1
|
Misra A, Rahisuddin R, Parihar M, Arya S, Viswanathan T, Jackson N, Qi S, Chan SH, Harris RS, Martinez-Sobrido L, Gupta YK. Structural insights into the assembly and regulation of 2'-O RNA methylation by SARS-CoV-2 nsp16/nsp10. Structure 2025:S0969-2126(25)00106-6. [PMID: 40220753 DOI: 10.1016/j.str.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 01/08/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
2'-O-ribose methylation of the first transcribed base (adenine or A1 in SARS-CoV-2) of viral RNA mimics host RNAs and subverts the innate immune response. How nsp16, with partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate A1 is not fully understood. We present a ∼2.4 Å crystal structure of the heterotetrameric complex formed by the cooperative assembly of two nsp16/nsp10 heterodimers with one 10-mer Cap-1 RNA (product) bound to each. An aromatic zipper-like motif in nsp16 and the N-terminal regions of nsp10 and nsp16 orchestrate oligomeric assembly for efficient methylation. The front catalytic pocket of nsp16 stabilizes the upstream portion of the RNA while downstream RNA remains unresolved, likely due to flexibility. An inverted nsp16 dimer extends the positively charged surface for longer RNA to influence catalysis. Additionally, a non-specific nucleotide-binding pocket on the backside of nsp16 plays a critical role in catalysis, contributing to enzymatic activity.
Collapse
Affiliation(s)
- Anurag Misra
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - R Rahisuddin
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Manish Parihar
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shailee Arya
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Thiruselvam Viswanathan
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | - Shan Qi
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Siu-Hong Chan
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
2
|
Misra A, Rahisuddin R, Parihar M, Arya S, Viswanathan T, Jackson N, Qi S, Chan SH, Harris RS, Martinez-Sobrido L, Gupta YK. Structural Insights into the Assembly and Regulation of 2'- O RNA Methylation by SARS-CoV-2 nsp16/nsp10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.628950. [PMID: 39764039 PMCID: PMC11702637 DOI: 10.1101/2024.12.19.628950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
2'- O -ribose methylation of the first transcribed base (adenine or A 1 in SARS-CoV-2) of viral RNA mimics the host RNAs and subverts the innate immune response. How nsp16, with its obligate partner nsp10, assembles on the 5'-end of SARS-CoV-2 mRNA to methylate the A 1 has not been fully understood. We present a ∼ 2.4 Å crystal structure of the heterotetrameric complex formed by the cooperative assembly of two nsp16/nsp10 heterodimers with one 10-mer Cap-1 RNA (product) bound to each. An aromatic zipper-like motif in nsp16 and the N-terminal regions of nsp10 and nsp16 orchestrate an oligomeric assembly for efficient methylation. The front catalytic pocket of nsp16 stabilizes the upstream portion of the RNA while the downstream RNA remains unresolved, likely due to its flexibility. An inverted nsp16 dimer extends the positively charged surface area for longer RNA to influence the catalysis. Additionally, a non-specific nucleotide-binding pocket on the backside of nsp16 plays a critical role in catalysis, further contributing to its enzymatic activity.
Collapse
|
3
|
Wu K, Li Y, Yi Y, Yu Y, Wang Y, Zhang L, Cao Q, Chen K. The detection, function, and therapeutic potential of RNA 2'-O-methylation. THE INNOVATION LIFE 2024; 3:100112. [PMID: 40206865 PMCID: PMC11981644 DOI: 10.59717/j.xinn-life.2024.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
RNA modifications play crucial roles in shaping RNA structure, function, and metabolism. Their dysregulation has been associated with many diseases, including cancer, developmental disorders, cardiovascular diseases, as well as neurological and immune-related conditions. A particular type of RNA modification, 2'-O-methylation (Nm) stands out due to its widespread occurrence on all four types of nucleotides (A, U, G, C) and in most RNA categories, e.g., mRNA, rRNA, tRNA, miRNA, snRNA, snoRNA, and viral RNA. Nm is the addition of a methyl group to the 2' hydroxyl of the ribose moiety of a nucleoside. Given its great biological significance and reported association with many diseases, we first reviewed the occurrences and functional implications of Nm in various RNA species. We then summarized the reported Nm detection methods, ranging from biochemical techniques in the 70's and 80's to recent methods based on Illumina RNA sequencing, artificial intelligence (AI) models for computational prediction, and the latest nanopore sequencing methods currently under active development. Moreover, we discussed the applications of Nm in the realm of RNA medicine, highlighting its therapeutic potential. At last, we present perspectives on potential research directions, aiming to offer insights for future investigations on Nm modification.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Department of Bioengineering, Rice University, Houston 77005, USA
- Department of Computational Biology and Bioinformatics, School of Medicine, Duke University, Durham 27708, USA
- These authors contributed equally to this work
| | - Yanqiang Li
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- These authors contributed equally to this work
| | - Yang Yi
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Yang Yu
