1
|
Li M, Wei Y, Shi M. Electrochemically promoted tandem cyclization of functionalized methylenecyclopropanes: synthesis of tetracyclic benzazepine derivatives. Org Biomol Chem 2025; 23:4166-4171. [PMID: 40171828 DOI: 10.1039/d5ob00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In this study, an electrocatalytic tandem cyclization reaction of amide-tethered methylenecyclopropanes has been developed, which can realize the rapid construction of tetracyclic benzazepine derivatives in moderate yields with good functional group compatibility under relatively mild conditions. In this transformation, the catalytic amount of ferrocene serves as the electrocatalytic medium, and electron transfer on electrodes can replace oxidants or reducing agents, which is more environmentally friendly than and economically comparable to traditional photocatalysis or metal catalysis. Moreover, the origin of the regiochemistry is well elucidated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
2
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Electrochemical Synthesis of γ-Lactones from the Intermolecular Oxidative Coupling between Malonates and Styrenes. J Org Chem 2025; 90:4450-4457. [PMID: 40091205 DOI: 10.1021/acs.joc.5c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
We report a ferrocene-mediated electrochemical intermolecular oxidative annulation between malonates and styrenes that avoids the use of excess oxidants such as Mn(OAc)3. The reaction proceeds via presumably the generation of a malonyl radical that adds to the styrene. After further anodic oxidation, the resulting benzylic carbocation is intercepted by one of the esters to deliver the desired γ-lactones.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
3
|
Kolb S, Werz DB. Correspondence on "Organo-Mediator Enabled Electrochemical Deuteration of Styrenes". Angew Chem Int Ed Engl 2024; 63:e202316037. [PMID: 38695672 DOI: 10.1002/anie.202316037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The recently reported electrochemical, organo-mediator enabled deuteration of styrenes, a reaction referred to as "electrochemical deuterium atom transfer", differs mechanistically from reported direct electrochemical hydrogenations/deuterations only by a mediated, homogeneous SET to the substrates. By comparing direct vs. mediated processes in general and for styrene reduction, we display that Qiu's work does not change the concept of this chemistry. Experiments with mediators and the direct reduction of examples from the reported scope show that even electron-rich substrates can be reduced when our direct protocol, published six months before Qiu's work, is applied.
Collapse
Affiliation(s)
- Simon Kolb
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Albert-Ludwigs-Universität Freiburg, Institute of Organic Chemistry, Albertstr. 21, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
5
|
Lefevre A, Guillot R, Kouklovsky C, Vincent G. Ferrocene-Mediated Electrochemical Polycyclization of Malonates. Org Lett 2024; 26:7403-7407. [PMID: 39189952 DOI: 10.1021/acs.orglett.4c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report access to the core of biologically relevant aromatic abietane diterpenoids and to the formal synthesis of podocarpic and lambertic acids or γ-lactones via an electrochemical bicyclization process initiated by the ferrocene-mediated anodic oxidation of a malonate via single electron-transfer. This approach permits escaping the use of excess of oxidants such as Mn(OAc)3 and the associated complicated purification.
Collapse
Affiliation(s)
- Antoine Lefevre
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay et CNRS, Bâtiment Henri Moisson, 17 Avenue des Sciences, 91400 Orsay, France
| |
Collapse
|
6
|
Noël F, El Kaïm L, Masson G, Claraz A. Electrocatalytic dehydrogenative and defluorinative coupling between aldehyde-derived N, N-dialkylhydrazones and fluoromalonates: synthesis of 2-pyrazolines. Org Biomol Chem 2024; 22:4269-4273. [PMID: 38742988 DOI: 10.1039/d4ob00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
An electrocatalytic synthesis of 2-pyrazolines via dehydrogenative and defluorinative cross-coupling reactions between (hetero)arylaldehyde-derived N,N-dialkylhydrazones and fluoromalonates is disclosed. Salient features of this work include (i) readily available starting materials, (ii) practical reaction conditions, and (ii) a formal oxidative (4 + 1)-cycloaddition via triple C-H bond functionalization. Cyclic voltammetry analyses support the electrocatalytic formation of an α-fluoromalonyl radical.
