1
|
Gutmann DH, Anastasaki C, Gupta A, Hou Y, Morris SM, Payne JM, Raber J, Tomchik SM, Van Aelst L, Walker JA, Yohay KH. Cognition and behavior in neurofibromatosis type 1: report and perspective from the Cognition and Behavior in NF1 (CABIN) Task Force. Genes Dev 2025; 39:541-554. [PMID: 40127956 PMCID: PMC12047663 DOI: 10.1101/gad.352629.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Individuals with neurofibromatosis type 1 (NF1) are prone to the evolution of neurodevelopmental symptomatology including motor delays, learning disabilities, autism, and attention deficits. Caused by heterozygous germline mutations in the NF1 gene, this monogenic condition offers unique opportunities to study the genetic etiologies for neurodevelopmental disorders and the mechanisms that underlie their formation. Although numerous small animal models have been generated to elucidate the causes of these alterations, there is little consensus on how to align preclinical observations with clinical outcomes, harmonize findings across species, and consolidate these insights to chart a cohesive path forward. Capitalizing on expertise from clinicians; human, animal, and cellular model research scientists; and bioinformatics researchers, the first Cognition and Behavior in NF1 (CABIN) meeting was convened at the Banbury Center of Cold Spring Harbor Laboratory in October 2024. This Perspective summarizes the state of our understanding and a proposed plan for future investigation and exploration to improve the quality of life of those with NF1.
Collapse
Affiliation(s)
- David H Gutmann
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Corina Anastasaki
- Department of Neurology, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Aditi Gupta
- Institute for Informatics, Data Science, and Biostatistics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Yang Hou
- Department of Behavioral Sciences and Social Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Stephanie M Morris
- Center for Autism Services, Science, and Innovation (CASSI), Kennedy Krieger Institute, Baltimore, Maryland 21211, USA
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Department of Paediatrics, Faculty of Medicine, Dentistry, and Health Sciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Jacob Raber
- Department of Behavioral Neuroscience, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Neurology, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
- Department of Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center (ONPRC), Oregon Health Sciences University, Portland, Oregon 97296, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 12114, USA
| | - Kaleb H Yohay
- Department of Neurology, New York University Langone, New York, New York 10017, USA
| |
Collapse
|
2
|
Suarez GO, Kumar DS, Brunner H, Knauss A, Barrios J, Emel J, Teel J, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin Deficiency Alters the Patterning and Prioritization of Motor Behaviors in a State-Dependent Manner. J Neurosci 2025; 45:e1531242025. [PMID: 39965929 PMCID: PMC12005242 DOI: 10.1523/jneurosci.1531-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Genetic disorders such as neurofibromatosis type 1 (Nf1) increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Nf1 results from mutations in the neurofibromin gene that can reduce levels of the neurofibromin protein. While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of Nf1. Loss of Nf1 increased spontaneous grooming in male and female flies. This followed a nonlinear spatial pattern, with Nf1 deficiency increasing grooming of certain body parts differentially, including the abdomen, head, and wings. The increase in grooming could be overridden by hunger in foraging animals, demonstrating that the Nf1 effect is plastic and internal state dependent. Stimulus-evoked grooming patterns were altered as well, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. These results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting low-level motor functions.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida 33458
| | - Divya S Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jenifer Barrios
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Connor N Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
| | - Salil S Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
3
|
Stevens M, Wang Y, Bouley SJ, Mandigo TR, Sharma A, Sengupta S, Housden A, Perrimon N, Walker JA, Housden BE. Inhibition of autophagy as a novel treatment for neurofibromatosis type 1 tumors. Mol Oncol 2025; 19:825-851. [PMID: 39129390 PMCID: PMC11887668 DOI: 10.1002/1878-0261.13704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/29/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder caused by mutation of the NF1 gene that is associated with various symptoms, including the formation of benign tumors, called neurofibromas, within nerves. Drug treatments are currently limited. The mitogen-activated protein kinase kinase (MEK) inhibitor selumetinib is used for a subset of plexiform neurofibromas (PNs) but is not always effective and can cause side effects. Therefore, there is a clear need to discover new drugs to target NF1-deficient tumor cells. Using a Drosophila cell model of NF1, we performed synthetic lethal screens to identify novel drug targets. We identified 54 gene candidates, which were validated with variable dose analysis as a secondary screen. Pathways associated with five candidates could be targeted using existing drugs. Among these, chloroquine (CQ) and bafilomycin A1, known to target the autophagy pathway, showed the greatest potential for selectively killing NF1-deficient Drosophila cells. When further investigating autophagy-related genes, we found that 14 out of 30 genes tested had a synthetic lethal interaction with NF1. These 14 genes are involved in multiple aspects of the autophagy pathway and can be targeted with additional drugs that mediate the autophagy pathway, although CQ was the most effective. The lethal effect of autophagy inhibitors was conserved in a panel of human NF1-deficient Schwann cell lines, highlighting their translational potential. The effect of CQ was also conserved in a Drosophila NF1 in vivo model and in a xenografted NF1-deficient tumor cell line grown in mice, with CQ treatment resulting in a more significant reduction in tumor growth than selumetinib treatment. Furthermore, combined treatment with CQ and selumetinib resulted in a further reduction in NF1-deficient cell viability. In conclusion, NF1-deficient cells are vulnerable to disruption of the autophagy pathway. This pathway represents a promising target for the treatment of NF1-associated tumors, and we identified CQ as a candidate drug for the treatment of NF1 tumors.
