1
|
Wang Z, Tang Y, Liu S, Zhao L, Li H, He C, Duan C. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp 3)-H functionalization with coordination polymer. Nat Commun 2024; 15:8813. [PMID: 39394220 PMCID: PMC11470074 DOI: 10.1038/s41467-024-53115-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/01/2024] [Indexed: 10/13/2024] Open
Abstract
Activation and selective oxidation of inert C(sp3)-H bonds remain one of the most challenging tasks in current synthetic chemistry due to the inherent inertness of C(sp3)-H bonds. In this study, inspired by natural monooxygenases, we developed a coordination polymer with naphthalenediimide (NDI)-based ligands and binuclear iron nodes. The mixed-valence FeIIIFeII species and chlorine radicals (Cl•) are generated via ligand-to-metal charge transfer (LMCT) between FeIII and chlorine ions. These Cl• radicals abstract a hydrogen atom from the inert C(sp3)-H bond of alkanes via hydrogen atom transfer (HAT). In addition, NDI converts oxygen to 1O2 via energy transfer (EnT), which then coordinates to FeII, forming an FeIV = O intermediate for the selective oxidation of C(sp3)-H bonds. This synthetic platform, which combines photoinduced EnT, LMCT and HAT, provides a EnT-mediated parallel multiphoton excitation strategy with kinetic synergy effect for selective C(sp3)-H oxidation under mild conditions and a blueprint for designing coordination polymer-based photocatalysts for C(sp3)-H bond oxidation.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| | - Huaqing Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China.
| |
Collapse
|
2
|
Tien EP, Cao G, Chen Y, Clark N, Tillotson E, Ngo DT, Carter JH, Thompson SP, Tang CC, Allen CS, Yang S, Schröder M, Haigh SJ. Electron beam and thermal stabilities of MFM-300(M) metal-organic frameworks. JOURNAL OF MATERIALS CHEMISTRY. A 2024; 12:24165-24174. [PMID: 39301275 PMCID: PMC11409654 DOI: 10.1039/d4ta03302g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/30/2024] [Indexed: 09/22/2024]
Abstract
This work reports the thermal and electron beam stabilities of a series of isostructural metal-organic frameworks (MOFs) of type MFM-300(M) (M = Al, Ga, In, Cr). MFM-300(Cr) was most stable under the electron beam, having an unusually high critical electron fluence of 1111 e- Å-2 while the Group 13 element MOFs were found to be less stable. Within Group 13, MFM-300(Al) had the highest critical electron fluence of 330 e- Å-2, compared to 189 e- Å-2 and 147 e- Å-2 for the Ga and In MOFs, respectively. For all four MOFs, electron beam-induced structural degradation was independent of crystal size and was highly anisotropic, although both the length and width of the channels decreased during electron beam irradiation. Notably, MFM-300(Cr) was found to retain crystallinity while shrinking up to 10%. Thermal stability was studied using in situ synchrotron X-ray diffraction at elevated temperature, which revealed critical temperatures for crystal degradation to be 605, 570, 490 and 480 °C for Al, Cr, Ga, and In, respectively. The pore channel diameters contracted by ≈0.5% on desorption of solvent species, but thermal degradation at higher temperatures was isotropic. The observed electron stabilities were found to scale with the relative inertness of the cations and correlate well to the measured lifetime of the materials when used as photocatalysts.
