1
|
Chai YX, Ren JJ, Li YM, Bai YC, Zhang QQ, Zhao YZ, Yang X, Zhang XH, Zhang XS, Wu AX, Zhu YP, Sun YY. 5-Aminopyrazole Dimerization: Cu-Promoted Switchable Synthesis of Pyrazole-Fused Pyridazines and Pyrazines via Direct Coupling of C-H/N-H, C-H/C-H, and N-H/N-H Bonds. Molecules 2025; 30:381. [PMID: 39860249 PMCID: PMC11767409 DOI: 10.3390/molecules30020381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
A Cu-promoted highly chemoselective dimerization of 5-aminopyrazoles to produce pyrazole-fused pyridazines and pyrazines is reported. The protocol generates switchable products via the direct coupling of C-H/N-H, C-H/C-H and N-H/N-H bonds, with the merits of broad substrate scope and high functional group compatibility. Gram-scale experiments demonstrated the potential applications of this reaction. Moreover, the preliminary fluorescence results uncovered that dipyrazole-fused pyridazines and pyrazines may have some potential applications in materials chemistry.
Collapse
Affiliation(s)
- Yi-Xin Chai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Jun-Jie Ren
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Ming Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Cheng Bai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Qing-Qing Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Yi-Zhen Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xue Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xiao-Han Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - Xin-Shuang Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yan-Ping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
- International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yuan-Yuan Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.-X.C.); (J.-J.R.); (Y.-M.L.); (Y.-C.B.); (Q.-Q.Z.); (Y.-Z.Z.); (X.Y.); (X.-H.Z.); (X.-S.Z.)
| |
Collapse
|
2
|
Dai M, Xu M, Gu X, Zhang P, Xie Y, Zhuge J, Liang X, Liao R, Wei Z, Zhang Z, Liang T. Iron-Catalyzed C-H Arylphosphorylation of Quinoxalines. Org Lett 2024; 26:7672-7677. [PMID: 39230956 DOI: 10.1021/acs.orglett.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A one-pot strategy for iron-catalyzed C2,3-H arylphosphorylation of electron-deficient quinoxalines with phosphines and aryl compounds is reported. The proposed method features the use of non-noble metal catalysts, the capacity of utilizing multiple aryl compounds as substrates, the simultaneous formation of C-P and C-C bonds in one pot, the simplicity of its operation, the mildness of the reaction conditions, and its compatibility with a wide range of substrates. Moreover, it offers a practical route for direct access to 2-aryl-3-phosphino N-heteroarenes, a class of potential cyclometalated C^N and N^P bidentate ligands that are difficult to prepare with existing C(sp2)-H functionalization methods.
Collapse
Affiliation(s)
- Maoyi Dai
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Meilan Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoting Gu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Pengyan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yukun Xie
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jin Zhuge
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xinting Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Runmin Liao
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
3
|
Zhang H, Zhou Y, Zhang Z, Sun H, Pan Z, Mou M, Zhang W, Ye Q, Hou T, Li H, Hsieh CY, Zhu F. Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction. Anal Chem 2024. [PMID: 39011990 DOI: 10.1021/acs.analchem.4c01793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug-drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
Collapse
Affiliation(s)
- Hanyu Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuan Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhichao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qing Ye
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai 200062, China
| | - Chang-Yu Hsieh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Chen J, Yang J, Zhang M. Divergent Synthesis of Cyclopropanated Tetrahydroquinolines by Tandem Functionalization of Quinoline Derivatives. J Org Chem 2024. [PMID: 38754033 DOI: 10.1021/acs.joc.4c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Here, reported is a new method for divergent synthesis of functionalized tetrahydroquinolines (THQs), featuring a biomedically interesting azabicyclo[4.1.0]heptane core, proceeding with mild conditions, good substrate and functionality tolerance, and operational simplicity. Mechanistic studies suggest that the products are formed via carbonucleophilic 1,4-addition-induced dearomatization of quinolinium salts and intramolecular cyclopropanation with α-halo ketones followed by α-nucleophilic addition with different nucleophiles. The present work lays a foundation to access new N-heterocycles via the dearomative tandem functionalization of azaarenes.
