug delivery and nanomedicine. However, there remains a need to develop a platform for the rapid synthesis and study of diverse polypeptide-based materials without the need for employing complex chemistries. Herein, we develop a versatile strategy for creating polypeptide-based materials using polyphenols that display multiple synergistic cross-linking interactions with different polypeptide side groups. We evaluated the diverse interactions operating within these polypeptide-polyphenol networks via binding affinity, thermodynamics, and molecular docking studies and found that positively charged polypeptides (Ka of ∼2 × 104 M-1) and polyproline (Ka of ∼2 × 106 M-1) exhibited stronger interactions with polyphenols than other amino acids (Ka of ∼2 × 103 M-1). Free-standing particles (capsules) were obtained from different homopolypeptides using a template-mediated strategy. The properties of the capsules varied with the homopolypeptide used, for example, positively charged polypeptides produced thicker shell walls (120 nm) with reduced permeability and involved multiple interactions (i.e., electrostatic and hydrogen), whereas uncharged polypeptides generated thinner (10 nm) and more permeable shell walls due to the dominant hydrophobic interactions. Polyarginine imparted cell penetration and endosomal escape properties to the polyarginine-tannic acid capsules, enabling enhanced delivery of the drug doxorubicin (2.5 times higher intracellular fluorescence after 24 h) and a corresponding higher cell death in vitro when compared with polyproline-tannic acid capsules. The ability to readily complex polyphenols with different types of polypeptides highlights that a wide range of functional materials can be generated for various applications.
Collapse
Affiliation(s)
- Yiyuan Han
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - René P M Lafleur
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jiajing Zhou
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093, United States
| | - Wanjun Xu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joseph J Richardson
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Materials Engineering, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
18
|
Wu Q, Huang T, Xia S, Otto F, Lee TY, Huang HD, Chiang YC. On the force field optimisation of
β
-lactam cores using the force field Toolkit. J Comput Aided Mol Des 2022; 36:537-547. [PMID: 35819650 PMCID: PMC9399072 DOI: 10.1007/s10822-022-00464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
When employing molecular dynamics (MD) simulations for computer-aided drug design, the quality of the used force fields is highly important. Here we present reparametrisations of the force fields for the core molecules from 9 differentβ -lactam classes, for which we utilized the force field Toolkit and Gaussian calculations. We focus on the parametrisation of the dihedral angles, with the goal of reproducing the optimised quantum geometry in MD simulations. Parameters taken from CGenFF turn out to be a good initial guess for the multiplicity of each dihedral angle, but the key to a successful parametrisation is found to lie in the phase shifts. Based on the optimised quantum geometry, we come up with a strategy for predicting the phase shifts prior to the dihedral potential fitting. This allows us to successfully parameterise 8 out of the 11 molecules studied here, while the remaining 3 molecules can also be parameterised with small adjustments. Our work highlights the importance of predicting the dihedral phase shifts in the ligand parametrisation protocol, and provides a simple yet valuable strategy for improving the process of parameterising force fields of drug-like molecules.
Collapse
Affiliation(s)
- Qiyang Wu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Tianyang Huang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Songyan Xia
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Frank Otto
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Tzong-Yi Lee
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China
| | - Ying-Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, China.
| |
Collapse
|
19
|
Liao J, Nie X, Unarta IC, Ericksen SS, Tang W. In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses. J Med Chem 2022; 65:6116-6132. [PMID: 35412837 DOI: 10.1021/acs.jmedchem.1c02155] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteolysis targeting chimeras (PROTACs) are molecules that induce protein degradation via formation of ternary complexes between an E3 ubiquitin ligase and a target protein. The rational design of PROTACs requires accurate knowledge of the native configuration of the PROTAC-induced ternary complex. This study demonstrates that native and non-native ternary complex poses can be distinguished based on the pose occupancy time in MD, where native poses exhibit longer occupancy times at both room and higher temperatures. Candidate poses are generated by MD sampling and pre-ranked by classic MM/GBSA. A specific heating scheme is then applied to accelerate ternary pose departure, with the pose occupancy time and fraction being measured. This scoring identifies the native pose in all systems tested. Its success is partially attributed to the dynamic nature of pose departure analyses, which accounts for entropic effects typically neglected in the faster static scoring methods, while entropy plays a greater role in protein-protein than in protein-ligand systems.