Collapse
Affiliation(s)
- Eu-Pin Tien
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Guanhai Cao
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Yinlin Chen
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nick Clark
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Evan Tillotson
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Duc-The Ngo
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Joseph H Carter
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen P Thompson
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Chiu C Tang
- Diamond Light Source Ltd Diamond House, Harwell Science and Innovation Campus Didcot Oxfordshire OX11 0DE UK
| | - Christopher S Allen
- Department of Materials, University of Oxford Oxford OX1 3PH UK
- Electron Physical Science Imaging Centre, Diamond Light Source Ltd Didcot Oxfordshire OX11 0DE UK
| | - Sihai Yang
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martin Schröder
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sarah J Haigh
- Department of Materials, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
3
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Shen Q, Chen J, Jing X, Duan C. Modifying Parallel Excitations into One Framework for C(sp 3)─H Bond Activation with Energy Combined More Than Two Photons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404293. [PMID: 39052896 PMCID: PMC11423249 DOI: 10.1002/advs.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Indexed: 07/27/2024]
Abstract
Natural photosynthesis enzymes utilize energies of several photons for challenging oxidation of water, whereas artificial photo-catalysis typically involves only single-photon excitation. Herein, a multiphoton excitation strategy is reported that combines parallel photo-excitations with a photoinduced electron transfer process for the activation of C(sp3)─H bonds, including methane. The metal-organic framework Fe3-MOF is designed to consolidate 4,4',4″-nitrilotrisbenzoic units for the photoactivation of dioxygen and trinuclear iron clusters as the HAT precursor for photoactivating alkanes. Under visible light irradiation, the dyes and iron clusters absorbed parallel photons simultaneously to reach their excited states, respectively, generating 1O2 via energy transfer and chlorine radical via ligand-to-metal charge transfer. The further excitation of organic dyes leads to the reduction of 1O2 into O2 •- through a photoinduced electron transfer, guaranteeing an extra multiphoton oxygen activation manner. The chlorine radical abstracts a hydrogen atom from alkanes, generating the carbon radical for further oxidation transformation. Accordingly, the total oxidation conversion of alkane utilizing three photoexcitation processes combines the energies of more than two photons. This new platform synergistically combines a consecutive excited photoredox organic dye and a HAT catalyst to combine the energies of more than two photons, providing a promising multiphoton catalysis strategy under energy saving, and high efficiency.
Collapse
Affiliation(s)
- Qingbo Shen
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiali Chen
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
5
|
Wang L, Chen L, Qin Z, Zhao B, Ni K, Li H, Li J, Duan H, Ren F, An J. Samarium-Oxo/Hydroxy Cluster: A Solar Photocatalyst for Chemoselective Aerobic Oxidation of Thiols for Disulfide Synthesis. J Org Chem 2024; 89:8357-8362. [PMID: 38819110 DOI: 10.1021/acs.joc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Oxidation contributes as a secondary driver of the prevailing carbon emission in the chemical industries. To address this issue, photocatalytic aerobic oxidation has emerged as a promising alternative. However, the challenge of achieving satisfactory chemoselectivity and effective use of solar light has hindered progress in this area. In this context, the present study introduces a novel homogeneous photocatalyst, [Sm6O(OH)8(H2O)24]I8(H2O)8 cluster (Sm-OC), via a unique auxiliary ligand-free oxidative hydrolysis. Using Sm-OC as catalyst, a solar photocatalyzed aerobic oxidation of thiols has been developed for the synthesis of valuable disulfides. Remarkably, this catalyst manifested a significant turnover number ≥2000 under tested conditions. Sm-OC-catalyzed aerobic oxidation showcased remarkable chemoselectivity. In thiol oxidations, despite the vulnerability of disulfides toward overoxidation, overoxidized byproducts or oxidation of nontarget functional groups was not detected across all 28 tested substrates. This investigation presents the first application of a lanthanide-oxo/hydroxy cluster in photocatalysis.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Lingxia Chen
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Zixuan Qin
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Bihan Zhao
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Ke Ni
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hengzhao Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Junyu Li
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jie An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
7
|
Huang W, Mei Q, Xu S, An B, He M, Li J, Chen Y, Han X, Luo T, Guo L, Hurd J, Lee D, Tillotson E, Haigh SJ, Walton A, Day SJ, Natrajan LS, Schröder M, Yang S. Direct Synthesis of N-formamides by Integrating Reductive Amination of Ketones and Aldehydes with CO 2 Fixation in a Metal-Organic Framework. Chemistry 2024; 30:e202303289. [PMID: 37899311 PMCID: PMC10952134 DOI: 10.1002/chem.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
Formamides are important feedstocks for the manufacture of many fine chemicals. State-of-the-art synthesis of formamides relies on the use of an excess amount of reagents, giving copious waste and thus poor atom-economy. Here, we report the first example of direct synthesis of N-formamides by coupling two challenging reactions, namely reductive amination of carbonyl compounds, particularly biomass-derived aldehydes and ketones, and fixation of CO2 in the presence of H2 over a metal-organic framework supported ruthenium catalyst, Ru/MFM-300(Cr). Highly selective production of N-formamides has been observed for a wide range of carbonyl compounds. Synchrotron X-ray powder diffraction reveals the presence of strong host-guest binding interactions via hydrogen bonding and parallel-displaced π⋅⋅⋅π interactions between the catalyst and adsorbed substrates facilitating the activation of substrates and promoting selectivity to formamides. The use of multifunctional porous catalysts to integrate CO2 utilisation in the synthesis of formamide products will have a significant impact in the sustainable synthesis of feedstock chemicals.