Collapse
Affiliation(s)
- Megan Stevens
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Yuanli Wang
- Living Systems InstituteUniversity of ExeterUK
- The First People's Hospital of QinzhouChina
| | | | - Torrey R. Mandigo
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Aditi Sharma
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sonali Sengupta
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| | - Amy Housden
- Living Systems InstituteUniversity of ExeterUK
| | - Norbert Perrimon
- Department of Genetics, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Howard Hughes Medical InstituteNew YorkNYUSA
| | - James A. Walker
- Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Cancer ProgramBroad Institute of MIT and HarvardCambridgeMAUSA
- Department of Neurology, Massachusetts General HospitalHarvard Medical SchoolBostonMAUSA
| | - Benjamin E. Housden
- Living Systems InstituteUniversity of ExeterUK
- Department of Clinical and Biomedical ScienceUniversity of ExeterUK
| |
Collapse
|
4
|
Botero V, Tomchik SM. Unraveling neuronal and metabolic alterations in neurofibromatosis type 1. J Neurodev Disord 2024; 16:49. [PMID: 39217323 PMCID: PMC11365184 DOI: 10.1186/s11689-024-09565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Neurofibromatosis type 1 (OMIM 162200) affects ~ 1 in 3,000 individuals worldwide and is one of the most common monogenetic neurogenetic disorders that impacts brain function. The disorder affects various organ systems, including the central nervous system, resulting in a spectrum of clinical manifestations. Significant progress has been made in understanding the disorder's pathophysiology, yet gaps persist in understanding how the complex signaling and systemic interactions affect the disorder. Two features of the disorder are alterations in neuronal function and metabolism, and emerging evidence suggests a potential relationship between them. This review summarizes neurofibromatosis type 1 features and recent research findings on disease mechanisms, with an emphasis on neuronal and metabolic features.
Collapse
Affiliation(s)
- Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA
- Skaggs School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA, USA
| | - Seth M Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA.
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, 52242, USA.
- Hawk-IDDRC, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neuroscience, Scripps Research, Scripps Florida, Jupiter, FL, USA.
| |
Collapse
|
5
|
Lemberg KM, Gross AM, Sproule LM, Liewehr DJ, Dombi E, Baldwin A, Steinberg SM, Bornhorst M, Lodish M, Blakeley JO, Widemann BC. Anthropometric measurements of children with neurofibromatosis type I: impact of plexiform neurofibroma volume and treatment. Pediatr Res 2024:10.1038/s41390-024-03474-z. [PMID: 39198589 DOI: 10.1038/s41390-024-03474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND In children and adolescents/young adults (CAYA) with neurofibromatosis type I (NF1), associations between anthropometric measurements, plexiform neurofibroma (pNF) tumor volume (TV), and treatment history are unknown. METHODS We retrospectively investigated anthropometrics in CAYA on the National Cancer Institute (NCI) NF1 Natural History Study who had pNF TV assessed by imaging (n = 106). We determined CDC height/weight percentiles and estimated Preece-Baines (PB) height growth curve parameters. We evaluated variables that could impact height/weight including: (1) pNF volume, (2) pNF directed therapy, and (3) serum IGF-1. RESULTS 23% of males and 20% of females had height <5th percentile; 13% of males had weight <5th percentile. Estimated median final adult height for males was 171.6 cm (CDC 23rd percentile) and for females was 156.2 cm (CDC 14th percentile). Inverse associations between height and weight percentiles and pNF volume were observed (Spearman's r = -0.277, -0.216, respectively). Estimated median final height was not meaningfully affected by patients who received pNF-directed treatment with MEK inhibitor. 52% of low serum IGF-1 measurements were concurrent with a height percentile <5th. CONCLUSIONS Greater than expected percentages of patients had height/weight <5th percentile, and median final adult heights were IMPACT STATEMENT Children and adolescents/young adults with neurofibromatosis type I (NF1) seen at a research hospital have lower height and weight percentiles than normative populations. Growth percentiles are inversely associated with plexiform neurofibroma tumor volumes and impacted little by MEKi treatment history in this subset of patients. These findings align with prior investigations of growth in the NF1 population but are the first to examine the association with tumor burden.
