1
|
Jasmin Finkelmeyer S, Presselt M. Tuning Optical Properties of Organic Thin Films through Intermolecular Interactions - Fundamentals, Advances and Strategies. Chemistry 2025; 31:e202403500. [PMID: 39829246 DOI: 10.1002/chem.202403500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
In applications ranging from photon-energy conversion into electrical or chemical forms (such as photovoltaics or photocatalysis) to numerous sensor technologies based on organic solids, the role of supramolecular structures and chromophore interactions is crucial. This review comprehensively examines the critical intermolecular interactions between organic dyes and their impact on optical properties. We explore the range of changes in absorption or emission properties observed in molecular aggregates compared to single molecules. Each effect is dissected to reveal its physicochemical foundations, relevance to different application domains, and documented examples from the literature that illustrate the potential modulation of absorption or emission properties by molecular and supramolecular structural adjustments. This work aims to serve as a concise guide for exploiting supramolecular phenomena in the innovation of novel optical and optoelectronic organic materials, with emphasis on strategic application and exploitation.
Collapse
Affiliation(s)
| | - Martin Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
- Sciclus GmbH & Co. KG, Moritz-von-Rohr-Str. 1a, 07745, Jena, Germany
| |
Collapse
|
2
|
Xie W, Cao X, Huang M, Xu K, Gui C, Chen Z, Song XF, Wei Y, Liu H, Hua T, Yang M, Yin X, Miao J, Yang C. 1,4-Azaborine Participation Enables Inaccessible Cycloarene with Unique Photophysical Properties. J Am Chem Soc 2025. [PMID: 40012343 DOI: 10.1021/jacs.4c13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Cycloarenes and heterocycloarenes, characterized by fused macrocyclic π-conjugated structures, hold significant promise in synthetic chemistry and materials science. However, their further development remains constrained by formidable synthetic challenges, particularly for those with contracted cavities. Inspired by advances in the synthesis of organoboron-based multiresonance thermally activated delayed fluorescence (TADF) emitters, we herein report the convenient access and detailed characterization of a 1,4-azaborine-embedded cycloarene that features the smallest cavity among known (hetero)cycloarenes. The contracted cavity induces a bowl-shaped molecular geometry, as confirmed by crystallographic analysis, while also triggering through-space conjugation with delocalized π-electrons at the cavity site. Comparative studies between this compound and its helical analogue reveal a substantial topological impact on photophysical properties, including a bathochromic-shifted and broadened emission band, prolonged radiative decay process, and more efficient triplet-to-singlet spin-flip. Capitalizing on its efficient TADF with a remarkably high quantum yield, we successfully fabricated the first (hetero)cycloarene-based organic light-emitting diodes, achieving over 30% external quantum efficiency and minimal efficiency roll-off. These findings offer new insights into the design of topologically distinct organic compounds with unique properties.
Collapse
Affiliation(s)
- Wentao Xie
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
- College of Physical and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Ke Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Chenghao Gui
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiu-Fang Song
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Yaxiong Wei
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Tao Hua
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Ming Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. of China
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
Huang M, Chen Z, Miao J, He S, Yang W, Huang Z, Zou Y, Gong S, Tan Y, Yang C. Harmonization of rapid triplet up-conversion and singlet radiation enables efficient and stable white OLEDs. Nat Commun 2024; 15:8048. [PMID: 39277619 PMCID: PMC11401840 DOI: 10.1038/s41467-024-52401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
White organic light-emitting diodes (WOLEDs) hold significant promise in illumination and displays, but achieving high efficiency while maintaining stability is an ongoing challenge. Here, we strategically combine a blue donor-acceptor thermally activated delayed fluorescence (TADF) emitter featuring rapid reverse intersystem crossing rate and a yellow multi-resonance TADF emitter renowned for the fast radiative transition process to achieve warm WOLEDs with exceptional power efficiency exceeding 190 lm W-1 and external quantum efficiency (EQE) of 39%, setting records for WOLEDs. Meanwhile, these devices also exhibit an extended operational lifetime (LT80) of 446 h at an initial luminance of 1000 cd m-2. Another group of blue and yellow emitters based on our strategy achieves a standard white emission and a high EQE of 35.6%, confirming the universality of our strategy. This work presents a versatile strategy to harmonize singlet exciton radiation and triplet exciton up-conversion, thus achieving a win-win situation of efficiency and stability.
Collapse
Affiliation(s)
- Manli Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P. R. China
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Siyuan He
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Wei Yang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Yang Zou
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, P. R. China
| | - Yao Tan
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, P. R. China
| | - Chuluo Yang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P. R. China.