Collapse
Affiliation(s)
- Wenyuan Huang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Qingqing Mei
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Shaojun Xu
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
- UK Catalysis HubResearch Complex at HarwellRutherford Appleton LaboratoryHarwellOX11 0FAUK
| | - Bing An
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Meng He
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Jiangnan Li
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Xue Han
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of ChemistryBeijing Normal UniversityBeijing100875China
| | - Tian Luo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Lixia Guo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Joseph Hurd
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Daniel Lee
- Department of Chemical EngineeringUniversity of ManchesterManchesterM13 9PLUK
| | - Evan Tillotson
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Haigh
- Department of MaterialsUniversity of ManchesterManchesterM13 9PLUK
| | - Alex Walton
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Day
- Diamond Light Source Harwell Science CampusOxfordshireOX11 0DEUK
| | | | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| |
Collapse
|
8
|
Wang X, Liu S, Lin S, Qi K, Yan Y, Ma Y. Visible Light Motivated the Photocatalytic Degradation of P-Nitrophenol by Ca 2+-Doped AgInS 2. Molecules 2024; 29:361. [PMID: 38257274 PMCID: PMC11487403 DOI: 10.3390/molecules29020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
4-Nitrophenol (4-NP) is considered a priority organic pollutant with high toxicity. Many authors have been committed to developing efficient, green, and environmentally friendly technological processes to treat wastewater containing 4-NP. Here, we investigated how the addition of Ca2+ affects the catalytic degradation of 4-NP with AgInS2 when exposed to light. We synthesized AgInS2 (AIS) and Ca2+-doped AgInS2 (Ca-AIS) with varying amounts of Ca2+ using a low-temperature liquid phase method. The SEM, XRD, XPS, HRTEM, BET, PL, and UV-Vis DRS characteristics were employed to analyze the structure, morphology, and optical properties of the materials. The effects of different amounts of Ca2+ on the photocatalytic degradation of 4-NP were investigated. Under visible light illumination for a duration of 120 min, a degradation rate of 63.2% for 4-Nitrophenol (4-NP) was achieved. The results showed that doping with an appropriate amount of Ca2+ could improve the visible light catalytic activity of AIS. This work provides an idea for finding suitable cheap alkaline earth metal doping agents to replace precious metals for the improvement of photocatalytic activities.
Collapse
Affiliation(s)
- Xuejiao Wang
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Shuyuan Liu
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Shu Lin
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, China; (X.W.); (S.L.); (S.L.)
| | - Yuhua Ma
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi 830054, China
| |
Collapse
|
9
|
Luo T, Wang Z, Chen Y, Li H, Peng M, Tuna F, McInnes EJL, Day SJ, An J, Schröder M, Yang S. Photocatalytic Dehalogenative Deuteration of Halides over a Robust Metal-Organic Framework. Angew Chem Int Ed Engl 2023; 62:e202306267. [PMID: 37783657 PMCID: PMC10952292 DOI: 10.1002/anie.202306267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Deuterium labelling of organic compounds is an important process in chemistry. We report the first example of photocatalytic dehalogenative deuteration of both arylhalides and alkylhalides (40 substrates) over a metal-organic framework, MFM-300(Cr), using CD3 CN as the deuterium source at room temperature. MFM-300(Cr) catalyses high deuterium incorporation and shows excellent tolerance to various functional groups. Synchrotron X-ray powder diffraction reveals the activation of halogenated substrates via confined binding within MFM-300(Cr). In situ electron paramagnetic resonance spectroscopy confirms the formation of carbon-based radicals as intermediates and reveals the reaction pathway. This protocol removes the use of precious-metal catalysts from state-of-the-art processes based upon direct hydrogen isotope exchange and shows high photocatalytic stability, thus enabling multiple catalytic cycles.
