1
|
Peng H, Han Y, Zhang L, Geng Y, Yu Z, Xu C, Yuan Y, Zhou Z, Liang X, Zhu J, Zhu Z. Boosting Lithium Storage Performance of Small-Molecule Organic Cathodes through Synergistic Molecular Engineering and Nanostructure Design. Angew Chem Int Ed Engl 2025; 64:e202502088. [PMID: 39932464 DOI: 10.1002/anie.202502088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Small-molecule organic carbonyl compounds (SMOCCs) featuring high theoretical capacities are promising cathodes for lithium-ion batteries (LIBs), but facing challenges in cycling stability and rate performance owing to their high solubility in organic electrolytes and low conductivity. Herein, we propose a novel architecture wherein nanosized SMOCCs with N-heterocycle-extended π-conjugation are uniformly immobilized on reduced graphene oxide (rGO). This approach leverages the N-heterocycles to create additional active sites and strengthen π-π interactions with rGO, while the homogeneous distribution of nanosized SMOCCs on rGO facilitates efficient charge transport and electrolyte infiltration. As a demonstration, we synthesize a composite material using dipyrido[3',2':5,6;2'',3'':7,8]quinoxalino[2,3-i]dipyrido[3,2-a:2',3'-c] phenazine-10,21-dione (DQDPD) as the active component, which exhibits remarkable electrochemical properties in LIBs, including an ultrahigh capacity of 505 mAh g-1 at 0.2 A g-1, exceptional cycle stability with 82 % capacity retention after 3000 cycles at 5 A g-1, and outstanding rate capability of 290 mAh g-1 at 10 A g-1. Our approach, which integrates molecular engineering and nanostructure design, provides a novel paradigm for simultaneously realizing high capacity, long lifespan, and rapid rate capability in SMOCCs.
Collapse
Affiliation(s)
- Huiling Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yaheng Geng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zehao Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chen Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yizhi Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xiao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jian Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhiqiang Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Zhang Y, Apostol P, Rambabu D, Guo X, Liu X, Lin X, Xie H, Chen X, Robeyns K, Wang J, Wang J, Vlad A. Ionically conducting Li- and Na-phosphonates as organic electrode materials for rechargeable batteries. Chem Sci 2025; 16:1819-1825. [PMID: 39720142 PMCID: PMC11664480 DOI: 10.1039/d4sc07732f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
Facilitating rapid charge transfer in electrode materials necessitates the optimization of their ionic transport properties. Currently, only a limited number of Li/Na-ion organic cathode materials have been identified, and those exhibiting intrinsic solid-phase ionic conductivity are even rarer. In this study, we present tetra-lithium and sodium salts with the generic formulae: A4-Ph-CH3P and A4-Ph-PhP, wherein A = Li, Na; Ph-CH3P = 2,5-dioxido-1,4-phenylene bis(methylphosphinate); Ph-PhP = 2,5-dioxido-1,4-phenylene bis(phenylphosphinate), as novel alkali-ion reservoir cathode materials. Notably, A4-Ph-PhP exhibits impressive Li-ion and Na-ion conductivities, measured at 2.6 × 10-7 and 1.4 × 10-7 S cm-1, respectively, in a dry state at 30 °C. To the best of our knowledge, these represent the first example of small-molecule organic cathode materials with intrinsic Li+ and Na+ conductivity. Theoretical calculations provide further insight into the electrochemical activity of the Li/Na-phenolate groups, as well as the enhanced electron affinity resulting from -phenyl and -Na substitutions. Additionally, Na4-Ph-PhP displays two distinct charge-discharge plateaus at approximately 2.2 V and 2.7 V, and 2.0 V and 2.5 V vs. Na+/Na, respectively, and demonstrates stable cycling performance, with 100 cycles at a rate of 0.1C and an impressive 1000 cycles at 1C. This study not only expands the portfolio of phenolate-based organic salts for use in metal-ion batteries but also underscores the potential of phosphonate-based organic materials in advancing energy storage technologies.