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Yunxia Wang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
| | - Qi Cao
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago 60611, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston 02215, USA
- Broad Institute of MIT and Harvard, Boston 02215, USA
- Dana-Farber / Harvard Cancer Center, Boston 02215, USA
| |
Collapse
|
4
|
Kalnins G, Rudusa L, Bula AL, Zelencova‐Gopejenko D, Bobileva O, Sisovs M, Tars K, Jirgensons A, Jaudzems K, Bobrovs R. Structural Basis for Inhibition of the SARS-CoV-2 nsp16 by Substrate-Based Dual Site Inhibitors. ChemMedChem 2024; 19:e202400618. [PMID: 39258386 PMCID: PMC11648818 DOI: 10.1002/cmdc.202400618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
| | - Laura Rudusa
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Anna L. Bula
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | | | - Olga Bobileva
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Mihails Sisovs
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
| | - Kaspars Tars
- Latvian Biomedical Research and Study CentreRatsupites 1 k-1LV1067RigaLatvia
- University of LatviaJelgavas 1LV1004RigaLatvia
| | - Aigars Jirgensons
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
- University of LatviaJelgavas 1LV1004RigaLatvia
| | - Raitis Bobrovs
- Latvian Institute of Organic SynthesisAizkraukles 21RigaLV1006Latvia
| |
Collapse
|
5
|
Li S, Li H, Lian R, Xie J, Feng R. New perspective of small-molecule antiviral drugs development for RNA viruses. Virology 2024; 594:110042. [PMID: 38492519 DOI: 10.1016/j.virol.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
High variability and adaptability of RNA viruses allows them to spread between humans and animals, causing large-scale infectious diseases which seriously threat human and animal health and social development. At present, AIDS, viral hepatitis and other viral diseases with high incidence and low cure rate are still spreading around the world. The outbreaks of Ebola, Zika, dengue and in particular of the global pandemic of COVID-19 have presented serious challenges to the global public health system. The development of highly effective and broad-spectrum antiviral drugs is a substantial and urgent research subject to deal with the current RNA virus infection and the possible new viral infections in the future. In recent years, with the rapid development of modern disciplines such as artificial intelligence technology, bioinformatics, molecular biology, and structural biology, some new strategies and targets for antivirals development have emerged. Here we review the main strategies and new targets for developing small-molecule antiviral drugs against RNA viruses through the analysis of the new drug development progress against several highly pathogenic RNA viruses, to provide clues for development of future antivirals.
Collapse
Affiliation(s)
- Shasha Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Huixia Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruiya Lian
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Jingying Xie
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, 730030, China; Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Thibert S, Reid DJ, Wilson JW, Varikoti R, Maltseva N, Schultz KJ, Kruel A, Babnigg G, Joachimiak A, Kumar N, Zhou M. Native Mass Spectrometry Dissects the Structural Dynamics of an Allosteric Heterodimer of SARS-CoV-2 Nonstructural Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:912-921. [PMID: 38535992 PMCID: PMC11066969 DOI: 10.1021/jasms.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 05/02/2024]
Abstract
Structure-based drug design, which relies on precise understanding of the target protein and its interaction with the drug candidate, is dramatically expedited by advances in computational methods for candidate prediction. Yet, the accuracy needs to be improved with more structural data from high throughput experiments, which are challenging to generate, especially for dynamic and weak associations. Herein, we applied native mass spectrometry (native MS) to rapidly characterize ligand binding of an allosteric heterodimeric complex of SARS-CoV-2 nonstructural proteins (nsp) nsp10 and nsp16 (nsp10/16), a complex essential for virus survival in the host and thus a desirable drug target. Native MS showed that the dimer is in equilibrium with monomeric states in solution. Consistent with the literature, well characterized small cosubstrate, RNA substrate, and product bind with high specificity and affinity to the dimer but not the free monomers. Unsuccessfully designed ligands bind indiscriminately to all forms. Using neutral gas collision, the nsp16 monomer with bound cosubstrate can be released from the holo dimer complex, confirming the binding to nsp16 as revealed by the crystal structure. However, we observed an unusual migration of the endogenous zinc ions bound to nsp10 to nsp16 after collisional dissociation. The metal migration can be suppressed by using surface collision with reduced precursor charge states, which presumably resulted in minimal gas-phase structural rearrangement and highlighted the importance of complementary techniques. With minimal sample input (∼μg), native MS can rapidly detect ligand binding affinities and locations in dynamic multisubunit protein complexes, demonstrating the potential of an "all-in-one" native MS assay for rapid structural profiling of protein-to-AI-based compound systems to expedite drug discovery.