Collapse
Affiliation(s)
- Tian Luo
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Zi Wang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Yinlin Chen
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Hengzhao Li
- Department of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Mengqi Peng
- Department of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Floriana Tuna
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Eric J. L. McInnes
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- Photon Science InstituteUniversity of ManchesterManchesterM13 9PLUK
| | - Sarah J. Day
- Diamond Light SourceHarwell Science CampusOxfordshireOX11 0DEUK
| | - Jie An
- Department of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Martin Schröder
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | - Sihai Yang
- Department of ChemistryUniversity of ManchesterManchesterM13 9PLUK
- College of Chemistry and Molecular EngineeringBeijing National Laboratory for Molecular SciencesPeking UniversityBeijing100871China
| |
Collapse
|
10
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
11
|
Song J, Yu X, Nefedov A, Weidler PG, Grosjean S, Bräse S, Wang Y, Wöll C. Metal-Organic Framework Thin Films as Ideal Matrices for Azide Photolysis in Vacuum. Angew Chem Int Ed Engl 2023; 62:e202306155. [PMID: 37243400 DOI: 10.1002/anie.202306155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Studies on reactions in solutions are often hampered by solvent effects. In addition, detailed investigation on kinetics is limited to the small temperature regime where the solvent is liquid. Here, we report the in situ spectroscopic observation of UV-induced photochemical reactions of aryl azides within a crystalline matrix in vacuum. The matrices are formed by attaching the reactive moieties to ditopic linkers, which are then assembled to yield metal-organic frameworks (MOFs) and surface-mounted MOFs (SURMOFs). These porous, crystalline frameworks are then used as model systems to study azide-related chemical processes under ultrahigh vacuum (UHV) conditions, where solvent effects can be safely excluded and in a large temperature regime. Infrared reflection absorption spectroscopy (IRRAS) allowed us to monitor the photoreaction of azide in SURMOFs precisely. The in situ IRRAS data, in conjunction with XRD, MS, and XPS, reveal that illumination with UV light first leads to forming a nitrene intermediate. In the second step, an intramolecular rearrangement occurs, yielding an indoloindole derivative. These findings unveil a novel pathway for precisely studying azide-related chemical transformations. Reference experiments carried out for solvent-loaded SURMOFs reveal a huge diversity of other reaction schemes, thus highlighting the need for model systems studied under UHV conditions.
Collapse
Affiliation(s)
- Jimin Song
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Xiaojuan Yu
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexei Nefedov
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter G Weidler
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sylvian Grosjean
- Institute for Biological and Chemical Systems (IBCS-FMS) and IBG3-SML, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute for Biological and Chemical Systems (IBCS-FMS) and IBG3-SML, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
12
|
Wang J, Üner NB, Dubowsky SE, Confer MP, Bhargava R, Sun Y, Zhou Y, Sankaran RM, Moore JS. Plasma Electrochemistry for Carbon-Carbon Bond Formation via Pinacol Coupling. J Am Chem Soc 2023; 145:10470-10474. [PMID: 37146270 DOI: 10.1021/jacs.3c01779] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The formation of carbon-carbon bonds by pinacol coupling of aldehydes and ketones requires a large negative reduction potential, often realized with a stoichiometric reducing reagent. Here, we use solvated electrons generated via a plasma-liquid process. Parametric studies with methyl-4-formylbenzoate reveal that selectivity over the competing reduction to the alcohol requires careful control over mass transport. The generality is demonstrated with benzaldehydes, benzyl ketones, and furfural. A reaction-diffusion model explains the observed kinetics, and ab initio calculations provide insight into the mechanism. This study opens the possibility of a metal-free, electrically-powered, sustainable method for reductive organic reactions.