Collapse
Affiliation(s)
- Florent Noël
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | - Laurent El Kaïm
- Laboratoire de Synthèse Organique (LSO-UMR 76523), CNRS, Ecole Polytechnique, ENSTA-Paris, Institut Polytechnique de Paris, 828 Bd des Maréchaux, 91128 Palaiseau Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, Porcheville, France
| | - Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
7
|
Graf S, Pesch H, Appleson T, Lei T, Breder A, Siewert I. Mechanistic Analysis Reveals Key Role of Interchalcogen Multicatalysis in Photo-Aerobic 3-Pyrroline Syntheses by Aza-Wacker Cyclizations. CHEMSUSCHEM 2024; 17:e202301518. [PMID: 38214219 DOI: 10.1002/cssc.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 01/13/2024]
Abstract
A light-driven dual and ternary catalytic aza-Wacker protocol for the construction of 3-pyrrolines by partially disulfide-assisted selenium-π-acid multicatalysis is reported. A structurally diverse array of sulfonamides possessing homopolar mono-, di- and trisubstituted olefinic double bonds is selectively converted to the corresponding 3-pyrrolines in up to 95 % isolated yield and with good functional group tolerance. Advanced electrochemical mechanistic investigations of the protocol suggest a dual role of the disulfide co-catalyst. On the one hand, the disulfide serves as an electron hole shuttle between the excited photoredox catalyst and the selenium co-catalyst. On the other hand, the sulfur species engages in the final, product releasing step of the catalytic cycle by accelerating the β-elimination of the selenium moiety, which was found in many cases to lead to considerably improved product yields.
Collapse
Affiliation(s)
- Sebastian Graf
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Henner Pesch
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Theresa Appleson
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Tao Lei
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Alexander Breder
- Universität Regensburg, Institut für Organische Chemie, Universitätstrasse 31, 93053, Regensburg, Germany
| | - Inke Siewert
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Struwe J, Ackermann L. Photoelectrocatalyzed undirected C-H trifluoromethylation of arenes: catalyst evaluation and scope. Faraday Discuss 2023; 247:79-86. [PMID: 37466161 DOI: 10.1039/d3fd00076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
During the last few years, photoelectrocatalysis has evolved as an increasingly viable tool for molecular synthesis. Despite several recent reports on the undirected C-H functionalization of arenes, thus far, a detailed comparison of different catalysts is still missing. To address this, more than a dozen different mediators were employed in the trifluoromethylation of (hetero-)arenes to compare them in their efficacies.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
9
|
Yue H, Zhu C, Rueping M. Electrochemical cobalt catalysis enabled construction of diverse chiral skeletons via C-H activation. Sci Bull (Beijing) 2023; 68:1730-1732. [PMID: 37500403 DOI: 10.1016/j.scib.2023.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Huifeng Yue
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Chen Zhu
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
10
|
Park SH, Bae G, Choi A, Shin S, Shin K, Choi CH, Kim H. Electrocatalytic Access to Azetidines via Intramolecular Allylic Hydroamination: Scrutinizing Key Oxidation Steps through Electrochemical Kinetic Analysis. J Am Chem Soc 2023. [PMID: 37428820 DOI: 10.1021/jacs.3c03172] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Azetidines are prominent structural scaffolds in bioactive molecules, medicinal chemistry, and ligand design for transition metals. However, state-of-the-art methods cannot be applied to intramolecular hydroamination of allylic amine derivatives despite their underlying potential as one of the most prevalent synthetic precursors to azetidines. Herein, we report an electrocatalytic method for intramolecular hydroamination of allylic sulfonamides to access azetidines for the first time. The merger of cobalt catalysis and electricity enables the regioselective generation of key carbocationic intermediates, which could directly undergo intramolecular C-N bond formation. The mechanistic investigations including electrochemical kinetic analysis suggest that either the catalyst regeneration by nucleophilic cyclization or the second electrochemical oxidation to access the carbocationic intermediate is involved in the rate-determining step (RDS) of our electrochemical protocol and highlight the ability of electrochemistry in providing ideal means to mediate catalyst oxidation.