Collapse
Affiliation(s)
- Yan Zhang
- School of Materials Science and Engineering, Anhui Graphene Carbon Fiber Research Center, Anhui University Hefei 230601 P. R. China
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University Changsha 410082 Hunan P. R. China
| | - Petru Apostol
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Darsi Rambabu
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Xiaolong Guo
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Xuelian Liu
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Xiaodong Lin
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd. P. R. China
| | - Xiaohua Chen
- College of Materials Science and Engineering, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University Changsha 410082 Hunan P. R. China
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Jiande Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Junzhong Wang
- School of Materials Science and Engineering, Anhui Graphene Carbon Fiber Research Center, Anhui University Hefei 230601 P. R. China
| | - Alexandru Vlad
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis, Université Catholique de Louvain Louvain-la-Neuve Belgium
| |
Collapse
|
3
|
Zheng Z, Qi L, Luan X, Zhao S, Xue Y, Li Y. Growing highly ordered Pt and Mn bimetallic single atomic layers over graphdiyne. Nat Commun 2024; 15:7331. [PMID: 39187493 PMCID: PMC11347568 DOI: 10.1038/s41467-024-51687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Controlling the precise growth of atoms is necessary to achieve manipulation of atomic composition and atomic position, regulation of electronic structure, and an understanding of reactions at the atomic level. Herein, we report a facile method for ordered anchoring of zero-valent platinum and manganese atoms with single-atom thickness on graphdiyne under mild conditions. Due to strong and incomplete charge transfer between graphdiyne and metal atoms, the formation of metal clusters and nanoparticles can be inhibited. The size, composition and structure of the bimetallic nanoplates are precisely controlled by the natural structure-limiting effect of graphdiyne. Experimental characterization clearly demonstrates such a fine control process. Electrochemical measurements show that the active site of platinum-manganese interface on graphdiyne guarantees the high catalytic activity and selectivity (~100%) for alkene-to-diol conversion. This work lays a solid foundation for obtaining high-performance nanomaterials by the atomic engineering of active site.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Lu Qi
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Xiaoyu Luan
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Shuya Zhao
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China
| | - Yurui Xue
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Yuliang Li
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, School of Chemistry and Chemical Engineering, Shandong University Jinan 250100, Jinan, China.
- CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
4
|
Díaz-Ruiz M, Nieto-Rodríguez M, Maseras F. Revealing the Mechanistic Features of an Electrosynthetic Catalytic Reaction and the Role of Redox Mediators through DFT Calculations and Microkinetic Modeling. Chemphyschem 2024; 25:e202400402. [PMID: 38739104 DOI: 10.1002/cphc.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Organic electrosynthesis is an emerging field that provides original selectivity while adding features of atom economy, sustainability, and selectivity. Electrosynthesis is often enhanced by redox mediators or electroauxiliaries. The mechanistic understanding of organic electrosynthesis is however often limited by the low lifetime of intermediates and its difficult detection. In this work, we report a computational analysis of the mechanism of an appealing reaction previously reported by Mei and co-workers which is catalyzed by copper and employs iodide as redox mediator. Our scheme combines DFT calculations with microkinetic modeling and covers both the reaction in solution and the electrodic steps. A detailed mechanistic scheme is obtained which reproduces well experimental data and opens perspectives for the general treatment of these processes.
Collapse
Affiliation(s)
- Marina Díaz-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Marc Nieto-Rodríguez
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel⋅lí Domingo s/n, Tarragona, 43007, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology, Avgda. Països, Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
5
|
Sun Y, Li J, Xu S, Zhou H, Guo S. Molecular Engineering toward Robust Solid Electrolyte Interphase for Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311687. [PMID: 38081135 DOI: 10.1002/adma.202311687] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Lithium-metal batteries (LMBs) with high energy density are becoming increasingly important in global sustainability initiatives. However, uncontrollable dendrite seeds, inscrutable interfacial chemistry, and repetitively formed solid electrolyte interphase (SEI) have severely hindered the advancement of LMBs. Organic molecules have been ingeniously engineered to construct targeted SEI and effectively minimize the above issues. In this review, multiple organic molecules, including polymer, fluorinated molecules, and organosulfur, are comprehensively summarized and insights into how to construct the corresponding elastic, fluorine-rich, and organosulfur-containing SEIs are provided. A variety of meticulously selected cases are analyzed in depth to support the arguments of molecular design in SEI. Specifically, the evolution of organic molecules-derived SEI is discussed and corresponding design principles are proposed, which are beneficial in guiding researchers to understand and architect SEI based on organic molecules. This review provides a design guideline for constructing organic molecule-derived SEI and will inspire more researchers to concentrate on the exploitation of LMBs.