Collapse
Affiliation(s)
- Kathryn M Lemberg
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Pediatric Oncology Branch, Center for Cancer Research, Bethesda, MD, USA.
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | | | - David J Liewehr
- Biostatistics and Data Management Section, Center for Cancer Research, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, Bethesda, MD, USA
| | - Andrea Baldwin
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Center for Cancer Research, Bethesda, MD, USA
| | - Miriam Bornhorst
- Gilbert Family Neurofibromatosis Institute, Children's National Hospital, Washington, DC, USA
- Center for Cancer & Blood Disorders, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Maya Lodish
- Division of Pediatric Endocrinology, University of California San Francisco, San Francisco, CA, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
6
|
Suarez GO, Kumar DS, Brunner H, Emel J, Teel J, Knauss A, Botero V, Broyles CN, Stahl A, Bidaye SS, Tomchik SM. Neurofibromin deficiency alters the patterning and prioritization of motor behaviors in a state-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607070. [PMID: 39149363 PMCID: PMC11326213 DOI: 10.1101/2024.08.08.607070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Genetic disorders such as neurofibromatosis type 1 increase vulnerability to cognitive and behavioral disorders, such as autism spectrum disorder and attention-deficit/hyperactivity disorder. Neurofibromatosis type 1 results from loss-of-function mutations in the neurofibromin gene and subsequent reduction in the neurofibromin protein (Nf1). While the mechanisms have yet to be fully elucidated, loss of Nf1 may alter neuronal circuit activity leading to changes in behavior and susceptibility to cognitive and behavioral comorbidities. Here we show that mutations decreasing Nf1 expression alter motor behaviors, impacting the patterning, prioritization, and behavioral state dependence in a Drosophila model of neurofibromatosis type 1. Loss of Nf1 increases spontaneous grooming in a nonlinear spatial and temporal pattern, differentially increasing grooming of certain body parts, including the abdomen, head, and wings. This increase in grooming could be overridden by hunger in food-deprived foraging animals, demonstrating that the Nf1 effect is plastic and internal state-dependent. Stimulus-evoked grooming patterns were altered as well, with nf1 mutants exhibiting reductions in wing grooming when coated with dust, suggesting that hierarchical recruitment of grooming command circuits was altered. Yet loss of Nf1 in sensory neurons and/or grooming command neurons did not alter grooming frequency, suggesting that Nf1 affects grooming via higher-order circuit alterations. Changes in grooming coincided with alterations in walking. Flies lacking Nf1 walked with increased forward velocity on a spherical treadmill, yet there was no detectable change in leg kinematics or gait. Thus, loss of Nf1 alters motor function without affecting overall motor coordination, in contrast to other genetic disorders that impair coordination. Overall, these results demonstrate that loss of Nf1 alters the patterning and prioritization of repetitive behaviors, in a state-dependent manner, without affecting motor coordination.
Collapse
Affiliation(s)
- Genesis Omana Suarez
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Divya S. Kumar
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hannah Brunner
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jalen Emel
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Jensen Teel
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Anneke Knauss
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Valentina Botero
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Connor N. Broyles
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Salil S. Bidaye
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Seth M. Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- H.L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
7
|
Valencia ML, Sofela FA, Jongens TA, Sehgal A. Do metabolic deficits contribute to sleep disruption in monogenic intellectual disability syndromes? Trends Neurosci 2024; 47:583-592. [PMID: 39054162 PMCID: PMC11997875 DOI: 10.1016/j.tins.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Intellectual disability is defined as limitations in cognitive and adaptive behavior that often arise during development. Disordered sleep is common in intellectual disability and, given the importance of sleep for cognitive function, it may contribute to other behavioral phenotypes. Animal models of intellectual disability, in particular of monogenic intellectual disability syndromes (MIDS), recapitulate many disease phenotypes and have been invaluable for linking some of these phenotypes to specific molecular pathways. An emerging feature of MIDS, in both animal models and humans, is the prevalence of metabolic abnormalities, which could be relevant for behavior. Focusing on specific MIDS that have been molecularly characterized, we review sleep, circadian, and metabolic phenotypes in animal models and humans and propose that altered metabolic state contributes to the abnormal sleep/circadian phenotypes in MIDS.