Collapse
Affiliation(s)
- Junzhuo Liao
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xueqing Nie
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ilona Christy Unarta
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Spencer S Ericksen
- Drug Development Core, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Drug Development Core, UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
20
|
Baltrukevich H, Podlewska S. From Data to Knowledge: Systematic Review of Tools for Automatic Analysis of Molecular Dynamics Output. Front Pharmacol 2022; 13:844293. [PMID: 35359865 PMCID: PMC8960308 DOI: 10.3389/fphar.2022.844293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 12/02/2022] Open
Abstract
An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.
Collapse
Affiliation(s)
- Hanna Baltrukevich
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
- Faculty of Pharmacy, Chair of Technology and Biotechnology of Medical Remedies, Jagiellonian University Medical College in Krakow, Kraków, Poland
| | - Sabina Podlewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
21
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Nagayasu K. Serotonin transporter: Recent progress of in silico ligand prediction methods and structural biology towards structure-guided in silico design of therapeutic agents. J Pharmacol Sci 2022; 148:295-299. [DOI: 10.1016/j.jphs.2022.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 02/08/2023] Open
|
23
|
Bekker GJ, Kamiya N. N-Terminal-Driven Binding Mechanism of an Antigen Peptide to Human Leukocyte Antigen-A*2402 Elucidated by Multicanonical Molecular Dynamic-Based Dynamic Docking and Path Sampling Simulations. J Phys Chem B 2021; 125:13376-13384. [PMID: 34856806 DOI: 10.1021/acs.jpcb.1c07230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have applied our advanced multicanonical molecular dynamics (McMD)-based dynamic docking methodology to investigate the binding mechanism of an HIV-1 Nef protein epitope to the Asian-dominant allele human leukocyte antigen (HLA)-A*2402. Even though pMHC complex formation [between a Major histocompatibility complex (MHC) class I molecule, which is encoded by an HLA allele, and an antigen peptide] is one of the fundamental processes of the adaptive human immune response, its binding mechanism has not yet been well studied, partially due to the high allelic variation of HLAs in the population. We have used our developed McMD-based dynamic docking method and have successfully reproduced the native complex structure, which is located near the free energy global minimum. Subsequent path sampling MD simulations elucidated the atomic details of the binding process and indicated that the peptide binding is initially driven by the highly positively charged N-terminus of the peptide that is attracted to the various negatively charged residues on the MHC molecule's surface. Upon nearing the pocket, the second tyrosine residue of the peptide anchors the peptide by strongly binding to the B-site of the MHC molecule via hydrophobic driven interactions, resulting in a very strong bound complex structure. Our methodology can be effectively used to predict the bound complex structures between MHC molecules and their antigens to study their binding mechanism in close detail, which would help with the development of new vaccines against cancers, as well as viral infections such as HIV and COVID-19.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
24
|
Bekker GJ, Araki M, Oshima K, Okuno Y, Kamiya N. Accurate Binding Configuration Prediction of a G-Protein-Coupled Receptor to Its Antagonist Using Multicanonical Molecular Dynamics-Based Dynamic Docking. J Chem Inf Model 2021; 61:5161-5171. [PMID: 34549581 DOI: 10.1021/acs.jcim.1c00712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have performed dynamic docking between a prototypic G-protein-coupled receptor (GPCR) system, the β2-adrenergic receptor, and its antagonist, alprenolol, using one of the enhanced conformation sampling methods, multicanonical molecular dynamics (McMD), which does not rely on any prior knowledge for the definition of the reaction coordinate. Although we have previously applied our McMD-based dynamic docking protocol to various globular protein systems, its application to GPCR systems would be difficult because of their complicated design, which include a lipid bilayer, and because of the difficulty in sampling the configurational space of a binding site that exists deep inside the GPCR. Our simulations sampled a wide array of ligand-bound and ligand-unbound structures, and we measured 427 binding events during our 48 μs production run. Analysis of the ensemble revealed several stable and meta-stable structures, where the most stable structure at the global free energy minimum matches the experimental one. Additional canonical MD simulations were used for refinement and validation of the structures, revealing that most of the intermediates are sufficiently stable to trap the ligand in these intermediary states and furthermore validated our prediction results. Given the difficulty in reaching the orthosteric binding site, chemical optimization of the compound for the second ranking configuration, which binds near the pocket's entrance, might lead to a high-affinity allosteric inhibitor. Accordingly, we show that the application of our methodology can be used to provide crucial insights for the rational design of drugs that target GPCRs.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kanji Oshima