Collapse
Affiliation(s)
- Yu Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jingchang Li
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Sheng Xu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Haoshen Zhou
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shaohua Guo
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid-State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Lab of Power and Energy Storage Batteries, Shenzhen Research Institute of Nanjing University, Shenzhen, 518000, China
| |
Collapse
|
6
|
Yu P, An J, Wang Z, Fu Y, Guo W. An Organic Molecular Cathode Composed of Naphthoquinones Bridged by Organodisulfide for Rechargeable Lithium Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308881. [PMID: 37984861 DOI: 10.1002/smll.202308881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Organic electrodes that embrace multiple electron transfer and efficient redox reactions are desirable for green energy storage batteries. Here, a novel organic electrode material is synthesized, i.e., 2, 2'-((disulfanediylbis (4, 1-phenylene)) bis(azanediyl)) bis (naphthalene-1, 4-dione) (MNQ), through a simple click reaction between common carbonyl and organosulfur compounds and demonstrate its application potential as a high-performance cathode material in rechargeable lithium batteries. MNQ exhibits the aggregation effect of redox-active functional groups, the advantage of fast reaction kinetics from molecular structure evolution, and the decreased solubility in aprotic electrolytes resulting from intermolecular interactions. As expected, the MNQ electrode exhibits a high initial discharge capacity of 281.2 mA h g-1 at 0.5 C, equivalent to 97.9% of its theoretical capacity, and sustains stable long-term cycling performance of over 1000 cycles at 1 C. This work adds a new member to the family of organic electrode materials, providing performance-efficient organic molecules for the design of rechargeable battery systems, which will undoubtedly spark great interest in their applications.
Collapse
Affiliation(s)
- Pei Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaxuan An
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhongju Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Chen L, He T, Liao K, Lu H, Ma J, Feng Y, Meng S, Zhang C, Yang J. A Ternary (P, Se, S) Covalent Inorganic Framework as a Shuttle Effect-Free Cathode for Li-S Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308587. [PMID: 37989248 DOI: 10.1002/adma.202308587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Developing new cathode materials to avoid shuttle effect of Li-S batteries at source is crucial for practical high-energy applications, which, however, remains a great challenge. Herein, a new class of sulfur-containing ternary covalent inorganic framework (CIF), P4 Se6 S40 , is explored, by simply comelting powders of P, S, and Se. The P4 Se6 S40 CIF with open framework enables all active sites available during electrochemical reactions, giving a high capacity delivery. Moreover, introducing Se atoms can improve intrinsic electronic conductivity of S chains yet without remarkably compromising the capacity because Se is also electrochemical active to lithium storage. More importantly, Se atoms in S-Se chains can serve as a heteroatom barrier to block the bonding of S atoms around, effectively avoiding the formation of long-chain polysulfides during cycling. Besides, stable Li3 PS4 with a tetrahedral configuration formed after lithiation works as not only a good ionic conductor to promote Li ion diffusion, but a three-dimensional spatial barrier and chemical anchor to suppress the dissolution and diffusion of lithium polysulfides (LiPS), further inhibiting the shuttle effect. Consequently, the P4 Se6 S40 cathode delivers high capacity and excellent capacity retention with even a high loading of 10.5 mg cm-2 which far surpasses the requirement for commercial applications.
Collapse
Affiliation(s)
- Lu Chen
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200092, P. R. China
| | - Ting He
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Kexuan Liao
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Hang Lu
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Jian Ma
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Yutong Feng
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Shuo Meng
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
| | - Chi Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200092, P. R. China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, Siping Road, 1239, Shanghai, 200092, P. R. China
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Rd, Shanghai, 200092, P. R. China
| |
Collapse
|
8
|
Xing H, Guo W, Tang S, Si Y, Song J, Fu Y. Long-Life, High-Rate Rechargeable Lithium Batteries Based on Soluble Bis(2-pyrimidyl) Disulfide Cathode. Angew Chem Int Ed Engl 2023; 62:e202308561. [PMID: 37485555 DOI: 10.1002/anie.202308561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Organosulfides are promising candidates as cathode materials for the development of electric vehicles and energy storage systems due to their low-cost and high capacity properties. However, they generally suffer from slow kinetics because of the large rearrangement of S-S bonds and structural degradation upon cycling in batteries. In this paper, we reveal that soluble bis(2-pyrimidyl) disulfide (Pym2 S2 ) can be a high-rate cathode material for rechargeable lithium batteries. Benefiting from the superdelocalization of pyrimidyl group, the extra electrons prefer to be localized on the π* (pyrimidyl group) than σ* (S-S bond) molecular orbitals initially, generating the anion-like intermedia of [Pym2 S2 ]2- and thus decreasing the dissociation energy of the S-S bond. It makes the intrinsic energy barrier of dissociative electron transfer depleted, therefore the lithium half cell exhibits 2000 cycles at 5 C. This study provides a distinct pathway for the design of high-rate, long-cycle-life organic cathode materials.