Collapse
Affiliation(s)
- Mariela Lopez Valencia
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA
| | - Folasade A Sofela
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas A Jongens
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Autism Spectrum Program of Excellence, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman Medical School of University of Pennsylvania, Philadelphia, PA, USA; Howard Hughes Medical Institute, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Park SJ, Murphy KR, Ja WW. Energy Deficit is a Key Driver of Sleep Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596666. [PMID: 38979352 PMCID: PMC11230206 DOI: 10.1101/2024.05.30.596666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sleep and feeding are vital homeostatic behaviors, and disruptions in either can result in substantial metabolic consequences. Distinct neuronal manipulations in Drosophila can dissociate sleep loss from subsequent homeostatic rebound, offering an optimal platform to examine the precise interplay between these fundamental behaviors. Here, we investigate concomitant changes in sleep and food intake in individual animals, as well as respiratory metabolic expenditure, that accompany behavioral and genetic manipulations that induce sleep loss in Drosophila melanogaster. We find that sleep disruptions resulting in energy deficit through increased metabolic expenditure and manifested as increased food intake were consistently followed by rebound sleep. In contrast, "soft" sleep loss, which does not induce rebound sleep, is not accompanied by increased metabolism and food intake. Our results demonstrate that homeostatic sleep rebound is linked to energy deficit accrued during sleep loss. Collectively, these findings support the notion that sleep functions to conserve energy and highlight the need to examine the effects of metabolic therapeutics on sleep.
Collapse
Affiliation(s)
- Scarlet J. Park
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, FL 33458, USA
- Current affiliation: Nova Southeastern University, Palm Beach Gardens, FL 33410, USA
| | - Keith R. Murphy
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Integrative Biology and Neuroscience Program, Florida Atlantic University, Jupiter FL 33458, USA
- Current affiliation: Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - William W. Ja
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Yue X, Stauff E, Boyapati S, Langhans SA, Xu W, Makrogiannis S, Okorie UJ, Okorie AM, Kandula VVR, Kecskemethy HH, Nikam RM, Averill LW, Shaffer TH. PET Imaging of Neurofibromatosis Type 1 with a Fluorine-18 Labeled Tryptophan Radiotracer. Pharmaceuticals (Basel) 2024; 17:685. [PMID: 38931352 PMCID: PMC11206478 DOI: 10.3390/ph17060685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a neurocutaneous disorder. Plexiform neurofibromas (PNFs) are benign tumors commonly formed in patients with NF1. PNFs have a high incidence of developing into malignant peripheral nerve sheath tumors (MPNSTs) with a 5-year survival rate of only 30%. Therefore, the accurate diagnosis and differentiation of MPNSTs from benign PNFs are critical to patient management. We studied a fluorine-18 labeled tryptophan positron emission tomography (PET) radiotracer, 1-(2-[18F]fluoroethyl)-L-tryptophan (L-[18F]FETrp), to detect NF1-associated tumors in an animal model. An ex vivo biodistribution study of L-[18F]FETrp showed a similar tracer distribution and kinetics between the wild-type and triple mutant mice with the highest uptake in the pancreas. Bone uptake was stable. Brain uptake was low during the 90-min uptake period. Static PET imaging at 60 min post-injection showed L-[18F]FETrp had a comparable tumor uptake with [1⁸F]fluorodeoxyglucose (FDG). However, L-[18F]FETrp showed a significantly higher tumor-to-brain ratio than FDG (n = 4, p < 0.05). Sixty-minute-long dynamic PET scans using the two radiotracers showed similar kidney, liver, and lung kinetics. A dysregulated tryptophan metabolism in NF1 mice was further confirmed using immunohistostaining. L-[18F]FETrp is warranted to further investigate differentiating malignant NF1 tumors from benign PNFs. The study may reveal the tryptophan-kynurenine pathway as a therapeutic target for treating NF1.
