1
|
Paikar A, Li X, Avram L, Smith BS, Sütő I, Horváth D, Rennert E, Qiu Y, Tóth Á, Vaikuntanathan S, Semenov SN. Chemical waves in reaction-diffusion networks of small organic molecules. Chem Sci 2025; 16:659-669. [PMID: 39660295 PMCID: PMC11626756 DOI: 10.1039/d4sc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
Chemical waves represent one of the fundamental behaviors that emerge in nonlinear, out-of-equilibrium chemical systems. They also play a central role in regulating behaviors and development of biological organisms. Nevertheless, understanding their properties and achieving their rational synthesis remains challenging. In this work, we obtained traveling chemical waves using synthetic organic molecules. To accomplish this, we ran a thiol-based reaction network in an unstirred flow reactor. Our observations revealed single or multiple waves moving in either the same or opposite directions, a behavior controlled by the geometry of our reactor. A numerical model can fully reproduce this behavior using the proposed reaction network. To better understand the formation of waves, we varied the diffusion coefficient of the fast inhibitor component of the reaction network by attaching polyethylene glycol tails with different lengths to maleimide and studied how these changes affect the properties of the waves and conditions for their sustained production. These studies point towards the importance of the molecular titration network motif in controlling the production of chemical waves in this system. Furthermore, we used machine learning (ML) tools to identify phase boundaries for classes of dynamic behaviors of this system, thus demonstrating the applicability of ML tools for the study of experimental nonlinear reaction-diffusion systems.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
| | - Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
- Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology Shenzhen China
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science Rehovot Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University Tempe Arizona USA
| | - István Sütő
- Department of Physical Chemistry and Materials Science, University of Szeged Szeged Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged Szeged Hungary
| | - Elisabeth Rennert
- Graduate Program in Biophysical Sciences, University of Chicago Chicago IL USA
| | - Yuqing Qiu
- Department of Chemistry, University of Chicago Chicago IL USA
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged Szeged Hungary
| | | | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot Israel
| |
Collapse
|
2
|
Kriukov DV, Huskens J, Wong ASY. Exploring the programmability of autocatalytic chemical reaction networks. Nat Commun 2024; 15:8289. [PMID: 39333532 PMCID: PMC11436770 DOI: 10.1038/s41467-024-52649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Networks of chemical reactions exhibit emergent properties under out-of-equilibrium conditions. Recent advances in systems chemistry demonstrate that networks with sufficient chemical complexity can be harnessed to emulate properties important for neuromorphic computing. In all examples, autocatalysis appears an essential element for facilitating the nonlinear integration of the input and self-regulatory abilities in the output. How this chemical analogue of a positive feedback mechanism can be controlled in a programmable manner is, however, unexplored. Here, we develop a strategy that uses metal ions (Ca2+, La3+, and Nd3+) to control the rate of a trypsin-catalysed autocatalytic reaction network. We demonstrate that this type of control allows for tuning the kinetics in the network, thereby changing the nature of the positive feedback. The simulations and experiments reveal that an input with one or more metal ions allow for temporal and history-dependent outputs that can be mapped onto a variety of mathematical functions.
Collapse
Affiliation(s)
- Dmitrii V Kriukov
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
- MESA+ Institute, University of Twente, Enschede, the Netherlands
- BRAINS (Center for Brain-inspired Nano Systems), University of Twente, Enschede, the Netherlands
| | - Jurriaan Huskens
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands
- MESA+ Institute, University of Twente, Enschede, the Netherlands
| | - Albert S Y Wong
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
- MESA+ Institute, University of Twente, Enschede, the Netherlands.
- BRAINS (Center for Brain-inspired Nano Systems), University of Twente, Enschede, the Netherlands.
| |
Collapse
|
3
|
Zhang Z, Howlett MG, Silvester E, Kukura P, Fletcher SP. A Chemical Reaction Network Drives Complex Population Dynamics in Oscillating Self-Reproducing Vesicles. J Am Chem Soc 2024; 146:18262-18269. [PMID: 38917079 PMCID: PMC11240260 DOI: 10.1021/jacs.4c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
We report chemically fueled oscillations of vesicles. The population cycling of vesicles is driven by their self-reproduction and collapse within a biphasic reaction network involving the interplay of molecular and supramolecular events. We studied the oscillations on the molecular and supramolecular scales and tracked vesicle populations in time by interferometric scattering microscopy and dynamic light scattering. Complex supramolecular events were observed during oscillations─including vesicle reproduction, growth, and decomposition─and differences in the number, size, and mass of aggregates can often be observed within and between pulses. This system's dynamic behavior is reminiscent of a reproductive cycle in living cells.