Collapse
Affiliation(s)
- Hansong Xing
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Wenlong Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuai Tang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yubing Si
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiahan Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
9
|
Wade Wolfe MM, Pluth MD. Understanding Reactive Sulfur Species through P/S Synergy. Inorg Chem 2023; 62:10.1021/acs.inorgchem.3c01976. [PMID: 37615644 PMCID: PMC11131337 DOI: 10.1021/acs.inorgchem.3c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
We investigated the differential oxidative and nucleophilic chemistry of reactive sulfur and oxygen anions (SSNO-, SNO-, NO2-, S42-, and HS-) using the simple reducing electrophile PPh2Cl. In the case of SSNO- reacting with PPh2Cl, a complex mixture of mono and diphosphorus products is formed exclusively in the P(V) oxidation state. We found that the phosphine stoichiometry dictates selectivity for oxidation to P=S/P=O products or transformation to P2 species. Interestingly, only chalcogen atoms are incorporated into the phosphorus products and, instead, nitrogen is released in the form of NO gas. Finally, we demonstrate that more reducing anions (S42- and HS-) also react with PPh2Cl with P=S bond formation as a key reaction driving force.
Collapse
Affiliation(s)
- Michael M Wade Wolfe
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impart, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impart, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
10
|
Sang P, Chen Q, Wang DY, Guo W, Fu Y. Organosulfur Materials for Rechargeable Batteries: Structure, Mechanism, and Application. Chem Rev 2023; 123:1262-1326. [PMID: 36757873 DOI: 10.1021/acs.chemrev.2c00739] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Lithium-ion batteries have received significant attention over the last decades due to the wide application of portable electronics and increasing deployment of electric vehicles. In order to further enhance the performance of the batteries and overcome the capacity limitations of inorganic electrode materials, it is imperative to explore new cathode and functional materials for rechargeable lithium batteries. Organosulfur materials containing sulfur-sulfur bonds as a kind of promising organic electrode materials have the advantages of high capacities, abundant resources, tunable structures, and environmental benignity. In addition, organosulfur materials have been widely used in almost every aspect of rechargeable batteries because of their multiple functionalities. This review aims to provide a comprehensive overview on the development of organosulfur materials including the synthesis and application as cathode materials, electrolyte additives, electrolytes, binders, active materials in lithium redox flow batteries, and other metal battery systems. We also give an in-depth analysis of structure-property-performance relationship of organosulfur materials, and guidance for the future development of organosulfur materials for next generation rechargeable lithium batteries and beyond.
Collapse
Affiliation(s)
- Pengfei Sang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Dan-Yang Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
11
|
Electrochemical transformation of biomass-derived oxygenates. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Wang Y, Zhao X, Wang Y, Qiu W, Song E, Wang S, Liu J. Trinitroaromatic Salts as High-Energy-Density Organic Cathode Materials for Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1129-1137. [PMID: 36534742 DOI: 10.1021/acsami.2c18433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Even though organic molecules with designed structures can be assembled into high-capacity electrode materials, only limited functional groups such as -C═O and -C═N- could be designed as high-voltage cathode materials with enough high capacity. Here, we propose a common chemical raw material, trinitroaromatic salt, to have promising potential to develop organic cathode materials with high discharge voltage and capacity through a strong delocalization effect between -NO2 and aromatic ring. Our first-principles calculations show that electrochemical reactions of trinitroaromatic potassium salt C6H2(NO2)3OK are a 6-electron charge-transfer process, providing a high discharge capacity of 606 mAh g-1 and two voltage plateaus of 2.40 and 1.97 V. Electronic structure analysis indicates that the discharge process from C6H2(NO2)3OK to C6H2(NO2Li2)3OK stabilizes oxidized [C6]n+ to achieve a stable conjugated structure through electron delocalization from -NO2 to [C6]n+. The ordered layer structure C6H2(NO2)3OK can provide large spatial pore channels for Li-ion transport, achieving a high ion diffusion coefficient of 3.41 × 10-6 cm2 s-1.