Collapse
Affiliation(s)
- Steve H Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Geunsu Bae
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ahhyeon Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Suyeon Shin
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmin Shin
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| | - Hyunwoo Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
11
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
13
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
14
|
Huang H, Song X, Yu C, Wei Q, Ni L, Han X, Huang H, Han Y, Qiu J. A Liquid-Liquid-Solid System to Manipulate the Cascade Reaction for Highly Selective Electrosynthesis of Aldehyde. Angew Chem Int Ed Engl 2023; 62:e202216321. [PMID: 36414544 DOI: 10.1002/anie.202216321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Electrocatalytic synthesis of aldehydes from alcohols exhibits unique superiorities as a promising technology, in which cascade reactions are involved. However, the cascade reactions are severely limited by the low selectivity resulting from the peroxidation of aldehydes in a traditional liquid-solid system. Herein, we report a novel liquid-liquid-solid system to regulate the selectivity of benzyl alcohol electrooxidation. The selectivity of benzaldehyde increases 200-fold from 0.4 % to 80.4 % compared with the liquid-solid system at a high current density of 136 mA cm-2 , which is the highest one up to date. In the tri-phase system, the benzaldehyde peroxidation is suppressed efficiently, with the conversion of benzaldehyde being decreased from 87.6 % to 3.8 %. The as-produced benzaldehyde can be in situ extracted to toluene phase and separated from the electrolyte to get purified benzaldehyde. This strategy provides an efficient way to efficiently enhance the selectivity of electrocatalytic cascade reactions.
Collapse
Affiliation(s)
- Hongling Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuedan Song
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Qianbing Wei
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Lin Ni
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiaotong Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Huawei Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingnan Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
Akine S, Nomura K, Takahashi M, Sakata Y, Mori T, Nakanishi W, Ariga K. Synthesis of amphiphilic chiral salen complexes and their conformational manipulation at the air-water interface. Dalton Trans 2023; 52:260-268. [PMID: 36374017 DOI: 10.1039/d2dt03201e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of amphiphilic salen complexes, [L1a,bM] and [L2a,bM], were designed and synthesized. These complexes consist of two or four hydrophilic triethylene glycol (TEG) chains and a hydrophobic π-extended metallosalen core based on naphthalene or phenanthrene. The obtained amphiphilic complexes, [L1bM] (M = Ni, Cu, Zn), formed a monolayer at the air-water interface, while the monocationic [L1bCo(MeNH2)2](OTf) did not form a well-defined monolayer. The number of hydrophilic TEG chains also had an influence on the monolayerformation behavior; the tetra-TEG derivatives, [L1bNi] and [L2bNi], showed a pressure rise at a less compressed region than the bis-TEG derivatives, [L1aNi] and [L2aNi]. In addition, the investigation of their compressibility and compression modulus suggested that the tetra-TEG derivatives, [L1bNi] and [L2bNi], are more flexible than the corresponding bis-TEG analogues, [L1aNi] and [L2aNi], and that the phenanthrene derivatives [L1a,bNi] were more rigid than the corresponding naphthalene analogues, [L2a,bNi]. The Langmuir-Blodgett (LB) films of one of the complexes, [L1bNi], showed CD spectra slightly different from that in solution, which may originate from the unique anisotropic environment of the air-water interface. Thus, we demonstrated the possibility of controlling the chiroptical properties of metal complexes by mechanical compression.