Collapse
Affiliation(s)
- Xuyi Yue
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Erik Stauff
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Shriya Boyapati
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Sigrid A. Langhans
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
- Division of Neurology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA
| | - Wenqi Xu
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Sokratis Makrogiannis
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Uchenna J. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Azubuike M. Okorie
- Division of Physics, Engineering, Mathematics, and Computer Science, Delaware State University, Dover, DE 19901, USA; (S.M.); (U.J.O.); (A.M.O.)
| | - Vinay V. R. Kandula
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
| | - Heidi H. Kecskemethy
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Rahul M. Nikam
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Lauren W. Averill
- Department of Radiology, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA; (E.S.); (S.B.); (W.X.); (V.V.R.K.); (H.H.K.); (R.M.N.); (L.W.A.)
- Diagnostic & Research PET/MR Center, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| | - Thomas H. Shaffer
- Nemours Biomedical Research, Nemours Children’s Health, Delaware, Wilmington, DE 19803, USA;
| |
Collapse
|
10
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
11
|
Atsoniou K, Giannopoulou E, Georganta EM, Skoulakis EMC. Drosophila Contributions towards Understanding Neurofibromatosis 1. Cells 2024; 13:721. [PMID: 38667335 PMCID: PMC11048932 DOI: 10.3390/cells13080721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Neurofibromatosis 1 (NF1) is a multisymptomatic disorder with highly variable presentations, which include short stature, susceptibility to formation of the characteristic benign tumors known as neurofibromas, intense freckling and skin discoloration, and cognitive deficits, which characterize most children with the condition. Attention deficits and Autism Spectrum manifestations augment the compromised learning presented by most patients, leading to behavioral problems and school failure, while fragmented sleep contributes to chronic fatigue and poor quality of life. Neurofibromin (Nf1) is present ubiquitously during human development and postnatally in most neuronal, oligodendrocyte, and Schwann cells. Evidence largely from animal models including Drosophila suggests that the symptomatic variability may reflect distinct cell-type-specific functions of the protein, which emerge upon its loss, or mutations affecting the different functional domains of the protein. This review summarizes the contributions of Drosophila in modeling multiple NF1 manifestations, addressing hypotheses regarding the cell-type-specific functions of the protein and exploring the molecular pathways affected upon loss of the highly conserved fly homolog dNf1. Collectively, work in this model not only has efficiently and expediently modelled multiple aspects of the condition and increased understanding of its behavioral manifestations, but also has led to pharmaceutical strategies towards their amelioration.
Collapse
Affiliation(s)
- Kalliopi Atsoniou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
- Laboratory of Experimental Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni Giannopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Eirini-Maria Georganta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| | - Efthimios M. C. Skoulakis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Athens, Greece; (K.A.); (E.G.)
| |
Collapse
|
12
|
Sun H, Chen J, Wang R, Liu D, Zhang N, Zhang T, Jia L, Ma S, Xia Q. Genome-wide CRISPR screening reveals key genes and pathways associated with 20-hydroxyecdysone signal transduction in the silkworm (Bombyx mori). INSECT SCIENCE 2024; 31:47-58. [PMID: 37368860 DOI: 10.1111/1744-7917.13237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023]
Abstract
Metamorphosis is a complex developmental process involving multiple pathways and a large number of genes that are regulated by juvenile hormone (JH) and 20-hydroxyecdysone (20E). Despite important progress in understanding various aspects of silkworm biology, the hormone signaling pathway in the silkworm remains poorly understood. Genome-wide screening using clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated protein 9 (Cas9)-based libraries has recently emerged as a novel method for analyzing genome function, enabling further research into essential genes, drug targets, and virus-host interaction. Previously, we constructed a genome-wide CRISPR/Cas9-based library of the silkworm (Bombyx mori) and successfully revealed the genes involved in biotic or abiotic stress factor responses. In this study, we used our silkworm CRISPR library and large-scale genome-wide screening to analyze the key genes in the silkworm 20E signaling pathway and their mechanisms of action. Functional annotation showed that 20E regulates key proteins in processes that mainly occur in the cytoplasm and nucleus. Pathway enrichment analysis showed that 20E can activate phosphorylation and may affect innate immunity, interfere with intracellular nutrition and energy metabolism, and eventually cause cell apoptosis. The screening results were experimentally validated by generating cells with knockout alleles of the relevant genes, which had increased tolerance to 20E. Our findings provide a panoramic overview of signaling in response to 20E in the silkworm, underscoring the utility of genome-wide CRISPR mutant libraries in deciphering hormone signaling pathways and the mechanisms that regulate metamorphosis in insects.