- Shenzhen Key Laboratory of New Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, P. R. China.
| |
Collapse
|
5
|
Guo J, Liu J, Zhao Y, Wang Y, Ma L, Jiang J. Time-dependent and clustering-induced phosphorescence, mechanochromism, structural-function relationships, and advanced information encryption based on isomeric effects and host-guest doping. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124449. [PMID: 38754206 DOI: 10.1016/j.saa.2024.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
To explore the intrinsic mechanism of pure organic room temperature and clustering-induced phosphorescence and investigate mechanochromism and structural-function relationships, here, 4-(2-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lo-CzAD), 4-(3-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lm-CzAD), and 4-(4-(9H-carbazol-9-yl)phenyl)-2-amino-6-methoxypyridine-3,5-dicarbonitrile (Lp-CzAD) were designed and synthesized by choosing self-made carbazole and 3, 5-dicyanopyridine (DCP) unit as electron acceptor and electron donor in sequence. Compared with crystals Lm-CzAD and Lp-CzAD, crystal Lo-CzAD shows better room temperature phosphorescence (RTP) performance, with RTP lifetimes of 187.16 ms, as well as afterglows 1s, which are attributed to twisted carbazole unit and donor-acceptor (D-A) molecular conformation, big crystal density and spin orbit coupling constant ξ (S1 → T1 and S1 → T2), as well as intermolecular H type stacking and small ξ (S0 → T1). By choosing urea and PPh3 as host materials and tuning doping ratio, four doping systems were successfully constructed, significantly improving RTP performance of Lo-CzAD and Lp-CzAD, as well as showing different fluorescence and RTP. The lifetimes and afterglows of pure organic Urea/Lo-CzAD and Urea/Lp-CzAD systems are up to 478.42 ms, 5 s, 261.66 ms and 4.5 s in turn. Moreover, Lo-CzAD and Lp-CzAD show time-dependent RTP in doping systems due to monomer and aggregate dispersion, as well as clustering-induced phosphorescence. Based on the different luminescent properties, multiple information encryptions were successfully constructed.
Collapse
Affiliation(s)
- Jianmei Guo
- Guilin University of Technology, Guilin 541004, China
| | - Jiaqi Liu
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Yupeng Zhao
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China
| | - Yongtao Wang
- Guilin University of Technology, Guilin 541004, China.
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystem, Tianjin University, Tianjin 300072, China.
| | | |
Collapse
|
6
|
Yin Y, Lai X, Ma Q, Ma H, Zhu W, Lee JY, Wang Y. HLCT-Type Acceptor Molecule-Based Exciplex System for Highly Efficient Solution-Processable OLEDs with Suppressed Efficiency Roll-Offs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313656. [PMID: 38315898 DOI: 10.1002/adma.202313656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Exciplex systems are promising candidates for thermally activated delayed fluorescence (TADF) molecules because of the small energy difference between the lowest singlet and triplet excited states (ΔEST). However, realizing high-efficiency and low-external-quantum-efficiency (EQE) roll-off in solution-processed organic light-emitting diodes (OLEDs) using an exciplex system remains a formidable challenge. In this study, two (HLCT)-type isomers with a spiro skeleton, 2-tBuspoCz-TRZ and 10-tBuspoCz-TRZ, are designed and synthesized as acceptors of exciplexes, where tert-butylspirofluorene indole is regarded as a donor and the triazine unit as an acceptor. Green exciplex emissions are observed for the 2-tBuspoCz-TRZ:TAPC and 10-tBuspoCz-TRZ:TAPC exciplexes, indicating distinct TADF characteristics with a very small ΔEST of 35 ± 5 meV. By using the TADF exciplex system based on the HLCT acceptor as an emitter, solution-processable OLEDs achieve a maximum external quantum efficiency (EQEmax) of 20.8%. Furthermore, a high EQEmax > 25% with a very low-efficiency roll-off (≈3.5% at 1000 cd m-2) is obtained for solution-processable phosphorescent devices using HLCT-based exciplexes as the host matrix of phosphors. This study paves the way for a novel strategy for designing acceptor exciplex molecules for effective TADF molecules and host matrices in solution-processable OLEDs.