Collapse
Affiliation(s)
- Jianjie Chen
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road-381, Guangzhou 510641, P. R. China
| |
Collapse
|
5
|
Shi J, Zhu Z, Yang Z, Lin Y, Yu T, Zhong M, Lo TWB, Chen X, Luan T. In Situ Activation of Azaarenes and Terminal Alkynes to Construct Bridged Polycyclic Compounds Containing Isoquinolinones. Org Lett 2024; 26:2002-2006. [PMID: 38394378 DOI: 10.1021/acs.orglett.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A copper-catalyzed [4+2] cyclization reaction of isoquinolines and alkynes is developed for the one-step construction of isoquinolinone derivatives with multisubstituted bridging rings. The unique feature of this three-component tandem cyclization reaction is the functionalization of the C1, N2, C3, and C4 positions of 3-haloisoquinolines via the construction of new C-N, C═O, and C-C bonds. This dearomatization strategy for the synthesis of structurally complex isoquinolinone-bridged cyclic compounds offers good chemoselectivity, broad functional group compatibility, greenness, and high step economy.
Collapse
Affiliation(s)
- Jianyi Shi
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhendong Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Yuqun Lin
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tong Yu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiuwen Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tiangang Luan
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| |
Collapse
|
6
|
Zhao H, Li X, Zhang M. Nickel-catalyzed mild synthesis of functional γ-amino butyric acid esters via direct α-C(sp 3)-H allylation of N-alkyl anilines with allyl sulfones. Org Biomol Chem 2023; 21:8883-8887. [PMID: 37902574 DOI: 10.1039/d3ob01494k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Herein, by employing a readily available Ni(OAc)2·4H2O/TBHP catalyst system, we present a new method for mild synthesis of α-methylene-γ-amino butyric acid esters via direct α-C(sp3)-H allylation of N-alkyl anilines with allyl sulfones under oxidative nickel catalysis. The synthetic protocol proceeds with good substrate and functional group compatibility, operational simplicity, the use of base metal catalysts and easily accessible feedstocks, and no need for pre-functionalization of the α-site of N-alkyl anilines. In addition, the obtained products are applicable for further elaboration of functional molecules.
Collapse
Affiliation(s)
- He Zhao
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
- Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Xiu Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
7
|
Khandelia T, Ghosh S, Patel BK. Dearomative bis-functionalization of quinoxalines and bis- N-arylation of (benz)imidazoles via Cu(II)-mediated addition of boronic acids. Chem Commun (Camb) 2023; 59:2118-2121. [PMID: 36723297 DOI: 10.1039/d2cc06399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Cu(OTf)2-mediated regioselective dearomative aryl-hydroxylation across the C(sp2)N bond of 2-aryl quinoxalines and bis-N-arylation of (benz)imidazoles were developed using aryl boronic acids. For the dearomative aryl-hydroxylation, the C-center should be electrophilic (ca. 0.08), the N-center nucleophilic (ca. -0.50), and the C(sp2)N bond polarized (Δe = 0.609).
Collapse
Affiliation(s)
- Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781 039, Assam, India.
| |
Collapse
|
8
|
Hu D, Zhang Y, Li J, Liang K, Xia C. Water-mediated radical C-H tosylation of alkenes with tosyl cyanide. Chem Commun (Camb) 2023; 59:462-465. [PMID: 36519429 DOI: 10.1039/d2cc06101e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The water-mediated tosylation of alkenes with tosyl cyanide was discovered. Experimental investigations revealed that the reaction was initiated by the in situ formation of sulfinyl sulfone in the presence of water. The sulfinyl sulfone species decomposed to a sulfonyl radical and a sulfinyl radical through homolytic fission. The vinyl sulfone was afforded via sequential addition of the alkene to the sulfonyl radical and the sulfinyl radical, followed by β-elimination of a sulfinyl moiety.