Collapse
Affiliation(s)
- Zhiheng Zhang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Michael G. Howlett
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Emma Silvester
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Department
of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| | - Philipp Kukura
- The
Kavli Institute for NanoScience Discovery, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K.
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Stephen P. Fletcher
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Buchowiecka AK. Evidence of Gas Phase Glucosyl Transfer and Glycation in the CID/HCD-Spectra of S-Glucosylated Peptides. Int J Mol Sci 2024; 25:7483. [PMID: 39000590 PMCID: PMC11242366 DOI: 10.3390/ijms25137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Protein cysteine S-glycosylation is a relatively rare and less well characterized post-translational modification (PTM). Creating reliable model proteins that carry this modification is challenging. The lack of available models or natural S-glycosylated proteins significantly hampers the development of mass-spectrometry-based (MS-based) methodologies for detecting protein cysteine S-glycosylation in real-world proteomic studies. There is also limited MS-sequencing data describing it as easier to create synthetic S-glycopeptides. Here, we present the results of an in-depth manual analysis of automatically annotated CID/HCD spectra for model S-glucopeptides. The CID spectra show a long series of y/b-fragment ions with retained S-glucosylation, regardless of the dominant m/z signals corresponding to neutral loss of 1,2-anhydroglucose from the precursor ions. In addition, the spectra show signals manifesting glucosyl transfer from the cysteine position onto lysine, arginine (Lys, Arg) side chains, and a peptide N-terminus. Other spectral evidence indicates that the N-glucosylated initial products of transfer are converted into N-fructosylated (i.e., glycated) structures due to Amadori rearrangement. We discuss the peculiar transfer of the glucose oxocarbenium ion (Glc+) to positively charged guanidinium residue (ArgH+) and propose a mechanism for the gas-phase Amadori rearrangement involving a 1,2-hydride ion shift.
Collapse
Affiliation(s)
- Alicja K Buchowiecka
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland
| |
Collapse
|
5
|
Li X, Fomitskaya P, Smaliak VA, Smith BS, Skorb EV, Semenov SN. Selenium catalysis enables negative feedback organic oscillators. Nat Commun 2024; 15:3316. [PMID: 38632338 PMCID: PMC11024130 DOI: 10.1038/s41467-024-47714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
The construction of materials regulated by chemical reaction networks requires regulatory motifs that can be stacked together into systems with desired properties. Multiple autocatalytic reactions producing thiols are known. However, negative feedback loop motifs are unavailable for thiol chemistry. Here, we develop a negative feedback loop based on the selenocarbonates. In this system, thiols induce the release of aromatic selenols that catalyze the oxidation of thiols by organic peroxides. This negative feedback loop has two important features. First, catalytic oxidation of thiols follows Michaelis-Menten-like kinetics, thus increasing nonlinearity for the negative feedback. Second, the strength of the negative feedback can be tuned by varying substituents in selenocarbonates. When combined with the autocatalytic production of thiols in a flow reactor, this negative feedback loop induces sustained oscillations. The availability of this negative feedback motif enables the future construction of oscillatory, homeostatic, adaptive, and other regulatory circuits in life-inspired systems and materials.