Collapse
Affiliation(s)
- Yixiao Yin
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaoyi Lai
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Qian Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066 Seobu-ro, Suwon, 16419, South Korea
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
7
|
Wang M, Zhang Z, Lyu J, Qiu J, Gu C, Zhao H, Wang T, Ren Y, Yang SW, Qin Xu G, Liu X. Overcoming Thermal Quenching in X-ray Scintillators through Multi-Excited State Switching. Angew Chem Int Ed Engl 2024; 63:e202401949. [PMID: 38437064 DOI: 10.1002/anie.202401949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
X-ray scintillators have gained significant attention in medical diagnostics and industrial applications. Despite their widespread utility, scintillator development faces a significant hurdle when exposed to elevated temperatures, as it usually results in reduced scintillation efficiency and diminished luminescence output. Here we report a molecular design strategy based on a hybrid perovskite (TpyBiCl5) that overcomes thermal quenching through multi-excited state switching. The structure of perovskite provides a platform to modulate the luminescence centers. The rigid framework constructed by this perovskite structure stabilized its triplet states, resulting in TpyBiCl5 exhibiting an approximately 12 times higher (45 % vs. 3.8 %) photoluminescence quantum yield of room temperature phosphorescence than that of its organic ligand (Tpy). Most importantly, the interactions between the components of this perovskite enable the mixing of different excited states, which has been revealed by experimental and theoretical investigations. The TpyBiCl5 scintillator exhibits a detection limit of 38.92 nGy s-1 at 213 K and a detection limit of 196.31 nGy s-1 at 353 K through scintillation mode switching between thermally activated delayed fluorescence and phosphorescence. This work opens up the possibility of solving the thermal quenching in X-ray scintillators by tuning different excited states.
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Zhongbo Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
| | - Jing Lyu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Jian Qiu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, 350207, Fuzhou, China
| | - Chang Gu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, 350207, Fuzhou, China
| | - He Zhao
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, 350207, Fuzhou, China
| | - Tao Wang
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
| | - Yiwen Ren
- Institute of Landscape Architecture, Zhejiang University, 310058, Hangzhou, China
| | - Shuo-Wang Yang
- Institute of High-Performance Computing, Agency for Science, Technology and Research, 138632, Singapore, Singapore
| | - Guo Qin Xu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, 215123, Suzhou, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 117543, Singapore, Singapore
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, 350207, Fuzhou, China
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, 215123, Suzhou, China
| |
Collapse
|
8
|
Liu Y, Zhu F, Wang Y, Yan D. High-efficiency crystalline white organic light-emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2024; 13:86. [PMID: 38589356 PMCID: PMC11001915 DOI: 10.1038/s41377-024-01428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/04/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Crystalline white organic light-emitting diodes (C-WOLEDs) are promising candidates for lighting and display applications. It is urgently necessary, however, to develop energy-saving and high-efficiency C-WOLEDs that have stable and powerful emission to meet commercial demands. Here, we report a crystalline host matrix (CHM) with embedded nanoaggregates (NA) structure for developing high-performance C-WOLEDs by employing a thermally activated delayed fluorescence (TADF) material and orange phosphorescent dopants (Phos.-D). The CHM-TADFNA-D WOLED exhibit a remarkable EQE of 12.8%, which is the highest performance WOLEDs based on crystalline materials. The device has a quick formation of excitons and a well-designed energy transfer process, and possesses a fast ramping of luminance and current density. Compared to recently reported high-performance WOLEDs based on amorphous material route, the C-WOLED achieves a low series-resistance Joule-heat loss ratio and an enhanced photon output, demonstrating its significant potential in developing the next-generation WOLEDs.
Collapse
Affiliation(s)
- Yijun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, China
| | - Donghang Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Lee KW, Wan Y, Huang Z, Zhao Q, Li S, Lee CS. Organic Optoelectronic Materials: A Rising Star of Bioimaging and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306492. [PMID: 37595570 DOI: 10.1002/adma.202306492] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Recently, many organic optoelectronic materials (OOMs), especially those used in organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs), are explored for biomedical applications including imaging and photoexcited therapies. In this review, recently developed OOMs for fluorescence imaging, photoacoustic imaging, photothermal therapy, and photodynamic therapy, are summarized. Relationships between their molecular structures, nanoaggregation structures, photophysical mechanisms, and properties for various biomedical applications are discussed. Mainly four kinds of OOMs are covered: thermally activated delayed fluorescence materials in OLEDs, conjugated small molecules and polymers in OSCs, and charge-transfer complexes in OFETs. Based on the OOMs unique optical properties, including excitation light wavelength and exciton dynamics, they are respectively exploited for suitable biomedical applications. This review is intended to serve as a bridge between researchers in the area of organic optoelectronic devices and those in the area of biomedical applications. Moreover, it provides guidance for selecting or modifying OOMs for high-performance biomedical uses. Current challenges and future perspectives of OOMs are also discussed with the hope of inspiring further development of OOMs for efficient biomedical applications.