Collapse
Affiliation(s)
- Dongyan Hu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Yang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Jianwei Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Kangjiang Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| | - Chengfeng Xia
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China.
| |
Collapse
|
9
|
Duan P, Sun J, Zhu Z, Zhang M. Selective access to fused tetrahydroquinolines via a copper-catalysed oxidative three-component annulation reaction. Org Biomol Chem 2023; 21:397-401. [PMID: 36524713 DOI: 10.1039/d2ob02066a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Via a copper-catalyzed three-component annulation reaction, we herein report a new method for the direct and syn-selective construction of cyclic ether-fused tetrahydroquinolines from readily available secondary anilines, saturated five or six-membered cyclic ethers, and paraformaldehyde. The synthesis features operational simplicity, excellent step and atom efficiency, good functionality and substrate compatibility. In comparison with the reported synthetic protocols capable of synthesizing N-alkyl fused tetrahydroquinolines, this newly developed chemistry allows access to both N-alkyl and N-aryl products. The current work complements the preparation of fused tetrahydroquinolines.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Jialu Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Zhibo Zhu
- Clinical Research Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
10
|
Sun L, Feng R, Zhen YQ, Hou ZR, Li X, Shan LH, Gao F. Exploration of anti-tumor activity of erlotinib derivatives enabled by a Pd-catalyzed late-stage Sonogashira reaction. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Li Y, Yang K, Cao L. Copper-catalyzed [3+3] annulation of ketones with oxime acetates for the synthesis of pyridines. RSC Adv 2022; 12:27546-27549. [PMID: 36276018 PMCID: PMC9516370 DOI: 10.1039/d2ra05050a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/19/2022] [Indexed: 09/19/2023] Open
Abstract
A novel and efficient copper-catalyzed strategy for the synthesis of diverse pyridines through the [3+3] annulation of ketones with oxime acetates has been reported. It is very convenient to obtain various unsymmetrical 2,6-diarylpyridines by changing different substrates. The rare copper-catalyzed direct difunctionalization of saturated ketones for the synthesis of nitrogen heterocycles is developed. This protocol has excellent functional group tolerance, readily available raw materials, high chemoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Yilin Li
- Guangzhou Darui Bio-technology Co. Ltd China
| | - Kai Yang
- College of Pharmacy, Gannan Medical University Ganzhou 341000 P. R. China
| | - Liang Cao
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 Guangdong China
| |
Collapse
|
12
|
Gangadhar M, Ramesh V, Prasad VS, Adiyala PR. Silver Ions Promoted Palladium-Catalyzed Inactive β-C(sp 3)-H Bond Arylation in Batch and Continuous-Flow Conditions. J Org Chem 2022; 87:9607-9618. [PMID: 35833382 DOI: 10.1021/acs.joc.2c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium(II)-catalyzed protocol for inactive β-C(sp3)-H bond functionalization has been first accomplished. The reaction proceeds through five-membered carbocycles for the formation of C-C bonds via the Pd(II)/Pd(IV) cycle. This reaction was carried out with various aryl iodides and benzothiazoles/benzoxazoles/benzimidazoles, which were well-tolerated in this reaction and successfully generated β-C(sp3)-H arylated products. Further implementation of this batch protocol to continuous flow by utilizing a PTFE (polytetrafluoroethylene) capillary reactor enhanced the reaction efficiency and decreased the reaction time (18.4 min) as compared to batch conditions (8 h). Even on the gram scale, the process produced excellent yield with negligible diarylations. Functional group tolerance, a continuous-flow approach, and easy-to-handle reaction conditions make this inactive β-C(sp3)-H bond functionalization protocol very attractive.