Collapse
Affiliation(s)
- Xiuxiu Li
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
- Department of Chemistry and Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and Technology, Shenzhen, China
| | - Polina Fomitskaya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Rieu T, Osypenko A, Lehn JM. Triple Adaptation of Constitutional Dynamic Networks of Imines in Response to Micellar Agents: Internal Uptake-Interfacial Localization-Shape Transition. J Am Chem Soc 2024; 146:9096-9111. [PMID: 38526415 DOI: 10.1021/jacs.3c14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Understanding the behavior of complex chemical reaction networks and how environmental conditions can modulate their organization as well as the associated outcomes may take advantage of the design of related artificial systems. Microenvironments with defined boundaries are of particular interest for their unique properties and prebiotic significance. Dynamic covalent libraries (DCvLs) and their underlying constitutional dynamic networks (CDNs) have been shown to be appropriate for studying adaptation to several processes, including compartmentalization. However, microcompartments (e.g., micelles) provide specific environments for the selective protection from interfering reactions such as hydrolysis and an enhanced chemical promiscuity due to the interface, governing different processes of network modulation. Different interactions between the micelles and the library constituents lead to dynamic sensing, resulting in different expressions of the network through pattern generation. The constituents integrated into the micelles are protected from hydrolysis and hence preferentially expressed in the network composition at the cost of constitutionally linked members. In the present work, micellar integration was observed for two processes: internal uptake based on hydrophobic forces and interfacial localization relying on attractive electrostatic interactions. The latter drives a complex triple adaptation of the network with feedback on the shape of the self-assembled entity. Our results demonstrate how microcompartments can enforce the expression of constituents of CDNs by reducing the hydrolysis of uptaken members, unravelling processes that govern the response of reactions networks. Such studies open the way toward using DCvLs and CDNs to understand the emergence of complexity within reaction networks by their interactions with microenvironments.
Collapse
Affiliation(s)
- Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Artem Osypenko
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
7
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
8
|
Hellerstein J. An oscillating reaction network with an exact closed form solution in the time domain. BMC Bioinformatics 2023; 24:466. [PMID: 38071308 PMCID: PMC10710734 DOI: 10.1186/s12859-023-05600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Oscillatory behavior is critical to many life sustaining processes such as cell cycles, circadian rhythms, and notch signaling. Important biological functions depend on the characteristics of these oscillations (hereafter, oscillation characteristics or OCs): frequency (e.g., event timings), amplitude (e.g., signal strength), and phase (e.g., event sequencing). Numerous oscillating reaction networks have been documented or proposed. Some investigators claim that oscillations in reaction networks require nonlinear dynamics in that at least one rate law is a nonlinear function of species concentrations. No one has shown that oscillations can be produced for a reaction network with linear dynamics. Further, no one has obtained closed form solutions for the frequency, amplitude and phase of any oscillating reaction network. Finally, no one has published an algorithm for constructing oscillating reaction networks with desired OCs. RESULTS This is a theoretical study that analyzes reaction networks in terms of their representation as systems of ordinary differential equations. Our contributions are: (a) construction of an oscillating, two species reaction network [two species harmonic oscillator (2SHO)] that has no nonlinearity; (b) obtaining closed form formulas that calculate frequency, amplitude, and phase in terms of the parameters of the 2SHO reaction network, something that has not been done for any published oscillating reaction network; and (c) development of an algorithm that parameterizes the 2SHO to achieve desired oscillation, a capability that has not been produced for any published oscillating reaction network. CONCLUSIONS Our 2SHO demonstrates the feasibility of creating an oscillating reaction network whose dynamics are described by a system of linear differential equations. Because it is a linear system, we can derive closed form expressions for the frequency, amplitude, and phase of oscillations, something that has not been done for other published reaction networks. With these formulas, we can design 2SHO reaction networks to have desired oscillation characteristics. Finally, our sensitivity analysis suggests an approach to constructing a 2SHO for a biochemical system.
Collapse
|
9
|
Dev D, Wagner N, Pramanik B, Sharma B, Maity I, Cohen-Luria R, Peacock-Lopez E, Ashkenasy G. A Peptide-Based Oscillator. J Am Chem Soc 2023; 145:26279-26286. [PMID: 37984498 DOI: 10.1021/jacs.3c09377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Living organisms are replete with rhythmic and oscillatory behavior at all levels, to the extent that oscillations have been termed as a defining attribute of life. Recent studies of synthetic oscillators that mimic such functions have shown decayed cycles in batch-mode reactions or sustained oscillatory kinetics under flow conditions. Considering the hypothesized functionality of peptides in early chemical evolution and their central role in current bio-nanotechnology, we now reveal a peptide-based oscillator. Oscillatory behavior was achieved by coupling coiled-coil-based replication processes as positive feedback to controlled initiation and inhibition pathways in a continuously stirred tank reactor (CSTR). Our results stress that assembly into the supramolecular structure and specific interactions with the replication substrates are crucial for oscillations. The replication-inhibition processes were first studied in batch mode, which produced a single damped cycle. Thereafter, combined experimental and theoretical characterization of the replication process in a CSTR under different flow and environmental (pH, redox) conditions demonstrated reasonably sustained oscillations. We propose that studies in this direction might pave the way to the design of robust oscillation networks that mimic the autonomous behavior of proteins in cells (e.g., in the cyanobacterial circadian clock) and hence hint at feasible pathways that accelerated the transition from simple peptides to extant enzymes.