Collapse
Affiliation(s)
- Hao Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Jingya Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ruolin Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Dan Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Na Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tong Zhang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Brown EB, Zhang J, Lloyd E, Lanzon E, Botero V, Tomchik S, Keene AC. Neurofibromin 1 mediates sleep depth in Drosophila. PLoS Genet 2023; 19:e1011049. [PMID: 38091360 PMCID: PMC10763969 DOI: 10.1371/journal.pgen.1011049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/03/2024] [Accepted: 11/03/2023] [Indexed: 01/04/2024] Open
Abstract
Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.
Collapse
Affiliation(s)
- Elizabeth B. Brown
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biological Sciences, Florida State University, Tallahassee, Florida, United States of America
| | - Jiwei Zhang
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Evan Lloyd
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Elizabeth Lanzon
- Jupiter Life Science Initiative, Florida Atlantic University, Jupiter, Florida, United States of America
| | - Valentina Botero
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Seth Tomchik
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Alex C. Keene
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
14
|
Durkin J, Poe AR, Belfer SJ, Rodriguez A, Tang SH, Walker JA, Kayser MS. Neurofibromin 1 regulates early developmental sleep in Drosophila. Neurobiol Sleep Circadian Rhythms 2023; 15:100101. [PMID: 37593040 PMCID: PMC10428071 DOI: 10.1016/j.nbscr.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/30/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
Sleep disturbances are common in neurodevelopmental disorders, but knowledge of molecular factors that govern sleep in young animals is lacking. Evidence across species, including Drosophila, suggests that juvenile sleep has distinct functions and regulatory mechanisms in comparison to sleep in maturity. In flies, manipulation of most known adult sleep regulatory genes is not associated with sleep phenotypes during early developmental (larval) stages. Here, we examine the role of the neurodevelopmental disorder-associated gene Neurofibromin 1 (Nf1) in sleep during numerous developmental periods. Mutations in Neurofibromin 1 (Nf1) are associated with sleep and circadian disorders in humans and adult flies. We find in flies that Nf1 acts to regulate sleep across the lifespan, beginning during larval stages. Nf1 is required in neurons for this function, as is signaling via the Alk pathway. These findings identify Nf1 as one of a small number of genes positioned to regulate sleep across developmental periods.
Collapse
Affiliation(s)
- Jaclyn Durkin
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R. Poe
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel J. Belfer
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anyara Rodriguez
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Si Hao Tang
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
15
|
Canson DM, O’Mara TA, Spurdle AB, Glubb DM. Splicing annotation of endometrial cancer GWAS risk loci reveals potentially causal variants and supports a role for NF1 and SKAP1 as susceptibility genes. HGG ADVANCES 2023; 4:100185. [PMID: 36908940 PMCID: PMC9996439 DOI: 10.1016/j.xhgg.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Alternative splicing contributes to cancer development. Indeed, splicing analysis of cancer genome-wide association study (GWAS) risk variants has revealed likely causal variants. To systematically assess GWAS variants for splicing effects, we developed a prioritization workflow using a combination of splicing prediction tools, alternative transcript isoforms, and splicing quantitative trait locus (sQTL) annotations. Application of this workflow to candidate causal variants from 16 endometrial cancer GWAS risk loci highlighted single-nucleotide polymorphisms (SNPs) that were predicted to upregulate alternative transcripts. For two variants, sQTL data supported the predicted impact on splicing. At the 17q11.2 locus, the protective allele for rs7502834 was associated with increased splicing of an exon in a NF1 alternative transcript encoding a truncated protein in adipose tissue and is consistent with an endometrial cancer transcriptome-wide association study (TWAS) finding in adipose tissue. Notably, NF1 haploinsufficiency is protective for obesity, a well-established risk factor for endometrial cancer. At the 17q21.32 locus, the rs2278868 risk allele was predicted to upregulate a SKAP1 transcript that is subject to nonsense-mediated decay, concordant with a corresponding sQTL in lymphocytes. This is consistent with a TWAS finding that indicates decreased SKAP1 expression in blood increases endometrial cancer risk. As SKAP1 is involved in T cell immune responses, decreased SKAP1 expression may impact endometrial tumor immunosurveillance. In summary, our analysis has identified potentially causal endometrial cancer GWAS risk variants with plausible biological mechanisms and provides a splicing annotation workflow to aid interpretation of other GWAS datasets.