Collapse
Affiliation(s)
- Stephanie
M. Thibert
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Deseree J. Reid
- Chemical
and Biological Signature Sciences, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jesse W. Wilson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Rohith Varikoti
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Natalia Maltseva
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Katherine J. Schultz
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Agustin Kruel
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Gyorgy Babnigg
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Biosciences
Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrzej Joachimiak
- Center
for Structural Biology of Infectious Diseases, Consortium for Advanced
Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Structural
Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Neeraj Kumar
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
7
|
Sele C, Krupinska E, Andersson Rasmussen A, Ekström S, Hultgren L, Lou J, Kozielski F, Fisher SZ, Knecht W. New insights into complex formation by SARS-CoV-2 nsp10 and nsp14. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:798-812. [PMID: 38422227 DOI: 10.1080/15257770.2024.2321600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
SARS-CoV-2 non-structural protein 10 (nsp10) is essential for the stimulation of enzymatic activities of nsp14 and nsp16, acting as both an activator and scaffolding protein. Nsp14 is a bifunctional enzyme with the N-terminus containing a 3'-5' exoribonuclease (ExoN) domain that allows the excision of nucleotide mismatches at the virus RNA 3'-end, and a C-terminal N7-methyltransferase (N7-MTase) domain. Nsp10 is required for stimulating both ExoN proofreading and the nsp16 2'-O-methyltransferase activities. This makes nsp10 a central player in both viral resistance to nucleoside-based drugs and the RNA cap methylation machinery that helps the virus evade innate immunity. We characterised the interactions between full-length nsp10 (139 residues), N- and C-termini truncated nsp10 (residues 10-133), and nsp10 with a C-terminal truncation (residues 1-133) with nsp14 using microscale thermophoresis, multi-detection SEC, and hydrogen-deuterium (H/D) exchange mass spectrometry. We describe the functional role of the C-terminal region of nsp10 for binding to nsp14 and show that full N- and C-termini of nsp10 are important for optimal binding. In addition, our H/D exchange experiments suggest an intermediary interaction of nsp10 with the N7-MTase domain of nsp14. In summary, our results suggest intermediary steps in the process of association or dissociation of the nsp10-nsp14 complex, involving contacts between the two proteins in regions not identifiable by X-ray crystallography alone.
Collapse
Affiliation(s)
- Céleste Sele
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Ewa Krupinska
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Anna Andersson Rasmussen
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| | - Simon Ekström
- Swedish National Infrastructure for Biological Mass Spectrometry and SciLifeLab, Integrated Structural Biology platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Lucas Hultgren
- Swedish National Infrastructure for Biological Mass Spectrometry and SciLifeLab, Integrated Structural Biology platform, Structural Proteomics Unit Sweden, Lund University, Lund, Sweden
| | - Jiaqi Lou
- School of Pharmacy, University College London, London, UK
| | | | - S Zoë Fisher
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
- European Spallation Source ERIC, Lund, Sweden
| | - Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Ahmed-Belkacem R, Sutto-Ortiz P, Delpal A, Troussier J, Canard B, Vasseur JJ, Decroly E, Debart F. 5'-cap RNA/SAM mimetic conjugates as bisubstrate inhibitors of viral RNA cap 2'-O-methyltransferases. Bioorg Chem 2024; 143:107035. [PMID: 38199140 DOI: 10.1016/j.bioorg.2023.107035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Viral RNA cap 2'-O-methyltransferases are considered promising therapeutic targets for antiviral treatments, as they play a key role in the formation of viral RNA cap-1 structures to escape the host immune system. A better understanding of how they interact with their natural substrates (RNA and the methyl donor SAM) would enable the rational development of potent inhibitors. However, as few structures of 2'-O-MTases in complex with RNA have been described, little is known about substrate recognition by these MTases. For this, chemical tools mimicking the state in which the cap RNA substrate and SAM cofactor are bound in the enzyme's catalytic pocket may prove useful. In this work, we designed and synthesized over 30 RNA conjugates that contain a short oligoribonucleotide (ORN with 4 or 6 nucleotides) with the first nucleotide 2'-O-attached to an adenosine by linkers of different lengths and containing S or N-heteroatoms, or a 1,2,3-triazole ring. These ORN conjugates bearing or not a cap structure at 5'-extremity mimic the methylation transition state with RNA substrate/SAM complex as bisubstrates of 2'-O-MTases. The ORN conjugates were synthesized either by the incorporation of a dinucleoside phosphoramidite during RNA elongation or by click chemistry performed on solid-phase post-RNA elongation. Their ability to inhibit the activity of the nsp16/nsp10 complex of SARS-CoV-2 and the NS5 protein of dengue and Zika viruses was assessed. Significant submicromolar IC50 values and Kd values in the µM range were found, suggesting a possible interaction of some ORN conjugates with these viral 2'-O-MTases.