Collapse
Affiliation(s)
- Yaning Wang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, Anhui, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
| | - Xiaolin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Youwei Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Wujie Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Erhong Song
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
| | - Sufan Wang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, Anhui, China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou310024, China
| |
Collapse
|
13
|
Wei M, Zhu H, Zhai P, An L, Geng H, Xu S, Zhang T. Nano-sulfur confined in a 3D carbon nanotube/graphene network as a free-standing cathode for high-performance Li-S batteries. NANOSCALE ADVANCES 2022; 4:4809-4818. [PMID: 36381509 PMCID: PMC9642362 DOI: 10.1039/d2na00494a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
A free-standing nano-sulfur-based carbon nanotube/graphene (S/CNT/G) film with a conductive interlinked three-dimensional (3D) nanoarchitecture is fabricated via a facile solution-based method. This 3D multidimensional carbon-sulfur network combines three different nanoarchitectures, as follows: zero-dimensional sulfur nanoparticles, one-dimensional carbon nanotubes, and two-dimensional graphene. The CNTs with a one-dimensional structure act as a conductive matrix, and graphene with two-dimensional sheets is intercalated into the CNT scaffold to build a 3D structure, extending in an additional dimension to provide improved restriction for sulfur/polysulfides. Zero-dimensional sulfur nanoparticles are anchored uniformly on the interpenetrative 3D carbon framework to form a free-standing cathode. Moreover, this well-designed S/CNT/G film is flexible, highly conductive, binder free and current collector free. When directly used as a flexible cathode electrode, the synthesized S/CNT/G film delivers both excellent long-term cycling and high-rate performances. A high initial capacity of 948 mA h g-1 is obtained, and subsequently, a reversible discharge capacity of 593 mA h g-1 over 200 cycles is achieved at 0.5C. Even at a high rate of 3C, the S/CNT/G film with a 50 wt% sulfur content still exhibits a discharge capacity of 598 mA h g-1. These results demonstrate the great potential of the S/CNT/G nanocomposite as a flexible and binder-free cathode for high performance Li-S batteries.
Collapse
Affiliation(s)
- Meng Wei
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
- Henan Key Laboratory of Aeronautical Materials and Application Technology, Collaborative Innovation Center of Aviation Economy Development Zhengzhou 450015 Henan Province China
| | - Huiqin Zhu
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Pengfei Zhai
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Longkun An
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Hengyi Geng
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Song Xu
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| | - Tao Zhang
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics Zhengzhou 450046 China
| |
Collapse
|
14
|
Chen Q, Li L, Wang W, Li X, Guo W, Fu Y. Thiuram Monosulfide with Ultrahigh Redox Activity Triggered by Electrochemical Oxidation. J Am Chem Soc 2022; 144:18918-18926. [PMID: 36194783 DOI: 10.1021/jacs.2c06550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Organosulfides are promising cathodes for lithium batteries but often suffer from sluggish kinetics and low cycle stability. Herein, we report an electron-deficient organosulfide (ED-OS), which is formed via electrochemical oxidation of thiuram monosulfide, a low-cost sustainable material. The ED structure of (dimethylcarbamothioyl)thio can stretch the electron cloud of the adjacent C═S bond forming an S radical and lead to the cleavage of the S-C bond on the other side forming another S radical. The two (dimethylcarbamothioyl)thio radicals can form S-S bonds individually with low energy barriers, which thus are easy to break and could accommodate lithium ions with ultrafast reaction kinetics. It exhibits an ultralong cyclability of over 8000 cycles with a low capacity-fade rate of 0.0038% per cycle at a high rate of 10C in a lithium cell. In addition, we demonstrate that the same electrochemical oxidation can be applied to other thiuram compounds. This work provides new opportunities in developing ultrahigh-redox-activity organic electrode materials which can be started as needed.
Collapse
Affiliation(s)
- Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Linhong Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenmin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xin Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
15
|
Gao M, Lan J, Fu Y, Guo W. Biomass-Derived Lenthionine Enhanced by Radical Receptor for Rechargeable Lithium Battery. CHEMSUSCHEM 2022; 15:e202200423. [PMID: 35365969 DOI: 10.1002/cssc.202200423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Organic compounds with tunable structures and high capacities are promising electrode materials for batteries. Cyclic organosulfide (i. e., lenthionine), as a natural material that can provide excellent ratio of effective atoms (S) and non-efficient atoms (C, H, and others), has a high theoretical specific capacity of 853.6 mAh g-1 . However, the multiphase transformation causes rapid capacity decay and hysteresis of charge/discharge voltage plateaus. To overcome these issues, a receptor, phenyl disulfide (PDS), was introduced to truncate subsequent transformations directly from the source and change the reaction path, inhibit the capacity decay, and improve the cycling stability. After 500 cycles, the capacity retention was 81.1 % with PDS, which was in sharp contrast to that (35.6 %) of the control cell. This study helps to understand the electrochemistry mechanism of biomass-derived lenthionine used as a high-capacity cathode material for rechargeable lithium batteries, also offering a strategy to overcome its inherent issues.