Collapse
Affiliation(s)
- Daffodil M. Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Tracy A. O’Mara
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dylan M. Glubb
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
16
|
Dyson A, Ryan M, Garg S, Evans DG, Baines RA. Loss of NF1 in Drosophila Larvae Causes Tactile Hypersensitivity and Impaired Synaptic Transmission at the Neuromuscular Junction. J Neurosci 2022; 42:9450-9472. [PMID: 36344265 PMCID: PMC9794380 DOI: 10.1523/jneurosci.0562-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition in which the mechanisms underlying its core symptomatology are largely unknown. Studying animal models of monogenic syndromes associated with ASD, such as neurofibromatosis type 1 (NF1), can offer insights into its etiology. Here, we show that loss of function of the Drosophila NF1 ortholog results in tactile hypersensitivity following brief mechanical stimulation in the larva (mixed sexes), paralleling the sensory abnormalities observed in individuals with ASD. Mutant larvae also exhibit synaptic transmission deficits at the glutamatergic neuromuscular junction (NMJ), with increased spontaneous but reduced evoked release. While the latter is homeostatically compensated for by a postsynaptic increase in input resistance, the former is consistent with neuronal hyperexcitability. Indeed, diminished expression of NF1 specifically within central cholinergic neurons induces both excessive neuronal firing and tactile hypersensitivity, suggesting the two may be linked. Furthermore, both impaired synaptic transmission and behavioral deficits are fully rescued via knock-down of Ras proteins. These findings validate NF1 -/- Drosophila as a tractable model of ASD with the potential to elucidate important pathophysiological mechanisms.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) affects 1-2% of the overall population and can considerably impact an individual's quality of life. However, there are currently no treatments available for its core symptoms, largely because of a poor understanding of the underlying mechanisms involved. Examining how loss of function of the ASD-associated NF1 gene affects behavior and physiology in Drosophila may shed light on this. In this study, we identify a novel, ASD-relevant behavioral phenotype in NF1 -/- larvae, namely an enhanced response to mechanical stimulation, which is associated with Ras-dependent synaptic transmission deficits indicative of neuronal hyperexcitability. Such insights support the use of Drosophila neurofibromatosis type 1 (NF1) models in ASD research and may provide outputs for genetic or pharmacological screens in future studies.
Collapse
Affiliation(s)
- Alex Dyson
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Megan Ryan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Shruti Garg
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
- Child & Adolescent Mental Health Services, Royal Manchester Children's Hospital, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, M13 9WL, United Kingdom
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
17
|
Basto DL, de Souza Vieira G, Andrade-Losso RM, Almeida PN, Riccardi VM, Rozza-de-Menezes RE, Cunha KS. Head circumference and anthropometric changes and their relation to plexiform and skin neurofibromas in sporadic and familial neurofibromatosis 1 Brazilian adults: a cross-sectional study. Orphanet J Rare Dis 2022; 17:341. [PMID: 36064430 PMCID: PMC9446792 DOI: 10.1186/s13023-022-02482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neurofibromatosis 1 (NF1) is a common autosomal dominant syndrome with complete penetrance and highly variable expressivity. The cutaneous neurofibroma (Cnf) and plexiform neurofibroma (Pnf), café-au-lait spots, and freckle-like lesions are common in NF1, but many other manifestations can occur. We aimed to evaluate head circumference, height, weight, body mass index (BMI), head circumference-to-height ratio (HCHR) and waist-hip ratio (WHR) in adult NF1 Brazilian individuals versus a paired control group and investigate their correlation with the presence of clinically visible Pnfs, and number of "skin neurofibromas" (Snf), which include both cutaneous and subcutaneous neurofibromas. METHODS A case-control study was conducted with 168 individuals, 84 with NF1 and 84 without NF1, paired by sex and age. Head circumference and anthropometric measurements, Snf quantification, evaluation of clinically visible Pnf and familial inheritance were accessed. RESULTS Prevalence of macrocephaly was significantly higher in NF1 women. Height and weight were significantly lower in both males and females with NF1. HCHR was higher in the NF1 group than in the control group for both sexes. BMI was significantly lower in men with NF1. Waist and hip circumferences were significantly reduced in NF compared with the controls, but the mean WHR was significantly lower only in NF1 women. No correlation was found between the Snf and head circumference and anthropometric measurements, sex or family history. The presence and larger size of clinically visible plexiform neurofibromas were associated with normal stature (p = 0.037 and p = 0.003, respectively). CONCLUSIONS NF1 individuals have increased prevalence of macrocephaly, short stature, low BMI, and reduced abdominal fat. There is no relation between head circumference and anthropometric data with family history, or neurofibromas.