Collapse
Affiliation(s)
- Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Qi Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
10
|
Dey S, Deka R, Upadhyay M, Peethambaran S, Ray D. White Light Emission via Dual Thermally Activated Delayed Fluorescence from a Single-Component Phenothiazines-Diphenyl Quinoline Conjugate. J Phys Chem Lett 2024; 15:3135-3141. [PMID: 38477646 DOI: 10.1021/acs.jpclett.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
White light emission (WLE) via dual thermally activated delayed fluorescence (TADF) from a single-component-based organic system remains challenging as a result of the difficulty in design. Here, we introduce a conformational isomerization approach to achieve WLE from a twisted donor-acceptor (PTzQP1) that comprises two phenothiazines covalently attached to the 6,8-isomeric positions of 2,4-diphenyl quinoline via two C-N single bonds. Spectroscopic studies and quantum chemistry calculations revealed that PTzQP1 shows WLE via simultaneous blue TADF and orange TADF covering the visible range (420-800 nm) with a photoluminescence quantum yield of 45 ± 2% and Commission Internationale de l'Éclairage (CIE) coordinates of 0.30, 0.33. The dual TADF features with high rates of reverse intersystem crossing (kRISC1 = 1.38 × 107 ± 0.24 s-1 and kRISC2 = 5.04 × 106 ± 0.32 s-1) are realized as a result of the low singlet-triplet gaps (S1EQ-T1EQ = 0.04 eV and S1QA-T1QA = 0.05 eV) of the quasi-axial (QA) and quasi-equatorial (QE) conformers. This finding is expected to provide a new direction for designing high-energy-efficient WLE emitters.
Collapse
Affiliation(s)
- Suvendu Dey
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Raktim Deka
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Manoj Upadhyay
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Sreerang Peethambaran
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Debdas Ray
- Advanced Photofunctional Materials Laboratory, Department of Chemistry, Shiv Nadar Institution of Eminence, Delhi National Capital Region (NCR), NH-91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
11
|
Kim H, Lee K, Kim JH, Kim WY. Deep Learning-Based Chemical Similarity for Accelerated Organic Light-Emitting Diode Materials Discovery. J Chem Inf Model 2024; 64:677-689. [PMID: 38270063 DOI: 10.1021/acs.jcim.3c01747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Thermally activated delayed fluorescence (TADF) material has attracted great attention as a promising metal-free organic light-emitting diode material with a high theoretical efficiency. To accelerate the discovery of novel TADF materials, computer-aided material design strategies have been developed. However, they have clear limitations due to the accessibility of only a few computationally tractable properties. Here, we propose TADF-likeness, a quantitative score to evaluate the TADF potential of molecules based on a data-driven concept of chemical similarity to existing TADF molecules. We used a deep autoencoder to characterize the common features of existing TADF molecules with common chemical descriptors. The score was highly correlated with the four essential electronic properties of TADF molecules and had a high success rate in large-scale virtual screening of millions of molecules to identify promising candidates at almost no cost, validating its feasibility for accelerating TADF discovery. The concept of TADF-likeness can be extended to other fields of materials discovery.
Collapse
Affiliation(s)
- Hyeonsu Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyunghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jun Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- AI Institute, Korea Advanced Institute of Science & Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Wu CC, Tsai YX, Chu LK, Chen IC. Investigation of Electronic Structures of Triplet States Using Step-Scan Time-Resolved Fourier-Transform Near-Infrared Spectroscopy. J Phys Chem Lett 2024; 15:912-918. [PMID: 38241171 PMCID: PMC10839901 DOI: 10.1021/acs.jpclett.3c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Triplet transitions of light-emitting materials, including rose bengal, tris(2-phenylpyridine)iridium(III) [Ir(ppy)3], tris(1-phenylisoquinoline)iridium(III) [Ir(piq)3], and bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic), were studied using step-scan time-resolved Fourier-transform near-infrared spectroscopy. The samples were excited to their singlet excited states by a 355 nm laser and then underwent efficient conversions/crossings to their triplet manifolds. For rose bengal, a transient absorption band appeared at 9400 cm-1, attributed to the T3 ← T1 transition based on the corresponding time evolution and the theoretical calculations. For Ir(ppy)3, Ir(piq)3, and FIrpic, the most intense bands were observed at 7700, 7500, and 7500 cm-1 and assigned to T7 ← T1, T6 ← T1, and T6 ← T1 transitions, respectively. For Ir(ppy)3, the most intense band involved transitions between different triplet metal-to-ligand charge transfer (3MLCT) states, while for Ir(piq)3 and FIrpic, they involved a metal center to 3MLCT transition. These T1 states were assigned to 3MLCT.
Collapse
Affiliation(s)
- Chia Chun Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - Yu-Xiang Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| |
Collapse
|
13
|
Guo Y, Zhao Z, Hua L, Liu Y, Xu B, Zhang Y, Yan S, Ren Z. Adjusting the Electron-Withdrawing Ability of Acceptors in Thermally Activated Delayed Fluorescence Conjugated Polymers for High-Performance OLEDs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1225-1233. [PMID: 38112452 DOI: 10.1021/acsami.3c15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.