Collapse
Affiliation(s)
- Mengnan Gao
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Jiaqi Lan
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, P. R. China
| |
Collapse
|
16
|
Chen Q, Wang W, Li X, Guo W, Fu Y. Carbon disulfide: A redox mediator for organodisulfides in redox flow batteries. Proc Natl Acad Sci U S A 2022; 119:e2202449119. [PMID: 35622888 PMCID: PMC9295769 DOI: 10.1073/pnas.2202449119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Organodisulfides (RSSR) are a class of promising active materials for redox flow batteries (RFBs). However, their sluggish kinetics and poor cyclic stability remain a formidable challenge. Here, we propose carbon disulfide (CS2) as a unique redox mediator involving reversible C-S bond formation/breakage to facilitate the reduction reaction of organodisulfides in RFBs. In the discharge of RSSR, CS2 interacts with the negatively charged RSSR-• to promote cleavage of the S-S bond by reducing about one-third of the energy barrier, forming RSCS2Li. In the recharge, CS2 is unbonded from RSCS2Li while RSSR is regenerated. Meanwhile, the redox mediator can also be inserted into the molecular structure of RSSR to form RSCS2SR/RSCS2CS2SR, and these new active materials with lower energy barriers can further accelerate the reaction kinetics of RSSR. With CS2, phenyl disulfide exhibits an exceptional rate capability and cyclability of 500 cycles. An average energy efficiency of >90% is achieved. This strategy provides a unique redox-mediating pathway involving C-S bond formation/breakage with the active species, which is different from those used in lithium-oxygen or other batteries.
Collapse
Affiliation(s)
- Qiliang Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenmin Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
17
|
Kong GD, Byeon SE, Jang J, Kim JW, Yoon HJ. Electronic Mechanism of In Situ Inversion of Rectification Polarity in Supramolecular Engineered Monolayer. J Am Chem Soc 2022; 144:7966-7971. [PMID: 35500106 DOI: 10.1021/jacs.2c02391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This Communication describes polarity inversion in molecular rectification and the related mechanism. Using a supramolecular engineered, ultrastable, binary-mixed self-assembled monolayer (SAM) composed of an organic molecular diode (SC11BIPY) and an inert reinforcement molecule (SC8), we probed a rectification ratio (r)-voltage relationship over an unprecedentedly wide voltage range (up to |3.5 V|) with statistical significance. We observed positive polarity in rectification at |1.0 V| (r = 107), followed by disappearance of rectification at ∼|2.25 V|, and then eventual emergence of new rectification with the opposite polarity at ∼|3.5 V| (r = 0.006; 1/r = 162). The polarity inversion occurred with a span over 4 orders of magnitude in r. Low-temperature experiments, electronic structure analysis, and theoretical calculations revealed that the unusually wide voltage range permits access to molecular orbital energy levels that are inaccessible in the traditional narrow voltage regime, inducing the unprecedented in situ inversion of polarity.
Collapse
Affiliation(s)
- Gyu Don Kong
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Seo Eun Byeon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiung Jang
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Jeong Won Kim
- Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
18
|
Gong Z, Zheng S, Zhang J, Duan Y, Luo Z, Cai F, Yuan Z. Cross-Linked PVA/HNT Composite Separator Enables Stable Lithium-Organic Batteries under Elevated Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11474-11482. [PMID: 35213142 DOI: 10.1021/acsami.1c23962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Li-organic batteries (LOBs) are promising advanced battery systems because of their unique advantages in capacity, cost, and sustainability. However, the shuttling effect of soluble organic redox intermediates and the intrinsic dissolution of small-molecular electrodes have hindered the practical application of these cells, especially under high operating temperatures. Herein, a cross-linked membrane with abundant negative charge for high-temperature LOBs is prepared via electrospinning of poly(vinyl alcohol) containing halloysite nanotubes (HNTs). The translocation of negatively charged organic intermediates can be suppressed by the electronic repulsion and the cross-linked network while the positively charged Li+ are maintained, which is attributed to the intrinsic electronegativity of HNTs and their well-organized and homogeneous distribution in the PVA matrix. A battery using a PVA/HNT composite separator (EPH-10) and an anthraquinone (AQ) cathode exhibits a high initial discharge capacity of 231.6 mAh g-1 and an excellent cycling performance (91.4% capacity retention, 300 cycles) at 25 °C. Even at high temperatures (60 and 80 °C), its capacity retention is more than 89.2 and 80.4% after 100 cycles, respectively. Our approach demonstrates the potential of the EPH-10 composite membrane as a separator for high-temperature LOB applications.