Collapse
Affiliation(s)
| | | | - Adrien Delpal
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | - Joris Troussier
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruno Canard
- AFMB, University of Aix-Marseille, CNRS, Marseille, France
| | | | | | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
9
|
Dixit H, Kulharia M, Verma SK. Metal-binding proteins and proteases in RNA viruses: unravelling functional diversity and expanding therapeutic horizons. J Virol 2023; 97:e0139923. [PMID: 37982624 PMCID: PMC10734521 DOI: 10.1128/jvi.01399-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Metal-binding proteins are pivotal components with diverse functions in organisms, including viruses. Despite their significance, many metalloproteins in viruses remain uncharacterized, posing challenges to understanding viral systems. This study addresses this knowledge gap by identifying and analyzing metal-binding proteins and proteases in RNA viruses. The findings emphasize the prevalence of these proteins as essential functional classes within viruses and shed light on the role of metal ions and metalloproteins in viral replication and pathogenesis. Moreover, this research serves as a crucial foundation for further investigations in this field, offering the potential for developing innovative antiviral strategies. Additionally, the study enhances our understanding of the distribution and evolutionary patterns of metal-binding proteases in major human viruses. Continually exploring metal-binding proteomes across diverse viruses will deepen our knowledge of metal-dependent biological processes and provide valuable insights for combating viral infections, including respiratory viruses and other life-threatening diseases.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra, India
| | | |
Collapse
|
10
|
Knecht W, Fisher SZ, Lou J, Sele C, Ma S, Rasmussen AA, Pinotsis N, Kozielski F. Oligomeric State of β-Coronavirus Non-Structural Protein 10 Stimulators Studied by Small Angle X-ray Scattering. Int J Mol Sci 2023; 24:13649. [PMID: 37686452 PMCID: PMC10563069 DOI: 10.3390/ijms241713649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The β-coronavirus family, encompassing Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Severe Acute Respiratory Syndrome Coronavirus (SARS), and Middle East Respiratory Syndrome Coronavirus (MERS), has triggered pandemics within the last two decades. With the possibility of future pandemics, studying the coronavirus family members is necessary to improve knowledge and treatment. These viruses possess 16 non-structural proteins, many of which play crucial roles in viral replication and in other vital functions. One such vital protein is non-structural protein 10 (nsp10), acting as a pivotal stimulator of nsp14 and nsp16, thereby influencing RNA proofreading and viral RNA cap formation. Studying nsp10 of pathogenic coronaviruses is central to unraveling its multifunctional roles. Our study involves the biochemical and biophysical characterisation of full-length nsp10 from MERS, SARS and SARS-CoV-2. To elucidate their oligomeric state, we employed a combination of Multi-detection Size exclusion chromatography (Multi-detection SEC) with multi-angle static light scattering (MALS) and small angle X-ray scattering (SAXS) techniques. Our findings reveal that full-length nsp10s primarily exist as monomers in solution, while truncated versions tend to oligomerise. SAXS experiments reveal a globular shape for nsp10, a trait conserved in all three coronaviruses, although MERS nsp10, diverges most from SARS and SARS-CoV-2 nsp10s. In summary, unbound nsp10 proteins from SARS, MERS, and SARS-CoV-2 exhibit a globular and predominantly monomeric state in solution.
Collapse
Affiliation(s)
- Wolfgang Knecht
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - S. Zoë Fisher
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
- European Spallation Source ERIC, P.O. Box 176, 22100 Lund, Sweden
| | - Jiaqi Lou
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| | - Céleste Sele
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - Shumeng Ma
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| | - Anna Andersson Rasmussen
- Department of Biology & Lund Protein Production Platform & Protein Production Sweden, Lund University, Sölvegatan 35, 22362 Lund, Sweden; (W.K.); (S.Z.F.); (C.S.); (A.A.R.)
| | - Nikos Pinotsis
- Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Frank Kozielski
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (J.L.); (S.M.)
| |
Collapse
|
11
|
Li G, Hilgenfeld R, Whitley R, De Clercq E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat Rev Drug Discov 2023; 22:449-475. [PMID: 37076602 PMCID: PMC10113999 DOI: 10.1038/s41573-023-00672-y] [Citation(s) in RCA: 320] [Impact Index Per Article: 160.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 04/21/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
Collapse
Affiliation(s)
- Guangdi Li
- Xiangya School of Public Health, Central South University; Hunan Children's Hospital, Changsha, China.
| | - Rolf Hilgenfeld
- Institute of Molecular Medicine & German Center for Infection Research (DZIF), University of Lübeck, Lübeck, Germany.
| | - Richard Whitley
- Department of Paediatrics, Microbiology, Medicine and Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Singh J, Anantharaj A, Panwar A, Rani C, Bhardwaj M, Kumar P, Chattopadhyay P, Devi P, Maurya R, Mishra P, Pandey AK, Pandey R, Medigeshi GR. BA.1, BA.2 and BA.2.75 variants show comparable replication kinetics, reduced impact on epithelial barrier and elicit cross-neutralizing antibodies. PLoS Pathog 2023; 19:e1011196. [PMID: 36827451 PMCID: PMC9994724 DOI: 10.1371/journal.ppat.1011196] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 03/08/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 is capable of infecting unvaccinated, vaccinated and previously-infected individuals due to its ability to evade neutralization by antibodies. With multiple sub-lineages of Omicron emerging in the last 12 months, there is inadequate information on the quantitative antibody response generated upon natural infection with Omicron variant and whether these antibodies offer cross-protection against other sub-lineages of Omicron variant. In this study, we characterized the growth kinetics of Kappa, Delta and Omicron variants of SARS-CoV-2 in Calu-3 cells. Relatively higher amounts infectious virus titers, cytopathic effect and disruption of epithelial barrier functions was observed with Delta variant whereas infection with Omicron sub-lineages led to a more robust induction of interferon pathway, lower level of virus replication and mild effect on epithelial barrier. The replication kinetics of BA.1, BA.2 and BA.2.75 sub-lineages of the Omicron variant were comparable in cell culture and natural infection in a subset of individuals led to a significant increase in binding and neutralizing antibodies to the Delta variant and all the three sub-lineages of Omicron but the level of neutralizing antibodies were lowest against the BA.2.75 variant. Finally, we show that Cu2+, Zn2+ and Fe2+ salts inhibited in vitro RdRp activity but only Cu2+ and Fe2+ inhibited both the Delta and Omicron variants in cell culture. Thus, our results suggest that high levels of interferons induced upon infection with Omicron variant may counter virus replication and spread. Waning neutralizing antibody titers rendered subjects susceptible to infection by Omicron variants and natural Omicron infection elicits neutralizing antibodies that can cross-react with other sub-lineages of Omicron and other variants of concern.