Collapse
Affiliation(s)
- Yumeng Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Hua
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchao Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuzhuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
14
|
Ma P, Chen Y, Man Y, Qi Q, Guo Y, Wang H, Li Z, Chang P, Qu C, Han C, Xu H. High-Efficiency Ultraviolet Electroluminescence from Multi-Resonance Phosphine Oxide Polycyclic Aromatics. Angew Chem Int Ed Engl 2023:e202316479. [PMID: 38055193 DOI: 10.1002/anie.202316479] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Efficient ultraviolet (UV) electroluminescent materials remain a great challenge, since short peak wavelength <400 nm and narrow full width at half maximum (FWHM) <50 nm are simultaneously required. In this sense, multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters featuring narrow-band emissions hold the promise for UV applications. Herein, a novel MR-TADF skeleton featuring carbazole-phosphine oxide (P=O) fused aromatics is developed to construct the first two UV MR emitters named CzP2PO and tBCzP2PO. In addition to synergistic resonance effects of P=O and N atom, sp3 -hybrid P atom renders the curved polycyclic planes of CzP2PO and tBCzP2PO, giving rise to their narrowband UV emissions with peak wavelengths <390 nm and FWHM<35 nm. Besides configuration quasi-planarization for radiation enhancement and quenching suppression, P=O moiety further enhances singlet-triplet coupling to facilitate reverse intersystem crossing, resulting in the state-of-the-art photoluminescence quantum yield of 62 % in tBCzP2PO doped films. As consequence, tBCzP2PO endowed its UV organic light-emitting diodes with the peak at 382 nm and FWHM of 32 nm, and especially the record-high external quantum efficiency (EQE) of 15.1 % among all kinds of UV devices. Our results demonstrate great potential of P=O based MR emitters in practical applications including optoelectronics, biology and medicine science.
Collapse
Affiliation(s)
- Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yingying Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Quan Qi
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Yuanting Guo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chao Qu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, 150080, China
| |
Collapse
|
15
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
16
|
Fang P, Huo P, Wang L, Zhao Z, Yu G, Huang Y, Bian Z, Liu Z. Lanthanide complexes with d-f transition: new emitters for single-emitting-layer white organic light-emitting diodes. LIGHT, SCIENCE & APPLICATIONS 2023; 12:170. [PMID: 37419880 DOI: 10.1038/s41377-023-01211-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023]
Abstract
White organic light-emitting diodes (WOLEDs) is a new generation of lighting technology and has stimulated wide-ranging studies. Despite the advantage of simple device structure, single-emitting-layer WOLEDs (SEL-WOLEDs) still face the challenges of difficult material screening and fine energy level regulation. Herein, we report efficient SEL-WOLEDs with a sky-blue emitting cerium(III) complex Ce-TBO2Et and an orange-red emitting europium(II) complex Eu(Tp2Et)2 as the emitters, showing a maximum external quantum efficiency of 15.9% and Commission Internationale de l'Eclairage coordinates of (0.33, 0.39) at various luminances. Most importantly, the electroluminescence mechanism of direct hole capture and hindered energy transfer between the two emitters facilitate a manageable weight doping concentration of 5% for Eu(Tp2Et)2, avoiding the low concentration (<1%) of the low-energy emitter in typical SEL-WOLEDs. Our results indicate that d-f transition emitters may circumvent fine energy level regulation and provide development potential for SEL-WOLEDs.
Collapse
Affiliation(s)
- Peiyu Fang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Gang Yu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
17
|
Zhao Z, Yan S, Ren Z. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Acc Chem Res 2023. [PMID: 37364229 DOI: 10.1021/acs.accounts.3c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
ConspectusCharacterized by the reverse intersystem crossing (RISC) process from the triplet state (T1) to the singlet state (S1), thermally activated delayed fluorescence (TADF) emitters, which produce light by harvesting both triplet and singlet excitons without noble metals, are considered to be third-generation organic electroluminescent materials. Rapid advances in molecular design criteria, understanding the photophysics underlying TADF, and applications of TADF materials as emitters in organic light-emitting diodes (OLEDs) have been achieved. Theoretically, enhanced spin-orbit coupling (SOC) between singlet and triplet states can result in a fast RISC process and thus a high light-emitting efficiency according to Fermi's golden rule. Therefore, regulating the nature of triplet excited states by elaborate molecular design to improve SOC is an effective approach to high-efficiency TADF-based OLEDs. Generally, on one hand, the increased local excited (LE) populations of the excited triplet state can significantly improve the nature flips between S1 and T1. On other hand, the reduced energy gap between S1 and the lowest triplet with a charge transfer (CT) characteristic can also enhance their vibronic coupling. Consequently, it is vital to determine how to regulate the nature of triplet excited states by molecular design to guide the material synthesis, especially for polymeric emitters.In this Account, we focus on modulating the strategy of triplet excited states for TADF emitters and an in-depth understanding of the photophysical processes, leading to optimized OLED device performance. We include several kinds of strategies to control the nature of triplet excited states to guide the synthesis of small-molecule and polymer TADF emitters: (1) Modulating the electronic distribution of conjugated polymeric backbones by copolymerizing the electron-donating host: accordingly, the nature of excited states can be changed, especially for triplets. Meanwhile, the utilization of excitons can be systematically improved by adjusting the electronic structure of triplet states with long-range distribution in the conjugated polymeric backbones. (2) Halogenating acceptors of TADF units: the introduced halogen atoms would reestablish the electronic distribution of the triplet and relocate the hole orbits, resulting in a CT and LE hybrid nature of a triplet transformed into a LE-predominant state, which favors the RISC process. (3) Stereostructure regulation: by constructing a diverse arrangement of three-dimensional spatial configurations or conjugated architectures, the nature of the triplet can also be finely tuned, such as hyperbranched structures with multiple triplet-singlet vibration couplings, half-dendronized-half-encapsulated asymmetric systems, trinaphtho[3,3,3] propeller-based three-dimensional spatial interspersed structures, intramolecular close-packed donor-acceptor systems, and so on. We hope that this Account will provide insights into new structures and mechanisms for achieving high-performance OLEDs based on regulating the nature of triplet excited states.