Collapse
Affiliation(s)
- Zongshuai Gong
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Silin Zheng
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jin Zhang
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yueqin Duan
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiqiang Luo
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fengshi Cai
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhihao Yuan
- Tianjin Key Lab for Photoelectric Materials & Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
19
|
Chen Z, Su H, Sun P, Bai P, Yang J, Li M, Deng Y, Liu Y, Geng Y, Xu Y. A nitroaromatic cathode with an ultrahigh energy density based on six-electron reaction per nitro group for lithium batteries. Proc Natl Acad Sci U S A 2022; 119:e2116775119. [PMID: 35101985 PMCID: PMC8833146 DOI: 10.1073/pnas.2116775119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/22/2021] [Indexed: 01/20/2023] Open
Abstract
Organic electrode materials have emerged as promising alternatives to conventional inorganic materials because of their structural diversity and environmental friendliness feature. However, their low energy densities, limited by the single-electron reaction per active group, have plagued the practical applications. Here, we report a nitroaromatic cathode that performs a six-electron reaction per nitro group, drastically improving the specific capacity and energy density compared with the organic electrodes based on single-electron reactions. Based on such a reaction mechanism, the organic cathode of 1,5-dinitronaphthalene demonstrates an ultrahigh specific capacity of 1,338 mAh⋅g-1 and energy density of 3,273 Wh⋅kg-1, which surpass all existing organic cathodes. The reaction path was verified as a conversion from nitro to amino groups. Our findings open up a pathway, in terms of battery chemistry, for ultrahigh-energy-density Li-organic batteries.
Collapse
Affiliation(s)
- Zifeng Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Hai Su
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Pengfei Sun
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Panxing Bai
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jixing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mengjie Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yang Liu
- Institute for Chemical Drug Control, National Institutes for Food and Drug Control, Beijing 102625, People's Republic of China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, People's Republic of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, People's Republic of China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China;
| |
Collapse
|
20
|
Guo W, Wang D, Chen Q, Fu Y. Advances of Organosulfur Materials for Rechargeable Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103989. [PMID: 34825523 PMCID: PMC8811802 DOI: 10.1002/advs.202103989] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Indexed: 05/12/2023]
Abstract
Battery materials have become a hotspot in the academic research. Organosulfur compounds are considered as a promising class of cathode materials for rechargeable metal batteries. They have attracted increasing attention in recent years after a long-term stagnancy since 1980s. Recent studies have focused on the understanding of redox mechanism of linear organosulfur molecules R-Sn -R with defined structures. In addition, some new organosulfur compounds are developed. The reversible sulfursulfur (SS) bond breakage/formation of organosulfur in batteries makes them applicable as functional materials in batteries. In this review, new organosulfur materials including molecules, polymers, and composites are introduced. In the following, organosulfur-inorganic hybrid materials are discussed, which have shown unique redox process and enhanced battery performance. In the third part, organosulfur additives are used in Li-S batteries, which can improve the formation of solid-electrolyte interphase (SEI) and alter the redox pathways of sulfur cathodes. In the fourth part, organosulfur materials used in other metal batteries are introduced. Lastly, a summary and some perspectives are given. This review presents an overview of the recent advances of organosulfur materials in batteries and provides guidance for the future development of these materials.