Collapse
Affiliation(s)
- Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Keisuke Nomura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mizuho Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoko Sakata
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan. .,Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taizo Mori
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Waka Nakanishi
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
| | - Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
16
|
Gu Q, Cheng Z, Qiu X, Zeng X. Recent Advances in the Electrochemical Functionalization of Isocyanides. CHEM REC 2023; 23:e202200177. [PMID: 36126178 DOI: 10.1002/tcr.202200177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Isocyanides are well-known as efficient CO surrogates and C1 synthons in modern organic synthesis. Although tremendous efforts have been devoted to fully exploiting the reactivity of isocyanides, these transformations are primarily limited by their utilization of stoichiometric toxic chemical oxidants. With the recent resurgence of organic electrochemistry, which has considerably laid dormant over the past several decades, electrolysis has been identified as a green and powerful tool to enrich structural diversity by solely utilizing electric current as clean and inherently safe redox equivalents of stoichiometric chemical oxidants. In this regard, the unique reactivity of isocyanides has been studied in numerous electrochemical transformations. This review comprehensively highlights the most relevant progress in electrochemical strategies towards the functionalization of isocyanides up until June of 2022, with a focus on reaction outcomes and mechanisms.
Collapse
Affiliation(s)
- Qingyun Gu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Zhenfeng Cheng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, Nantong, 226001, PR China
| |
Collapse
|
17
|
Yuan GC, Guo P, Wang ZH, Zhu L, He X, Li Y, Ye KY. Synthesis of Indeno[1,2- c]furans via Cobalt-Catalyzed Radical–Polar Crossover [3 + 2] Cycloaddition of o-Alkynylaryl β-Dicarbonyls. Org Lett 2022; 24:8197-8201. [DOI: 10.1021/acs.orglett.2c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhi-Hua Wang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lingyun Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
18
|
Wu X, Gannett CN, Liu J, Zeng R, Novaes LFT, Wang H, Abruña HD, Lin S. Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes. J Am Chem Soc 2022; 144:17783-17791. [PMID: 36137298 DOI: 10.1021/jacs.2c08278] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization reactions.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Cara N Gannett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jinjian Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Rui Zeng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hongsen Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Héctor D Abruña
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022; 61:e202210632. [DOI: 10.1002/anie.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
20
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Zhang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Kang Liang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Chang Guo
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale No.96, JinZhai Road Baohe District 230026 Hefei CHINA
| |
Collapse
|
21
|
Dong MY, Han CY, Li DS, Hong Y, Liu F, Deng HP. Hydrogen-Evolution Allylic C(sp 3)–H Alkylation with Protic C(sp 3)–H Bonds via Triplet Synergistic Brønsted Base/Cobalt/Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng-Yuan Dong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chun-Yu Han
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
22
|
Li L, Hou ZW, Li P, Wang L. Electrochemical Dearomatizing Spirocyclization of Alkynes with Dimethyl 2-Benzylmalonate s to Spiro[4.5]deca-trienones. J Org Chem 2022; 87:8697-8708. [PMID: 35679486 DOI: 10.1021/acs.joc.2c00939] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An electrochemical dearomatizing spirocyclization of alkynes with dimethyl 2-benzylmalonates for the preparation of spiro[4.5]deca-trienones has been developed. This approach adopts ferrocene (Cp2Fe) as an electrocatalyst to produce carbon-centered radical intermediates from C-H-based malonates, which obviates the forthputting of noble-metal reagents, sacrificial chemical oxidants and 2-bromomalonates. A wide variety of spiro compounds are efficiently prepared with satisfactory results under mild conditions.