Collapse
Affiliation(s)
- Dharm Dev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nathaniel Wagner
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bapan Pramanik
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Bhawna Sharma
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Indrajit Maity
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Centre for Nano and Material Sciences, Jain Global Campus, Bangalore, Karnataka 560070, India
| | - Rivka Cohen-Luria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Enrique Peacock-Lopez
- Department of Chemistry, Williams College, Williamstown, Massachusetts 02167, United States
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Wang H, Cheng Z, Yuan L, Ren L, Pan C, Epstein IR, Gao Q. Role of Fast and Slow Inhibitors in Oscillatory Rhythm Design. J Am Chem Soc 2023; 145:23152-23159. [PMID: 37844139 DOI: 10.1021/jacs.3c07076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
In biological or abiotic systems, rhythms occur, owing to the coupling between positive and negative feedback loops in a reaction network. Using the Semenov-Whitesides oscillatory network for thioester hydrolysis as a prototype, we experimentally and theoretically analyzed the role of fast and slow inhibitors in oscillatory reaction networks. In the presence of positive feedback, a single fast inhibitor generates a time delay, resulting in two saddle-node bifurcations and bistability in a continuously stirred tank reactor. A slow inhibitor produces a node-focus bifurcation, resulting in damped oscillations. With both fast and slow inhibitors present, the node-focus bifurcation repeatedly modulates the saddle-node bifurcations, producing stable periodic oscillations. These fast and slow inhibitions result in a pair of time delays between steeply ascending and descending dynamics, which originate from the positive and negative feedbacks, respectively. This pattern can be identified in many chemical relaxation oscillators and oscillatory models, e.g., the bromate-sulfite pH oscillatory system, the Belousov-Zhabotinsky reaction, the trypsin oscillatory system, and the Boissonade-De Kepper model. This study provides a novel understanding of chemical and biochemical rhythms and suggests an approach to designing such behavior.
Collapse
Affiliation(s)
- Hongzhang Wang
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Zhenfang Cheng
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Ling Yuan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Lin Ren
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Changwei Pan
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| | - Irving R Epstein
- Department of Chemistry and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | - Qingyu Gao
- College of Chemical Engineering, China University of Mining and Technology, Xuzhou221116, Jiangsu, P. R. China
| |
Collapse
|
11
|
Lantos E, Tóth Á, Horváth D. Oscillatory dynamics in a reaction network based on imine hydrolysis. CHAOS (WOODBURY, N.Y.) 2023; 33:103104. [PMID: 37782830 DOI: 10.1063/5.0169860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
We have built an autocatalytic reaction network, based on the hydrolysis of certain imines, which exhibits bistability in an open system. The positive feedback originates from the interplay of fast acid-base equilibria, leading to hydroxide ion production, and pH-dependent hydrolysis rates. The addition of a first-order removal of the autocatalyst can result in sustained pH oscillations close to physiological conditions. The unit-amplitude pH oscillations are accompanied by the stoichiometric conversion of imine into amine back and forth. A systematic parameter search is carried out to characterize the rich observable dynamics and identify the evolving bifurcations.