Collapse
Affiliation(s)
- Wei Guo
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Dan‐Yang Wang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Qiliang Chen
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhu Fu
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
21
|
Cai X, Ding J, Chi Z, Wang W, Wang D, Wang G. Rearrangement of Ion Transport Path on Nano-Cross-linker for All-Solid-State Electrolyte with High Room Temperature Ionic Conductivity. ACS NANO 2021; 15:20489-20503. [PMID: 34905333 DOI: 10.1021/acsnano.1c09023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The low room temperature ionic conductivity (RTσ) of polyethylene oxide (PEO)-based solid-state polymer electrolyte (SPE) severely restricts its application for lithium batteries. Herein, acrylamide (AM) has been introduced into the poly(ethylene glycol) methyl ether methacrylate-poly(ethylene glycol) diacrylate (P-P). The multiple hydrogen bonds of AM expand the original single lithium environment (Li···O-C) to three types (Li···O-C, Li···N-H, and Li···O═C), which accelerates the conduction of lithium ions. In addition, the double bond modification of nanosilica (═SiO2) not only improves the mechanical properties but also brings a high-speed orderly vehicular transport mechanism. The multiple-lithium-ions environment is rearranged on the surface of the ═SiO2 to play a more significant role, making the RTσ of SPE reach 2.6 × 10-4 S cm-1, and the Li-ion transfer number reaches 0.84. The results show that the assembled all-solid-state lithium-sulfur battery has a high initial discharge capacity of 707 mAh g-1 at 30 °C when the sulfur loading is 4.3 mg cm-2, good cycle stability (capacity retention rate of 89% after 100 cycles at 0.1 C), and excellent rate performance. This SPE with high RTσ, stable interface engineering, and broad potential window (5.1 V) is expected to be used in other lithium/lithium-ion batteries that require high-voltage tolerance.
Collapse
Affiliation(s)
- Xiaomin Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jianlong Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ziyun Chi
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wenqiang Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dongya Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gengchao Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, P.O. Box 289, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
22
|
Pseudocapacitive TiNb 2O 7/reduced graphene oxide nanocomposite for high-rate lithium ion hybrid capacitors. J Colloid Interface Sci 2021; 610:385-394. [PMID: 34923276 DOI: 10.1016/j.jcis.2021.12.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022]
Abstract
Lithium ion hybrid capacitors (LIHCs) have a capacitor-type cathode and a battery-type anode and are a prospective energy storage device that delivers high energy/power density. However, the kinetic imbalance between the cathode and the anode is a key obstacle to their further development and application. Herein, we prepared TiNb2O7 nanoparticles through a facile solvothermal method and annealing treatment. Then a homogeneous three-dimensional (3D) self-supported reduced graphene oxide (rGO)-coated TiNb2O7 (TiNb2O7/rGO) nanocomposite was constructed by freeze-drying, followed by a high-temperature reduction, which demonstrates an enhanced pseudocapacitive lithium ions storage performance. Benefiting from the improved electrical conductivity, ultrashort ions diffusion paths, and 3D architecture, the TiNb2O7/rGO nanocomposite exhibits a high specific capacity of 285.0 mA h g-1, excellent rate capability (73.6% capacity retention at 8 A g-1), and superior cycling stability. More importantly, quantitative kinetics analysis reflects that the capacity of TiNb2O7/rGO is mainly dominated by capacitive behavior, making it perfectly match with the capacitor-type activated carbon (AC) cathode. By using pre-lithiated TiNb2O7/rGO as anode material and AC as cathode material, a high-rate TiNb2O7/rGO//AC LIHC device can be fabricated, which delivers an ultrahigh energy density of 127 Wh kg-1 at the power density of 200 W kg-1, a maximum power density of 10 kW kg-1 at the energy density of 56.4 Wh kg-1, and durable service life.
Collapse
|
23
|
Du Z, Qi Q, Gao W, Ma L, Liu Z, Wang R, Chen J. Electrochemical Heteroatom-Heteroatom Bond Construction. CHEM REC 2021; 22:e202100178. [PMID: 34463430 DOI: 10.1002/tcr.202100178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/30/2023]
Abstract
Heteroatom-heteroatom linkage, with S-S bond as a presentative motif, served a crucial role in biochemicals, pharmaceuticals, pesticides, and material sciences. Thus, preparation of the privileged scaffold has always been attracting tremendous attention from the synthetic community. However, classic protocols suffered from several drawbacks, such as toxic and unstable agents, poor functional group tolerance, multiple steps, and explosive oxidizing regents as well as the transitional metal catalysts. Electrochemical organic synthesis exhibited a promising alternative to the traditional chemical reaction due to the sustainable electricity can be employed as the traceless redox agents. Hence, toxic and explosive oxidants and/or transitional metals could be discarded under mild reaction with high efficiency. In this context, a series of electrochemical approaches for the construction of heteroatom-heteroatom bond were reviewed. Notably, most of the cases illustrated the dehydrogenative feature with the clean energy molecules hydrogen as the sole by-product.
Collapse
Affiliation(s)
- Zhiying Du
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Qiqi Qi
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Archives of Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Li Ma
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Zhenxian Liu
- Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China.,Intellectual Property Operations Management Office, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| |
Collapse
|