Collapse
Affiliation(s)
- Jian Wang
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Necip B Üner
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Chemical Engineering Department, Middle East Technical University, Ankara 06800, Turkey
| | - Scott Edwin Dubowsky
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew P Confer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Bhargava
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunyan Sun
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuting Zhou
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - R Mohan Sankaran
- Nuclear, Plasma and Radiological Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Control of the pore chemistry in metal-organic frameworks for efficient adsorption of benzene and separation of benzene/cyclohexane. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
14
|
Xiao W, Cheng M, Liu Y, Wang J, Zhang G, Wei Z, Li L, Du L, Wang G, Liu H. Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wenjun Xiao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Yang Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Jun Wang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biohydrometallurgy of Ministry of Education, Central South University, Changsha 410083, China
| | - Gaoxia Zhang
- Carbon Neutrality Research Institute of Power China Jiangxi Electric Power Construction Co., Ltd., Nanchang 330001, China
| | - Zhen Wei
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Ling Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Li Du
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Hongda Liu
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Yu J, Zhang P, Li L, Li K, Zhang G, Liu J, Wang T, Zhao ZJ, Gong J. Electroreductive coupling of benzaldehyde by balancing the formation and dimerization of the ketyl intermediate. Nat Commun 2022; 13:7909. [PMID: 36564379 PMCID: PMC9789095 DOI: 10.1038/s41467-022-35463-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Electroreductive coupling of biomass-derived benzaldehyde offers a sustainable approach to producing value-added hydrobenzoin. The low efficiency of the reaction mainly ascribes to the mismatch of initial formation and subsequent dimerization of ketyl intermediates (Ph-CH = O → Ph-C·-OH → Ph-C(OH)-C(OH)-Ph). This paper describes a strategy to balance the active sites for the generation and dimerization of ketyl intermediates by constructing bimetallic Pd/Cu electrocatalysts with tunable surface coverage of Pd. A Faradaic efficiency of 63.2% and a hydrobenzoin production rate of up to 1.27 mmol mg-1 h-1 (0.43 mmol cm-2 h-1) are achieved at -0.40 V vs. reversible hydrogen electrode. Experimental results and theoretical calculations reveal that Pd promotes the generation of the ketyl intermediate, and Cu enhances their dimerization. Moreover, the balance between these two sites facilitates the coupling of benzaldehyde towards hydrobenzoin. This work offers a rational strategy to design efficient electrocatalysts for complex reactions through the optimization of specified active sites for different reaction steps.
Collapse
Affiliation(s)
- Jia Yu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Peng Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Lulu Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Kailang Li
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Gong Zhang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jia Liu
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Tuo Wang
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, 350207, Fuzhou, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jinlong Gong
- School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| |
Collapse
|
16
|
Lin X, Ng SF, Ong WJ. Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Zhang T, Qiao C, Xia L, Yuan T, Wei Q, Yang Q, Chen S. Triphenylamine-based cadmium coordination polymer as a heterogeneous photocatalyst for visible-light-driven α-alkylation of aldehydes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhang D, Ren P, Liu W, Li Y, Salli S, Han F, Qiao W, Liu Y, Fan Y, Cui Y, Shen Y, Richards E, Wen X, Rummeli MH, Li Y, Besenbacher F, Niemantsverdriet H, Lim T, Su R. Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitic Carbon Nitride for Hydrogenative Coupling Reactions. Angew Chem Int Ed Engl 2022; 61:e202204256. [PMID: 35334135 PMCID: PMC9320934 DOI: 10.1002/anie.202204256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/20/2022]
Abstract
Employing pure water, the ultimate green source of hydrogen donor to initiate chemical reactions that involve a hydrogen atom transfer (HAT) step is fascinating but challenging due to its large H-O bond dissociation energy (BDEH-O =5.1 eV). Many approaches have been explored to stimulate water for hydrogenative reactions, but the efficiency and productivity still require significant enhancement. Here, we show that the surface hydroxylated graphitic carbon nitride (gCN-OH) only requires 2.25 eV to activate H-O bonds in water, enabling abstraction of hydrogen atoms via dehydrogenation of pure water into hydrogen peroxide under visible light irradiation. The gCN-OH presents a stable catalytic performance for hydrogenative N-N coupling, pinacol-type coupling and dehalogenative C-C coupling, all with high yield and efficiency, even under solar radiation, featuring extensive impacts in using renewable energy for a cleaner process in dye, electronic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| | - Pengju Ren