Collapse
Affiliation(s)
- Laiqiang Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Shi Z, Li N, Wang WZ, Lu HK, Yuan Y, Li Z, Ye KY. Electrochemical 5- exo-dig aza-cyclization of 2-alkynylbenzamides toward 3-hydroxyisoindolinone derivatives. Org Biomol Chem 2022; 20:4320-4323. [PMID: 35593414 DOI: 10.1039/d2ob00637e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Preparation of biologically relevant 3-hydroxyisoindolinones from readily available 2-alkynylbenzamides is an appealing synthetic approach. However, such kinds of compounds preferably undergo O-attacked 5-exo-dig/6-endo-dig cyclizations. Herein, we report an electrochemically generated amidyl radical proceeding via a highly selective N-attacked 5-exo-dig radical cyclization to form 3-hydroxyisoindolinone derivatives. This reaction features simple operation, good selectivity, and broad substrate scope. Moreover, gram-scale preparation and synthetic elaborations imply the potential applicability of this protocol for the synthesis of diverse isoindolinone derivatives.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zhen Li
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China. .,State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Acceptorless dehydrogenative amination of alkenes for the synthesis of N-heterocycles. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Yang QL, Liu Y, Liang L, Li ZH, Qu GR, Guo HM. Facilitating Rh-Catalyzed C-H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. J Org Chem 2022; 87:6161-6178. [PMID: 35438486 DOI: 10.1021/acs.joc.2c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical approach to promote the ortho-C-H alkylation of (hetero)arenes via rhodium catalysis under mild conditions is described. This approach features mild conditions with high levels of regio- and monoselectivity that tolerate a variety of aromatic and heteroaromatic groups and offers a widely applicable method for late-stage diversification of complex molecular architectures including tryptophan, estrone, diazepam, nucleosides, and nucleotides. Alkyl boronic acids and esters and alkyl trifluoroborates are demonstrated as suitable coupling partners. The isolation of key rhodium intermediates and mechanistic studies provided strong support for a rhodium(III/IV or V) regime.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhi-Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
26
|
Chen M, Wu ZJ, Song J, Xu HC. Electrocatalytic Allylic C-H Alkylation Enabled by a Dual-Function Cobalt Catalyst. Angew Chem Int Ed Engl 2022; 61:e202115954. [PMID: 35129253 DOI: 10.1002/anie.202115954] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/11/2022]
Abstract
The direct functionalization of allylic C-H bonds with nucleophiles minimizes pre-functionalization and converts inexpensive, abundantly available materials to value-added alkenyl-substituted products but remains challenging. Here we report an electrocatalytic allylic C-H alkylation reaction with carbon nucleophiles employing an easily available cobalt-salen complex as the molecular catalyst. These C(sp3 )-H/C(sp3 )-H cross-coupling reactions proceed through H2 evolution and require no external chemical oxidants. Importantly, the mild conditions and unique electrocatalytic radical process ensure excellent functional group tolerance and substrate compatibility with both linear and branched terminal alkenes. The synthetic utility of the electrochemical method is highlighted by its scalability (up to 200 mmol scale) under low loading of electrolyte (down to 0.05 equiv) and its successful application in the late-stage functionalization of complex structures.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovative Collaboration Center of Chemistry for Energy Materials, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zheng-Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovative Collaboration Center of Chemistry for Energy Materials, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovative Collaboration Center of Chemistry for Energy Materials, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
27
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
28
|
Chen M, Wu Z, Song J, Xu H. Electrocatalytic Allylic C−H Alkylation Enabled by a Dual‐Function Cobalt Catalyst**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Innovative Collaboration Center of Chemistry for Energy Materials Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zheng‐Jian Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Innovative Collaboration Center of Chemistry for Energy Materials Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Hai‐Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Innovative Collaboration Center of Chemistry for Energy Materials Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
29
|
Yang F, Nie YC, Liu HY, Zhang L, Mo F, Zhu R. Electrocatalytic Oxidative Hydrofunctionalization Reactions of Alkenes via Co(II/III/IV) Cycle. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi-Chen Nie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han-Yuan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fanyang Mo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Lukyanov DA, Vereshchagin AA, Beletskii EV, Atangulov AB, Yankin AN, Sizov VV, Levin OV. Nickel Salicylideniminato 1D MOFs
via
Electrochemical Polymerization. ChemElectroChem 2022. [DOI: 10.1002/celc.202101316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniil A. Lukyanov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | | | - Evgenii V. Beletskii
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Arslan B. Atangulov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Andrei N. Yankin
- ITMO University Kronverksky Pr. 49, bldg. A St. Petersburg 197101 Russian Federation
| | - Vladimir V. Sizov
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| | - Oleg V. Levin
- Saint Petersburg University 7/9 Universitetskaya nab. St. Petersburg 199034 Russian Federation
| |
Collapse
|
31
|
Wei B, Qin JH, Yang YZ, Xie YX, Ouyang XH, Song RJ. Electrochemical radical C(sp3)–H arylation of xanthenes with electron-rich arenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01714d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient electrochemical C(sp3)–H arylation of xanthenes using a carbon anode and platinum cathode as the electrodes is disclosed.