Collapse
Affiliation(s)
- Diogo Lisbôa Basto
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil
| | - Gustavo de Souza Vieira
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil
| | - Raquel M Andrade-Losso
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil
| | - Paula Nascimento Almeida
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil
| | | | - Rafaela Elvira Rozza-de-Menezes
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil
- Department of Pathology, School of Medicine, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303, 4oandar, sala 01. Centro, Niterói, RJ, 24033-900, Brazil
| | - Karin Soares Cunha
- Graduate Program in Pathology, School of Medicine, Universidade Federal Fluminense, Niterói, RJ, Brazil.
- Neurofibromatosis National Center, Rio de Janeiro, RJ, Brazil.
- Department of Pathology, School of Medicine, Hospital Universitário Antônio Pedro, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303, 4oandar, sala 01. Centro, Niterói, RJ, 24033-900, Brazil.
| |
Collapse
|
18
|
Brown EB, Klok J, Keene AC. Measuring metabolic rate in single flies during sleep and waking states via indirect calorimetry. J Neurosci Methods 2022; 376:109606. [PMID: 35483506 PMCID: PMC9310448 DOI: 10.1016/j.jneumeth.2022.109606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Drosophila melanogaster is a leading genetic model for studying the neural regulation of sleep. Sleep is associated with changes in behavior and physiological state that are largely conserved across species. The investigation of sleep in flies has predominantly focused on behavioral readouts of sleep because physiological measurements, including changes in brain activity and metabolic rate, are less accessible. We have previously used stop-flow indirect calorimetry to measure whole body metabolic rate in single flies and have shown that in flies, like mammals, metabolic rate is reduced during sleep. NEW METHOD Here, we describe a modified version of this system that allows for efficient and highly sensitive acquisition of CO2 output from single flies. RESULTS In this modified system, we show that sleep-dependent changes in metabolic rate are diminished in aging flies, supporting the notion that sleep quality is reduced as flies age. We also describe a modification that allows for simultaneous acquisition of CO2 and O2 levels, providing a respiratory quotient that quantifies how metabolic stores are utilized. We find that the respiratory quotient identified in flies on an all-sugar diet is suggestive of lipogenesis, where the dietary sugar provided to the flies is being converted to fat. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS Taken together, the measurement of metabolic rate via indirect calorimetry not only provides a physiological readout of sleep depth, but also provides insight the metabolic regulation of nutrient utilization, with broad applications to genetic studies in flies.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Jaco Klok
- Sable Systems International, Las Vegas, NV 89032, USA
| | - Alex C Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Levy KA, Weisz ED, Jongens TA. Loss of neurexin-1 in Drosophila melanogaster results in altered energy metabolism and increased seizure susceptibility. Hum Mol Genet 2022; 31:3422-3438. [PMID: 35617143 PMCID: PMC9558836 DOI: 10.1093/hmg/ddac115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Although autism is typically characterized by differences in language, social interaction and restrictive, repetitive behaviors, it is becoming more well known in the field that alterations in energy metabolism and mitochondrial function are comorbid disorders in autism. The synaptic cell adhesion molecule, neurexin-1 (NRXN1), has previously been implicated in autism, and here we show that in Drosophila melanogaster, the homologue of NRXN1, called Nrx-1, regulates energy metabolism and nutrient homeostasis. First, we show that Nrx-1-null flies exhibit decreased resistance to nutrient deprivation and heat stress compared to controls. Additionally, Nrx-1 mutants exhibit a significantly altered metabolic profile characterized by decreased lipid and carbohydrate stores. Nrx-1-null Drosophila also exhibit diminished levels of nicotinamide adenine dinucleotide (NAD+), an important coenzyme in major energy metabolism pathways. Moreover, loss of Nrx-1 resulted in striking abnormalities in mitochondrial morphology in the flight muscle of Nrx-1-null Drosophila and impaired flight ability in these flies. Further, following a mechanical shock Nrx-1-null flies exhibited seizure-like activity, a phenotype previously linked to defects in mitochondrial metabolism and a common symptom of patients with NRXN1 deletions. The current studies indicate a novel role for NRXN1 in the regulation of energy metabolism and uncover a clinically relevant seizure phenotype in Drosophila lacking Nrx-1.
Collapse
Affiliation(s)
- Kyra A Levy
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eliana D Weisz
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas A Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Autism Spectrum Program of Excellence, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|