Collapse
Affiliation(s)
- Janmejay Singh
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Anbalagan Anantharaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Aleksha Panwar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Chitra Rani
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Monika Bhardwaj
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Parveen Kumar
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Partha Chattopadhyay
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priti Devi
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ranjeet Maurya
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pallavi Mishra
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Guruprasad R. Medigeshi
- Bioassay Laboratory and Clinical and Cellular Virology Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| |
Collapse
|
13
|
Dixit H, Upadhyay V, Kulharia M, Verma SK. The putative metal-binding proteome of the Coronaviridae family. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2023; 15:6969429. [PMID: 36610727 DOI: 10.1093/mtomcs/mfad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023]
Abstract
Metalloproteins are well-known for playing various physicochemical processes in all life forms, including viruses. Some life-threatening viruses (such as some members of the Coronaviridae family of viruses) are emerged and remerged frequently and are rapidly transmitted throughout the globe. This study aims to identify and characterize the metal-binding proteins (MBPs) of the Coronaviridae family of viruses and further provides insight into the MBP's role in sustaining and propagating viruses inside a host cell and in the outer environment. In this study, the available proteome of the Coronaviridae family was exploited. Identified potential MBPs were analyzed for their functional domains, structural aspects, and subcellular localization. We also demonstrate phylogenetic aspects of all predicted MBPs among other Coronaviridae family members to understand the evolutionary trend among their respective hosts. A total of 256 proteins from 51 different species of coronaviruses are predicted as MBPs. These MBPs perform various key roles in the replication and survival of viruses within the host cell. Cysteine, aspartic acid, threonine, and glutamine are key amino acid residues interacting with respective metal ions. Our observations also indicate that the metalloproteins of this family of viruses circulated and evolved in different hosts, which supports the zoonotic nature of coronaviruses. The comprehensive information on MBPs of the Coronaviridae family may be further helpful in designing novel therapeutic metalloprotein targets. Moreover, the study of viral MBPs can also help to understand the roles of MBPs in virus pathogenesis and virus-host interactions.
Collapse
Affiliation(s)
- Himisha Dixit
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Vipin Upadhyay
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Mahesh Kulharia
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India
| | - Shailender Kumar Verma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Kangra176206, India.,Department of Environmental Studies, University of Delhi, Delhi110007, India
| |
Collapse
|
14
|
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1720. [PMID: 35150188 PMCID: PMC9786758 DOI: 10.1002/wrna.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
More than 100 chemical modifications of RNA, termed the epitranscriptome, have been described, most of which occur in prokaryotic and eukaryotic ribosomal, transfer, and noncoding RNA and eukaryotic messenger RNA. DNA and RNA viruses can modify their RNA either directly via genome-encoded enzymes or by hijacking the host enzymatic machinery. Among the many RNA modifications described to date, four play particularly important roles in promoting viral infection by facilitating viral gene expression and replication and by enabling escape from the host innate immune response. Here, we discuss our current understanding of the mechanisms by which the RNA modifications such as N6 -methyladenosine (m6A), N6 ,2'-O-dimethyladenosine (m6Am), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2'-O-methylation (Nm) promote viral replication and/or suppress recognition by innate sensors and downstream activation of the host antiviral response. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Russ A, Wittmann S, Tsukamoto Y, Herrmann A, Deutschmann J, Lagisquet J, Ensser A, Kato H, Gramberg T. Nsp16 shields SARS-CoV-2 from efficient MDA5 sensing and IFIT1-mediated restriction. EMBO Rep 2022; 23:e55648. [PMID: 36285486 PMCID: PMC9724656 DOI: 10.15252/embr.202255648] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022] Open
Abstract
Methylation of the mRNA 5' cap by cellular methyltransferases enables efficient translation and avoids recognition by innate immune factors. Coronaviruses encode viral 2'-O-methyltransferases to shield their RNA from host factors. Here, we generate recombinant SARS-CoV-2 harboring a catalytically inactive 2'-O-methyltransferase Nsp16, Nsp16mut, and analyze viral replication in human lung epithelial cells. Although replication is only slightly attenuated, we find SARS-CoV-2 Nsp16mut to be highly immunogenic, resulting in a strongly enhanced release of type I interferon upon infection. The elevated immunogenicity of Nsp16mut is absent in cells lacking the RNA sensor MDA5. In addition, we report that Nsp16mut is highly sensitive to type I IFN treatment and demonstrate that this strong antiviral effect of type I IFN is mediated by the restriction factor IFIT1. Together, we describe a dual role for the 2'-O-methyltransferase Nsp16 during SARS-CoV-2 replication in avoiding efficient recognition by MDA5 and in shielding its RNA from interferon-induced antiviral responses, thereby identifying Nsp16 as a promising target for generating attenuated and highly immunogenic SARS-CoV-2 strains and as a potential candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Alina Russ