Collapse
Affiliation(s)
- Zhennan Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
18
|
Lin B, Wang Q, Qi Z, Xu H, Qu DH. Cucurbit[8]uril-mediated multi-color fluorescence system for time-dependent information encryption. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Ding D, Wang Z, Duan C, Han C, Zhang J, Chen S, Wei Y, Xu H. White Fluorescent Organic Light-Emitting Diodes with 100% Power Conversion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0009. [PMID: 39290967 PMCID: PMC11407583 DOI: 10.34133/research.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2024]
Abstract
Energy-efficient lighting sources are desired to provide another solution of carbon emission reduction. White organic light-emitting diodes are promising, because of theoretical internal quantum efficiencies for 100% electric-to-light conversion. However, pure organic fluorescent materials still face a challenge in harvesting triplet excitons for radiation. Herein, we report a white fluorescent organic light-emitting diode having an external quantum efficiency of 30.7% and a power efficiency of 120.2 lm W-1. In the single emissive layers, we use blue thermally activated delayed fluorescent emitters to sensitize a yellow fluorescent emitter. Transient photoluminescence and electroluminescence analyses suggest that a blue thermally activated delayed fluorescent molecule with ~100% reverse intersystem crossing efficiency and negligible triplet nonradiative rate constant completely converts triplet to singlet, suppressing triplet quenching by a yellow fluorescent emitter and ensuring 100% power conversion.
Collapse
Affiliation(s)
- Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|
20
|
Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering. Nat Commun 2022; 13:7828. [PMID: 36535962 PMCID: PMC9763412 DOI: 10.1038/s41467-022-35591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Preparing high-efficiency solution-processable orange-red thermally activated delayed fluorescence (TADF) emitters remains challenging. Herein, we design a series of emitters consisting of trinaphtho[3,3,3]propellane (TNP) core derivatized with different TADF units. Benefiting from the unique hexagonal stacking architecture of TNPs, TADF units are thus kept in the cavities between two TNPs, which decrease concentration quenching and annihilation of long-lived triplet excitons. According to the molecular engineering of TADF and host units, the excited states can further be regulated to effectively enhance spin-orbit coupling (SOC) processes. We observe a high-efficiency orange-red emission at 604 nm in one instance with high SOC value of 0.862 cm-1 and high photoluminescence quantum yield of 70.9%. Solution-processable organic light-emitting diodes exhibit a maximum external quantum efficiency of 24.74%. This study provides a universal strategy for designing high-performance TADF emitters through molecular packing and excited state regulation.
Collapse
|
21
|
All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W ‒1 and small roll-offs. Nat Commun 2022; 13:5154. [PMID: 36056014 PMCID: PMC9440051 DOI: 10.1038/s41467-022-32967-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Improving power efficiency (PE) and reducing roll-off are of significant importance for the commercialization of white organic light-emitting diodes (WOLEDs) in consideration of energy conservation. Herein, record-beating PE of 130.7 lm W−1 and outstanding external quantum efficiency (EQE) of 31.1% are achieved in all-fluorescence two-color WOLEDs based on a simple sandwich configuration of emitting layer consisting of sky-blue and orange delayed fluorescence materials. By introducing a red fluorescence dopant, all-fluorescence three-color WOLEDs with high color rendering index are constructed based on an interlayer sensitization configuration, furnishing ultrahigh PE of 110.7 lm W−1 and EQE of 30.8%. More importantly, both two-color and three-color WOLEDs maintain excellent PEs at operating luminance with smaller roll-offs than the reported state-of-the-art WOLEDs, and further device optimization realizes outstanding comprehensive performances of low driving voltages, large luminance, high PEs and long operational lifetimes. The underlying mechanisms of the impressive device performances are elucidated by host-tuning effect and electron-trapping effect, providing useful guidance for the development of energy-conserving all-fluorescence WOLEDs. High power efficiency and low roll-off values are essential to the commercialization of white organic light-emitting diodes. Here, the authors construct all-fluorescence devices with an orange emitting layer sandwiched between two sky-blue emitting layers, achieving figure-of-merit of 130.7 lm/W.