Collapse
Affiliation(s)
- Emese Lantos
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1., Szeged H-6720, Hungary
| |
Collapse
|
12
|
Ter Harmsel M, Maguire OR, Runikhina SA, Wong ASY, Huck WTS, Harutyunyan SR. A catalytically active oscillator made from small organic molecules. Nature 2023; 621:87-93. [PMID: 37673989 PMCID: PMC10482680 DOI: 10.1038/s41586-023-06310-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/12/2023] [Indexed: 09/08/2023]
Abstract
Oscillatory systems regulate many biological processes, including key cellular functions such as metabolism and cell division, as well as larger-scale processes such as circadian rhythm and heartbeat1-4. Abiotic chemical oscillations, discovered originally in inorganic systems5,6, inspired the development of various synthetic oscillators for application as autonomous time-keeping systems in analytical chemistry, materials chemistry and the biomedical field7-17. Expanding their role beyond that of a pacemaker by having synthetic chemical oscillators periodically drive a secondary function would turn them into significantly more powerful tools. However, this is not trivial because the participation of components of the oscillator in the secondary function might jeopardize its time-keeping ability. We now report a small molecule oscillator that can catalyse an independent chemical reaction in situ without impairing its oscillating properties. In a flow system, the concentration of the catalytically active product of the oscillator shows sustained oscillations and the catalysed reaction is accelerated only during concentration peaks. Augmentation of synthetic oscillators with periodic catalytic action allows the construction of complex systems that, in the future, may benefit applications in automated synthesis, systems and polymerization chemistry and periodic drug delivery.
Collapse
Affiliation(s)
- Matthijs Ter Harmsel
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Oliver R Maguire
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sofiya A Runikhina
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Albert S Y Wong
- Department of Molecules and Materials, University of Twente, Enschede, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| | | |
Collapse
|
13
|
Kumar Bandela A, Sadihov‐Hanoch H, Cohen‐Luria R, Gordon C, Blake A, Poppitz G, Lynn DG, Ashkenasy G. The Systems Chemistry of Nucleic‐acid‐Peptide Networks. Isr J Chem 2022. [DOI: 10.1002/ijch.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anil Kumar Bandela
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Hava Sadihov‐Hanoch
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Rivka Cohen‐Luria
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Christella Gordon
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Alexis Blake
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - George Poppitz
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - David G. Lynn
- Chemistry and Biology Emory University 1521 Dickey Drive NE Atlanta GA 30322 USA
| | - Gonen Ashkenasy
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| |
Collapse
|
14
|
Schnitter F, Rieß B, Jandl C, Boekhoven J. Memory, switches, and an OR-port through bistability in chemically fueled crystals. Nat Commun 2022; 13:2816. [PMID: 35595758 PMCID: PMC9122941 DOI: 10.1038/s41467-022-30424-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system’s abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together. In biology, information is stored and processed using highly evolved molecules in bistable states. Here, the authors demonstrate bistability in a synthetic system without the need for evolved biomolecules or autocatalytic networks.
Collapse
Affiliation(s)
- Fabian Schnitter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Benedikt Rieß
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748, Garching, Germany.
| |
Collapse
|
15
|
Paikar A, Novichkov AI, Hanopolskyi AI, Smaliak VA, Sui X, Kampf N, Skorb EV, Semenov SN. Spatiotemporal Regulation of Hydrogel Actuators by Autocatalytic Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106816. [PMID: 34910837 DOI: 10.1002/adma.202106816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Regulating hydrogel actuators with chemical reaction networks is instrumental for constructing life-inspired smart materials. Herein, hydrogel actuators are engineered that are regulated by the autocatalytic front of thiols. The actuators consist of two layers. The first layer, which is regular polyacrylamide hydrogel, is in a strained conformation. The second layer, which is polyacrylamide hydrogel with disulfide crosslinks, maintains strain in the first layer. When thiols released by the autocatalytic front reduce disulfide crosslinks, the hydrogel actuates by releasing the mechanical strain in the first layer. The autocatalytic front is sustained by the reaction network, which uses thiouronium salts, disulfides of β-aminothiols, and maleimide as starting components. The gradual actuation by the autocatalytic front enables movements such as gradual unrolling, screwing, and sequential closing of "fingers." This actuation also allows the transmission of chemical signals in a relay fashion and the conversion of a chemical signal to an electrical signal. Locations and times of spontaneous initiation of autocatalytic fronts can be preprogrammed in the spatial distribution of the reactants in the hydrogel. To approach the functionality of living matter, the actuators triggered by an autocatalytic front can be integrated into smart materials regulated by chemical circuits.
Collapse
Affiliation(s)
- Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Alexander I Novichkov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anton I Hanopolskyi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Viktoryia A Smaliak
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaomeng Sui
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir Kampf
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg, 191002, Russia
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|