Collapse
Affiliation(s)
- Bin Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yong-Zheng Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ye-Xiang Xie
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
32
|
Zhang H, Hu L, Yu K, Lou LL, Liu S. Efficient one-step synthesis of 3-(indol-2-yl)quinoxalin-2(1 H)-ones via electrochemical oxidative cross-dehydrogenative coupling. NEW J CHEM 2022. [DOI: 10.1039/d2nj00205a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient synthetic strategy for 3-(indol-2-yl)quinoxalin-2(1H)-ones was developed via electrochemical oxidative cross-dehydrogenative coupling of indoles and quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Hao Zhang
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Lishan Hu
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan-Lan Lou
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| | - Shuangxi Liu
- School of Materials Science and Engineering & National Institute of Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
33
|
Hou ZW, Jiang T, Wu TX, Wang L. Electrochemical Intermolecular Monofluoroalkylation of α,β-Unsaturated Carboxylic Acids and Heteroaromatics with 2-Fluoromalonate Esters. Org Lett 2021; 23:8585-8589. [PMID: 34699245 DOI: 10.1021/acs.orglett.1c03284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An electrochemical approach for the preparation of monofluorides from α,β-unsaturated carboxylic acids and heteroaromatics with readily available 2-fluoromalonate esters as monofluoroalkyl radical precursors has been developed. The electrosynthesis employs ferrocene (Cp2Fe) as a catalyst in a simple undivided cell with a broad substrate scope, which obviates the need for sacrificial oxidizing reagents.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Ting Jiang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Ting-Xia Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
34
|
Hou ZW, Mao ZY, Xu HC. Discovery of a tetraarylhydrazine catalyst for electrocatalytic synthesis of imidazo-fused N-heteroaromatic compounds. Org Biomol Chem 2021; 19:8789-8793. [PMID: 34585716 DOI: 10.1039/d1ob01644j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of electrocatalytic synthetic methods hinges on efficient molecular catalysts. Triarylamines are well-known redox catalysts because of the good stability of their corresponding amine radical cations. Herein we show that tris(4-(tert-butyl)phenyl)amine decomposes unexpectedly during electrolysis in MeOH/THF to afford a tetraarylhydrazine, 1,1,2,2-tetrakis(4-(tert-butyl)phenyl)hydrazine. In addition, we have applied this tetraarylhydrazine, which is either preprepared or formed in situ from tris(4-(tert-butyl)phenyl)amine, as an electrocatalyst for the synthesis of imidazopyridines and related N-heteroaromatic compounds through intramolecular [3 + 2] annulation. This metal-free electrocatalytic method provides straightforward access to the N-heteroaromatic compounds from readily available materials without the need for external chemical oxidants.
Collapse
Affiliation(s)
- Zhong-Wei Hou
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou 318000, P. R. China
| | - Zhong-Yi Mao
- Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Chao Xu
- Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|