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Sabine Wittmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Yuta Tsukamoto
- Institute of Cardiovascular ImmunologyUniversity Hospital Bonn, University of BonnBonnGermany
| | - Alexandra Herrmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Janina Deutschmann
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Justine Lagisquet
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Armin Ensser
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| | - Hiroki Kato
- Institute of Cardiovascular ImmunologyUniversity Hospital Bonn, University of BonnBonnGermany
| | - Thomas Gramberg
- Institute of Clinical and Molecular VirologyFriedrich‐Alexander University Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
16
|
Evolutionary Pattern Comparisons of the SARS-CoV-2 Delta Variant in Countries/Regions with High and Low Vaccine Coverage. Viruses 2022; 14:v14102296. [PMID: 36298851 PMCID: PMC9611485 DOI: 10.3390/v14102296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
It has been argued that vaccine-breakthrough infections of SARS-CoV-2 would likely accelerate the emergence of novel variants with immune evasion. This study explored the evolutionary patterns of the Delta variant in countries/regions with relatively high and low vaccine coverage based on large-scale sequences. Our results showed that (i) the sequences were grouped into two clusters (L and R); the R cluster was dominant, its proportion increased over time and was higher in the high-vaccine-coverage areas; (ii) genetic diversities in the countries/regions with low vaccine coverage were higher than those in the ones with high vaccine coverage; (iii) unique mutations and co-mutations were detected in different countries/regions; in particular, common co-mutations were exhibited in highly occurring frequencies in the areas with high vaccine coverage and presented in increasing frequencies over time in the areas with low vaccine coverage; (iv) five sites on the S protein were under strong positive selection in different countries/regions, with three in non-C to U sites (I95T, G142D and T950N), and the occurring frequencies of I95T in high vaccine coverage areas were higher, while G142D and T950N were potentially immune-pressure-selected sites; and (v) mutation at the N6-methyladenosine site 4 on ORF7a (C27527T, P45L) was detected and might be caused by immune pressure. Our study suggested that certain variation differences existed between countries/regions with high and low vaccine coverage, but they were not likely caused by host immune pressure. We inferred that no extra immune pressures on SARS-CoV-2 were generated with high vaccine coverage, and we suggest promoting and strengthening the uptake of the COVID-19 vaccine worldwide, especially in less developed areas.
Collapse
|
17
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
18
|
Mushegian A. Methyltransferases of Riboviria. Biomolecules 2022; 12:1247. [PMID: 36139088 PMCID: PMC9496149 DOI: 10.3390/biom12091247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Many viruses from the realm Riboviria infecting eukaryotic hosts encode protein domains with sequence similarity to S-adenosylmethionine-dependent methyltransferases. These protein domains are thought to be involved in methylation of the 5'-terminal cap structures in virus mRNAs. Some methyltransferase-like domains of Riboviria are homologous to the widespread cellular FtsJ/RrmJ-like methyltransferases involved in modification of cellular RNAs; other methyltransferases, found in a subset of positive-strand RNA viruses, have been assigned to a separate "Sindbis-like" family; and coronavirus-specific Nsp13/14-like methyltransferases appeared to be different from both those classes. The representative structures of proteins from all three groups belong to a specific variety of the Rossmann fold with a seven-stranded β-sheet, but it was unclear whether this structural similarity extends to the level of conserved sequence signatures. Here I survey methyltransferases in Riboviria and derive a joint sequence alignment model that covers all groups of virus methyltransferases and subsumes the previously defined conserved sequence motifs. Analysis of the spatial structures indicates that two highly conserved residues, a lysine and an aspartate, frequently contact a water molecule, which is located in the enzyme active center next to the methyl group of S-adenosylmethionine cofactor and could play a key role in the catalytic mechanism of the enzyme. Phylogenetic evidence indicates a likely origin of all methyltransferases of Riboviria from cellular RrmJ-like enzymes and their rapid divergence with infrequent horizontal transfer between distantly related viruses.