Collapse
|
22
|
Shizu K, Kaji H. Comprehensive understanding of multiple resonance thermally activated delayed fluorescence through quantum chemistry calculations. Commun Chem 2022; 5:53. [PMID: 36697887 PMCID: PMC9814892 DOI: 10.1038/s42004-022-00668-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 01/28/2023] Open
Abstract
Molecules that exhibit multiple resonance (MR) type thermally activated delayed fluorescence (TADF) are highly efficient electroluminescent materials with narrow emission spectra. Despite their importance in various applications, the emission mechanism is still controversial. Here, a comprehensive understanding of the mechanism for a representative MR-TADF molecule (5,9-diphenyl-5,9-diaza-13b-boranaphtho[3,2,1-de]anthracene, DABNA-1) is presented. Using the equation-of-motion coupled-cluster singles and doubles method and Fermi's golden rule, we quantitatively reproduced all rate constants relevant to the emission mechanism; prompt and delayed fluorescence, internal conversion (IC), intersystem crossing, and reverse intersystem crossing (RISC). In addition, the photoluminescence quantum yield and its prompt and delayed contributions were quantified by calculating the population kinetics of excited states and the transient photoluminescence decay curve. The calculations also revealed that TADF occurred via a stepwise process of 1) thermally activated IC from the electronically excited lowest triplet state T1 to the second-lowest triplet state T2, 2) RISC from T2 to the lowest excited singlet state S1, and 3) fluorescence from S1.
Collapse
Affiliation(s)
- Katsuyuki Shizu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Hironori Kaji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
23
|
Chen L, Chang Y, Shi S, Wang S, Wang L. Solution-processed white OLEDs with power efficiency over 90 lm W -1 by triplet exciton management with a high triplet energy level interfacial exciplex host and a high reverse intersystem crossing rate blue TADF emitter. MATERIALS HORIZONS 2022; 9:1299-1308. [PMID: 35195631 DOI: 10.1039/d1mh02060a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solution-processed white organic light-emitting diodes (WOLEDs) have shown much lower device efficiency than their vacuum-deposited counterparts, due to the lack of triplet exciton management in a single-emissive-layer device structure, which will induce triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). Here, two kinds of solution-processed WOLEDs, including thermally activated delayed fluorescence (TADF)/phosphorescence hybrid WOLEDs and all-TADF WOLEDs, with high power efficiency are developed by using a high triplet energy level (T1) interfacial exciplex as a host and a high reverse intersystem crossing (RISC) rate TADF emitter as a blue dopant for triplet exciton management. The interfacial exciplex host with high T1 can ensure that triplet excitons transfer from the host to the blue emitter, and the blue TADF emitter with high RISC rate (1.15 × 107 s-1) can rapidly upconvert triplet excitons to singlet ones to avoid TTA and TPA. The solution-processed TADF/phosphorescence hybrid and all-TADF WOLEDs exhibit maximum external quantum efficiencies of 31.1% and 27.3%, together with maximum power efficiencies of 93.5 and 70.4 lm W-1, respectively, which are the record efficiencies for solution-processed WOLEDs, and quite comparable to those of most vacuum-deposited counterparts.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yufei Chang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Song Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
24
|
Bian J, Chen S, Qiu L, Tian R, Man Y, Wang Y, Chen S, Zhang J, Duan C, Han C, Xu H. Ambipolar Self-Host Functionalization Accelerates Blue Multi-Resonance Thermally Activated Delayed Fluorescence with Internal Quantum Efficiency of 100. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110547. [PMID: 35233858 DOI: 10.1002/adma.202110547] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Emerging multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters can combine 100% exciton harvesting and high color purity for their organic light-emitting diodes (OLED). However, the highly planar configurations of MR molecules lead to intermolecular-interaction-induced quenching. A feasible way is integrating host segments into MR molecules, namely a "self-host" strategy, but without involving additional charge transfer and/or vibrational components to excited states. Herein, an ambipolar self-host featured MR emitter, tCBNDADPO, is demonstrated, whose ambipolar host segment (DADPO) significantly and comprehensively improves the TADF properties, especially greatly accelerated singlet radiative rate constant of 2.11 × 108 s-1 and exponentially reduced nonradiative rate constants. Consequently, at the same time as preserving narrowband blue emission with an FWHM of ≈28 nm at a high doping concentration of 30%, tCBNDADPO reveals state-of-the-art photoluminescence and electroluminescence quantum efficiencies of 99% and 30%, respectively. The corresponding 100% internal quantum efficiency of tCBNDADPO supported by an ultrasimple trilayer and heavily doped device demonstrates the feasibility of the ambipolar self-host strategy for constructing practically applicable MR materials.