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Wuwen Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yaru Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Sofia Salli
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Feiyu Han
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| | - Wei Qiao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yu Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yingzhu Fan
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Yi Cui
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Yanbin Shen
- Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO)No. 398 Ruoshui Road, Suzhou Industrial ParkSuzhou215123China
| | - Emma Richards
- School of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Xiaodong Wen
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Mark H. Rummeli
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- State Key Laboratory of Coal ConversionInstitute of Coal ChemistryTaiyuan030001China
| | - Flemming Besenbacher
- Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityGustav Wieds Vej 14DK-8000Aarhus CDenmark
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
- SynCat@DIFFERSyngaschem BV6336 HHEindhovenThe Netherlands
| | - Tingbin Lim
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBin-hai New CityFuzhou350207China
| | - Ren Su
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)Soochow UniversitySuzhou215006China
- SynCat@Beijing, Synfuels China Technology Co. Ltd.Leyuan South Street II, No.1, Yanqi Economic Development Zone C#, Huairou DistrictBeijing101407China
| |
Collapse
|
19
|
Wang K, Jiang H, Liu H, Chen H, Zhang F. Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols via the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaixuan Wang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huating Jiang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Helong Liu
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Huiying Chen
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| | - Fang Zhang
- Department of Chemistry, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, China
| |
Collapse
|
20
|
Liu H, Cheng M, Liu Y, Zhang G, Li L, Du L, Li B, Xiao S, Wang G, Yang X. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Behera P, Subudhi S, Tripathy SP, Parida K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhang D, Ren P, Liu W, Li Y, Salli S, Han F, Qiao W, Liu Y, Fan Y, Cui Y, Shen Y, Richards E, Wen X, Rummeli MH, Li Y, Besenbacher F, Niemantsverdriet H, Lim T, Su R. Photocatalytic Abstraction of Hydrogen Atoms from Water Using Hydroxylated Graphitc Carbon Nitride for Hydrogenative Coupling Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dongsheng Zhang
- Soochow University Soochow Institute for Energy and Materials InnovationS (SIEMIS) CHINA
| | - Pengju Ren
- Synfuels China Technology Co Ltd R&D CHINA
| | - Wuwen Liu
- Soochow University Soochow Institute for Energy and Materials InnovationS (SIEMIS) CHINA
| | - Yaru Li
- Synfuels China Technology Co Ltd R&D Taiyuan CHINA
| | - Sofia Salli
- Cardiff University Catalysis institute CHINA
| | - Feiyu Han
- Soochow University College of Energy CHINA
| | - Wei Qiao
- Soochow University College of Energy CHINA
| | - Yu Liu
- Soochow University College of Energy CHINA
| | - Yingzhu Fan
- Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | - Yi Cui
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences: Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | - Yanbin Shen
- Suzhou Institute of Nano-tech and Nano-Bionics Chinese Academy of Sciences: Chinese Academy of Sciences Suzhou Institute of Nano-tech and Nano-Bionics Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO) CHINA
| | | | - Xiaodong Wen
- Shanxi Institute of Coal Chemistry: Chinese Academy of Sciences Institute of Coal Chemistry CCI CHINA
| | | | - Yongwang Li
- Shanxi Institute of Coal Chemistry: Chinese Academy of Sciences Institute of Coal Chemistry CCI CHINA
| | | | | | - Tingbin Lim
- Joint School of National university of Singapore and Tianjing University International Campus of Tianjin University CHINA
| | - Ren Su
- Soochow University Dept. Energy Moye St. 688 215006 Suzhou CHINA
| |
Collapse
|
23
|
Lu G, Chu F, Huang X, Li Y, Liang K, Wang G. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214240] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Sarkar FK, Gupta A, Jamatia R, Anal JMH, Pal AK. A green and sustainable approach for the synthesis of 1,5-benzodiazepines and spirooxindoles in one-pot using a MIL-101(Cr) metal–organic framework as a reusable catalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj03176g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Green and efficient protocols for the synthesis of 1,5-benzodiazepines and spirooxindoles were developed utilizing MIL-101(Cr) in SFRC and water as solvent respectively.
Collapse
Affiliation(s)
- Fillip Kumar Sarkar
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Department of Chemistry, St. Joseph's College (Autonomous), #36 Lal Bagh Main Road, Shanti Nagar, Bangaluru 560027, Karnataka, India
| | - Ramen Jamatia
- Department of Chemistry, Rajiv Gandhi University, Rono Hills, Doimukh 791112, Arunachal Pradesh, India
| | - Jasha Momo H. Anal
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Canal Road, Jammu 180001, India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|