Collapse
Affiliation(s)
- Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, 2415 Eisenhower Ave., Alexandria, VA 22314, USA
| |
Collapse
|
19
|
Li H, Yuan S, Wei X, Sun H. Metal-based strategies for the fight against COVID-19. Chem Commun (Camb) 2022; 58:7466-7482. [PMID: 35730442 DOI: 10.1039/d2cc01772e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The emerging COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has claimed over six million lives globally to date. Despite the availability of vaccines, the pandemic still cannot be fully controlled owing to rapid mutation of the virus that renders enhanced transmissibility and antibody evasion. This is thus an unmet need to develop safe and effective therapeutic options for COVID-19, in particular, remedies that can be used at home. Considering the great success of multi-targeted cocktail therapy for the treatment of viral infections, metal-based drugs might represent a unique and new source of antivirals that resemble a cocktail therapy in terms of their mode of actions. In this review, we first summarize the role that metal ions played in SARS-CoV-2 viral replication and pathogenesis, then highlight the chemistry of metal-based strategies in the fight against SARS-CoV-2 infection, including both metal displacement and chelation based approaches. Finally, we outline a perspective and direction on how to design and develop metal-based antivirals for the fight against the current or future coronavirus pandemic.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. .,Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
20
|
Low ZY, Yip AJW, Lal SK. Repositioning anticancer drugs as novel COVID-19 antivirals: targeting structural and functional similarities between viral proteins and cancer. Expert Rev Mol Med 2022; 24:1-23. [PMID: 35450545 PMCID: PMC9114731 DOI: 10.1017/erm.2022.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic contributed by the SARS-CoV-2 has put in place an urgent need for new and promising antiviral therapeutics. The viral RNA-dependent RNA polymerase (RdRp) enzyme plays a vital role in viral replication for all RNA viruses, including SARS-CoV-2, thereby making it a prime and promising candidate for novel antiviral targeting. Interestingly, the human telomerase reverse transcriptase (hTERT), a common catalytic subunit of the telomerase enzyme in many cancers, has also been identified with structural and functional similarities to the viral RdRp. Therefore, it becomes essential to evaluate and consider anticancer drugs that target hTERT towards antiviral RdRp activity, and vice versa. For instance, Floxuridine, an hTERT inhibitor, and VX-222, a hepatitis C virus RdRp inhibitor, are now gaining recognition as a potential antiviral against SARS-CoV-2 and anti-hTERT for cancer, simultaneously. While limited studies on hTERT inhibitors for use as viral RdRp, and anti-RdRp inhibitors as hTERT inhibitors are available, in this review, we aim at bringing to light this close structural and functional relationship between both these enzymes. We punctuate this idea with specific examples on how potential anticancer inhibitors can effectively be brought to use as inhibitors against the SARS-CoV-2 virus, a relatively new pathogen, compared to the very well-studied field of cancer research.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil Kumar Lal
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
- Tropical Medicine and Biology Platform, Monash University Malaysia, 47500 Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
21
|
Hooda P, Ishtikhar M, Saraswat S, Bhatia P, Mishra D, Trivedi A, Kulandaisamy R, Aggarwal S, Munde M, Ali N, AlAsmari AF, Rauf MA, Inampudi KK, Sehgal D. Biochemical and Biophysical Characterisation of the Hepatitis E Virus Guanine-7-Methyltransferase. Molecules 2022; 27:1505. [PMID: 35268608 PMCID: PMC8911963 DOI: 10.3390/molecules27051505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatitis E virus (HEV) is an understudied pathogen that causes infection through fecal contaminated drinking water and is prominently found in South Asian countries. The virus affects ~20 million people annually, leading to ~60,000 infections per year. The positive-stranded RNA genome of the HEV genotype 1 has four conserved open reading frames (ORFs), of which ORF1 encodes a polyprotein of 180 kDa in size, which is processed into four non-structural enzymes: methyltransferase (MTase), papain-like cysteine protease, RNA-dependent RNA polymerase, and RNA helicase. MTase is known to methylate guanosine triphosphate at the 5'-end of viral RNA, thereby preventing its degradation by host nucleases. In the present study, we cloned, expressed, and purified MTase spanning 33-353 amino acids of HEV genotype 1. The activity of the purified enzyme and the conformational changes were established through biochemical and biophysical studies. The binding affinity of MTase with magnesium ions (Mg2+) was studied by isothermal calorimetry (ITC), microscale thermophoresis (MST), far-UV CD analysis and, fluorescence quenching. In summary, a short stretch of nucleotides has been cloned, coding for the HEV MTase of 37 kDa, which binds Mg2+ and modulate its activity. The chelation of magnesium reversed the changes, confirming its role in enzyme activity.
Collapse
Affiliation(s)
- Preeti Hooda
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Mohd Ishtikhar
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Shweta Saraswat
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Pooja Bhatia
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Deepali Mishra
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Aditya Trivedi
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| | - Rajkumar Kulandaisamy
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Soumya Aggarwal
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Manoj Munde
- School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi 110067, India; (S.A.); (M.M.)
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (N.A.); (A.F.A.)
| | - Mohd A. Rauf
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India;
| | - Deepak Sehgal
- Virology Lab, Department of Life Sciences, Shiv Nadar University, Greater Noida 201314, India; (P.H.); (M.I.); (S.S.); (P.B.); (D.M.); (A.T.)
| |
Collapse
|
22
|
The nsp15 Nuclease as a Good Target to Combat SARS-CoV-2: Mechanism of Action and Its Inactivation with FDA-Approved Drugs. Microorganisms 2022; 10:microorganisms10020342. [PMID: 35208797 PMCID: PMC8880170 DOI: 10.3390/microorganisms10020342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
The pandemic caused by SARS-CoV-2 is not over yet, despite all the efforts from the scientific community. Vaccination is a crucial weapon to fight this virus; however, we still urge the development of antivirals to reduce the severity and progression of the COVID-19 disease. For that, a deep understanding of the mechanisms involved in viral replication is necessary. nsp15 is an endoribonuclease critical for the degradation of viral polyuridine sequences that activate host immune sensors. This enzyme is known as one of the major interferon antagonists from SARS-CoV-2. In this work, a biochemical characterization of SARS-CoV-2 nsp15 was performed. We saw that nsp15 is active as a hexamer, and zinc can block its activity. The role of conserved residues from SARS-CoV-2 nsp15 was investigated, and N164 was found to be important for protein hexamerization and to contribute to the specificity to degrade uridines. Several chemical groups that impact the activity of this ribonuclease were also identified. Additionally, FDA-approved drugs with the capacity to inhibit the in vitro activity of nsp15 are reported in this work. This study is of utmost importance by adding highly valuable information that can be used for the development and rational design of therapeutic strategies.