Collapse
Affiliation(s)
- Jinkun Bian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Su Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Lili Qiu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Rundong Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Yidan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, P. R. China
| |
Collapse
|
25
|
Hong X, Zhang D, Yin C, Wang Q, Zhang Y, Huang T, Wei J, Zeng X, Meng G, Wang X, Li G, Yang D, Ma D, Duan L. TADF molecules with π-extended acceptors for simplified high-efficiency blue and white organic light-emitting diodes. Chem 2022. [DOI: 10.1016/j.chempr.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Duan C, Xin Y, Wang Z, Zhang J, Han C, Xu H. High-efficiency hyperfluorescent white light-emitting diodes based on high-concentration-doped TADF sensitizer matrices via spatial and energy gap effects. Chem Sci 2021; 13:159-169. [PMID: 35059164 PMCID: PMC8694281 DOI: 10.1039/d1sc05753g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/24/2021] [Indexed: 01/05/2023] Open
Abstract
Despite the success of monochromatic hyperfluorescent (HF) organic light-emitting diodes (OLEDs), high-efficiency HF white OLEDs (WOLEDs) are still a big challenge. Herein, we demonstrate HF WOLEDs with state-of-the-art efficiencies, featuring a quasi-bilayer emissive layer (EML) composed of an ultrathin (0.1 nm) blue fluorescence (FL) emitter (TBPe) layer and a layer of thermally activated delayed fluorescence (TADF) sensitizer matrix heavily doped with a yellow FL emitter (TBRb, 3%). Based on an asymmetric high-energy-gap TADF sensitizer host (PhCzSPOTz), such an “ultrathin blue emitting layer (UTBL)” strategy endowed the HF WOLEDs with a record power efficiency of ∼80 lm W−1, approaching the level of fluorescent tubes. Transient photoluminescence (PL) and electroluminescence (EL) kinetics demonstrate that the spatial separation of TBPe from the TADF sensitizer and TBRb, and the large energy gap between the latter two effectively suppress triplet leakage, in addition to suppressing triplet diffusion in the PhCzSPOTz matrix with anisotropic intermolecular interactions. These results provide a new insight into the exciton allocation process in HF white light-emitting systems. A thermally activated delayed fluorescence host was developed to realize high-efficiency fluorescence white organic light-emitting diodes (WOLED) through spatial and energy gap effects.![]()
Collapse
Affiliation(s)
- Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Ying Xin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| |
Collapse
|
27
|
Tian Y, Wang H, Man Y, Zhang N, Zhang J, Li Y, Han C, Xu H. Weaving host matrices with intermolecular hydrogen bonds for high-efficiency white thermally activated delayed fluorescence. Chem Sci 2021; 12:14519-14530. [PMID: 34881003 PMCID: PMC8580069 DOI: 10.1039/d1sc04188f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 01/14/2023] Open
Abstract
A thermally activated delayed fluorescence (TADF) white organic light-emitting diode (WOLED) holds great promise for low-cost, large-scale lighting applications. Nevertheless, manipulating exciton allocation in a white TADF single layer is still a challenge. Herein, we demonstrate that the exciton kinetic process of dually doped white TADF films is strongly dependent on the grid regularity of the host matrix. Intermolecular hydrogen bonds (IHBs) are used to weave the matrices of two host molecules DPEQPO and DPSQPO featuring four phosphine oxide (PO) groups and different IHB orientations. The DPSQPO matrix forms regular grids to uniformly disperse and separate dopants, while DPEQPO exhibits chaotic IHBs, in turn inducing a heterogeneous dopant distribution. As a consequence, in both photoluminescence and electroluminescence processes, in contrast to DPEQPO hosted systems with comparable singlet Förster resonance energy transfer and triplet Dexter energy transfer, DPSQPO provides a FRET-predominant exciton allocation between blue and yellow dopants, which markedly suppresses triplet quenching and improves the white color purity, resulting in a state-of-the-art external quantum efficiency up to 24.2% of its single-emissive-layer pure-white TADF diode, in contrast to 16.0% for DPEQPO based analogs. These results indicate the significance of host engineering for exciton kinetics and suggest the feasibility of host grid design for developing high-performance TADF lighting. A thermally activated delayed fluorescence (TADF) white organic light-emitting diode (WOLED) holds great promise for low-cost, large-scale lighting applications.![]()
Collapse
Affiliation(s)
- Yuee Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Nan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Ying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| |
Collapse
|