Collapse
Affiliation(s)
- Maram Gangadhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vankudoth Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vadla Shiva Prasad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Prabhala P, Sutar SM, Kalkhambkar RG, Jeong YT. Ultrasonication Assisted α‐Arylation of
N‐
heteroarenes Employing 1‐Aryltriazenes Promoted by Brønsted Acidic Ionic Liquid under Aerobic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202201428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pavankumar Prabhala
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Suraj M. Sutar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Rajesh G. Kalkhambkar
- Department of Chemistry Karnatak University's Karnatak Science College Dharwad Karnataka 580001 India
| | - Yeon T. Jeong
- Department of Image Science and Engineering Pukyong National University Busan 608737, Republic of Korea
| |
Collapse
|
14
|
Guan R, Zhao H, Zhang M. Construction of Fused Tetrahydroquinolines by Catalytic Hydride-Transfer-Initiated Tandem Functionalization of Quinolines. Org Lett 2022; 24:3048-3052. [DOI: 10.1021/acs.orglett.2c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rongqing Guan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China
- Qingyuan Huayuan Institute of Science and Technology Collaborative InnovationCo., Ltd., China
| |
Collapse
|
15
|
Jiang J, Song S, Guo J, Zhou J, Li J. Mechanically induced transition metal free C(sp)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Patel P. Water-Mediated ortho-Carboxymethylation of Aryl Ketones under Ir(III)-Catalytic Conditions: Step Economy Total Synthesis of Cytosporones A-C. J Org Chem 2022; 87:4852-4862. [PMID: 35297630 DOI: 10.1021/acs.joc.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious Ir(III)-catalyzed carboxymethylation of aryl ketone with diazotized Meldrum's acid has been developed in aqueous medium. Flavanone and chromanone were also found to be facile substrates with the developed catalytic system. Mechanistic studies revealed the active catalytic species and the role of water in the reaction process as hydroxy and proton sources. Employing the developed method, total synthesis of cytosporone A was achieved in two steps and that of cytosporones B-C was achieved in three steps starting from resorcinol.
Collapse
Affiliation(s)
- Pitambar Patel
- Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| |
Collapse
|
17
|
Duan P, Zhao H, Yang J, Cao L, Jiang H, Zhang M. Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers. Org Lett 2022; 24:608-612. [PMID: 34989577 DOI: 10.1021/acs.orglett.1c04048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Via difunctionalization of the α- and β-sites of cyclic ethers, we herein demonstrate a new synthetic method for the efficient construction of novel fluorinated γ-amino acid esters by employing a CoBr2/m-CPBA catalyst system. Several cyclic ethers were transformed in combination with a vast range of amines and ethyl trifluoropyruvate into the desired products under mild conditions, making this method a practical platform to enrich the library of fluorinated amino acid derivatives from cost-effective and readily available feedstocks.
Collapse
Affiliation(s)
- Peng Duan
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Jian Yang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Liang Cao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, P. R. China
| |
Collapse
|
18
|
Song Q, Zhao H, Sun Y, Jiang H, Zhang M. Direct C(sp
3
)–H Sulfonylation of Xanthene Derivatives with Sodium Sulfinates by Oxidative Copper Catalysis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qinghao Song
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Yanping Sun
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou Guangdong 510640 China
| |
Collapse
|
19
|
Xiong W, Jiang X, Zhang MM, Xiao WJ, Lu LQ. A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with N-acylpyrazoles. Chem Commun (Camb) 2021; 57:13566-13569. [PMID: 34843613 DOI: 10.1039/d1cc05952a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.
Collapse
Affiliation(s)
- Wei Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
Liang T, Zhao H, Gong L, Jiang H, Zhang M. Synthesis of functionalized benzimidazoles via oxidative tandem quartic C-H aminations and cleavage of C-N and C-C bonds. Chem Commun (Camb) 2021; 57:12976-12979. [PMID: 34792066 DOI: 10.1039/d1cc05521f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Via aerobic copper-catalyzed tandem quartic C-H aminations, we herein present an unprecedented approach for the synthesis of functionalized benzimidazoles from aniline derivatives and 2-substituted cyclic amines. The cyclic amines act as the CN building blocks and are involved in the annulation reaction by cleavage of inert α-C-N and β-C-C bonds. The synthetic protocol features high selectivity, no need for specific aminating agents, mild conditions, and the use of a naturally abundant [Cu]/O2 catalyst system.
Collapse
Affiliation(s)
- Taoyuan Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - He Zhao
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Lingzhen Gong
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, People's Republic of China. .,Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd, Qingyuan 511500, People's Republic of China
| |
Collapse
|