- Biotechnology Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
25
|
Zlobin A, Diankin I, Pushkarev S, Golovin A. Probing the Suitability of Different Ca 2+ Parameters for Long Simulations of Diisopropyl Fluorophosphatase. Molecules 2021; 26:5839. [PMID: 34641383 PMCID: PMC8510429 DOI: 10.3390/molecules26195839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Organophosphate hydrolases are promising as potential biotherapeutic agents to treat poisoning with pesticides or nerve gases. However, these enzymes often need to be further engineered in order to become useful in practice. One example of such enhancement is the alteration of enantioselectivity of diisopropyl fluorophosphatase (DFPase). Molecular modeling techniques offer a unique opportunity to address this task rationally by providing a physical description of the substrate-binding process. However, DFPase is a metalloenzyme, and correct modeling of metal cations is a challenging task generally coming with a tradeoff between simulation speed and accuracy. Here, we probe several molecular mechanical parameter combinations for their ability to empower long simulations needed to achieve a quantitative description of substrate binding. We demonstrate that a combination of the Amber19sb force field with the recently developed 12-6 Ca2+ models allows us to both correctly model DFPase and obtain new insights into the DFP binding process.
Collapse
Affiliation(s)
- Alexander Zlobin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Igor Diankin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey Pushkarev
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
| | - Andrey Golovin
- Faculty of Bioengineering, Lomonosov Moscow State University, 119234 Moscow, Russia; (I.D.); (S.P.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
26
|
Bhakat S. Pepsin-like aspartic proteases (PAPs) as model systems for combining biomolecular simulation with biophysical experiments. RSC Adv 2021; 11:11026-11047. [PMID: 35423571 PMCID: PMC8695779 DOI: 10.1039/d0ra10359d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/21/2021] [Indexed: 01/26/2023] Open
Abstract
Pepsin-like aspartic proteases (PAPs) are a class of aspartic proteases which shares tremendous structural similarity with human pepsin. One of the key structural features of PAPs is the presence of a β-hairpin motif otherwise known as flap. The biological function of the PAPs is highly dependent on the conformational dynamics of the flap region. In apo PAPs, the conformational dynamics of the flap is dominated by the rotational degrees of freedom associated with χ1 and χ2 angles of conserved Tyr (or Phe in some cases). However it is plausible that dihedral order parameters associated with several other residues might play crucial roles in the conformational dynamics of apo PAPs. Due to their size, complexities associated with conformational dynamics and clinical significance (drug targets for malaria, Alzheimer's disease etc.), PAPs provide a challenging testing ground for computational and experimental methods focusing on understanding conformational dynamics and molecular recognition in biomolecules. The opening of the flap region is necessary to accommodate substrate/ligand in the active site of the PAPs. The BIG challenge is to gain atomistic details into how reversible ligand binding/unbinding (molecular recognition) affects the conformational dynamics. Recent reports of kinetics (K i, K d) and thermodynamic parameters (ΔH, TΔS, and ΔG) associated with macro-cyclic ligands bound to BACE1 (belongs to PAP family) provide a perfect challenge (how to deal with big ligands with multiple torsional angles and select optimum order parameters to study reversible ligand binding/unbinding) for computational methods to predict binding free energies and kinetics beyond typical test systems e.g. benzamide-trypsin. In this work, i reviewed several order parameters which were proposed to capture the conformational dynamics and molecular recognition in PAPs. I further highlighted how machine learning methods can be used as order parameters in the context of PAPs. I then proposed some open ideas and challenges in the context of molecular simulation and put forward my case on how biophysical experiments e.g. NMR, time-resolved FRET etc. can be used in conjunction with biomolecular simulation to gain complete atomistic insights into the conformational dynamics of PAPs.
Collapse
Affiliation(s)
- Soumendranath Bhakat
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University P. O. Box 124 SE-22100 Lund Sweden +46-769608418
| |
Collapse
|