Collapse
|
23
|
Lo N, Xu X, Soares F, He HH. The Basis and Promise of Programmable RNA Editing and Modification. Front Genet 2022; 13:834413. [PMID: 35154288 PMCID: PMC8831800 DOI: 10.3389/fgene.2022.834413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
One key advantage of RNA over genomic editing is its temporary effects. Aside from current use of DNA-targeting CRISPR-Cas9, the more recently discovered CRISPR-Cas13 has been explored as a means of editing due to its RNA-targeting capabilities. Specifically, there has been a recent interest in identifying and functionally characterizing biochemical RNA modifications, which has spurred a new field of research known as "epitranscriptomics". As one of the most frequently occurring transcriptome modifications, N6-methyladenosine (m6A) has generated much interest. The presence of m6A modifications is under the tight control of a series of regulators, and the ability of fusing these proteins or demethylases to catalytically inactive CRISPR proteins have resulted in a new wave of programmable RNA methylation tools. In addition, studies have been conducted to develop different CRISPR/Cas and base editor systems capable of more efficient editing, and some have explored the effects of in vivo editing for certain diseases. As well, the application of CRISPR and base editors for screening shows promise in revealing the phenotypic outcomes from m6A modification, many of which are linked to physiological, and pathological effects. Thus, the therapeutic potential of CRISPR/Cas and base editors for not only m6A related, but other RNA and DNA related disease has also garnered insight. In this review, we summarize/discuss the recent findings on RNA editing with CRISPR, base editors and non-CRISPR related tools and offer a perspective regarding future applications for basic and clinical research.
Collapse
Affiliation(s)
- Nicholas Lo
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Xin Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Nencka R, Silhan J, Klima M, Otava T, Kocek H, Krafcikova P, Boura E. Coronaviral RNA-methyltransferases: function, structure and inhibition. Nucleic Acids Res 2022; 50:635-650. [PMID: 35018474 PMCID: PMC8789044 DOI: 10.1093/nar/gkab1279] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.
Collapse
Affiliation(s)
- Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Otava
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Hugo Kocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
25
|
Minasov G, Rosas-Lemus M, Shuvalova L, Inniss NL, Brunzelle JS, Daczkowski CM, Hoover P, Mesecar AD, Satchell KJF. Mn 2+ coordinates Cap-0-RNA to align substrates for efficient 2'- O-methyl transfer by SARS-CoV-2 nsp16. Sci Signal 2021; 14:scisignal.abh2071. [PMID: 34131072 PMCID: PMC8432954 DOI: 10.1126/scisignal.abh2071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Virally encoded 2′-O-methyltransferases catalyze the last step in the capping of viral RNAs, which protects the RNAs from degradation and prevents them from triggering host defenses. Minasov et al. report structures of the SARS-CoV-2 methyltransferase, a heterodimeric complex of the enzyme nsp16 and its coactivator nsp10, in complex with a short, capped RNA (instead of the RNA cap analogs used to generate previous structures), the methyl donor SAM, and divalent metal cations. The metal ions and a four-residue insert of nsp16 were important for precisely aligning the RNA substrate in the active site for efficient catalysis. This insert is present in coronavirus but not in mammalian methyltransferases, suggesting this site as a potential target for the design of coronavirus-specific methyltransferase inhibitors. Capping of viral messenger RNAs is essential for efficient translation, for virus replication, and for preventing detection by the host cell innate response system. The SARS-CoV-2 genome encodes the 2′-O-methyltransferase nsp16, which, when bound to the coactivator nsp10, uses S-adenosylmethionine (SAM) as a donor to transfer a methyl group to the first ribonucleotide of the mRNA in the final step of viral mRNA capping. Here, we provide biochemical and structural evidence that this reaction requires divalent cations, preferably Mn2+, and a coronavirus-specific four-residue insert. We determined the x-ray structures of the SARS-CoV-2 2′-O-methyltransferase (the nsp16-nsp10 heterodimer) in complex with its reaction substrates, products, and divalent metal cations. These structural snapshots revealed that metal ions and the insert stabilize interactions between the capped RNA and nsp16, resulting in the precise alignment of the ribonucleotides in the active site. Comparison of available structures of 2′-O-methyltransferases with capped RNAs from different organisms revealed that the four-residue insert unique to coronavirus nsp16 alters the backbone conformation of the capped RNA in the binding groove, thereby promoting catalysis. This insert is highly conserved across coronaviruses, and its absence in mammalian methyltransferases makes this region a promising site for structure-guided drug design of selective coronavirus inhibitors.
Collapse
Affiliation(s)
- George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA.,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph S Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL 60439, USA
| | - Courtney M Daczkowski
- Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Paul Hoover
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA
| | - Andrew D Mesecar
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.,Department of Biochemistry and Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine,,Chicago, IL 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|