1
|
Monjot A, Rousseau J, Bittner L, Lepère C. Metatranscriptomes-based sequence similarity networks uncover genetic signatures within parasitic freshwater microbial eukaryotes. MICROBIOME 2025; 13:43. [PMID: 39915863 PMCID: PMC11800578 DOI: 10.1186/s40168-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/31/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND Microbial eukaryotes play a crucial role in biochemical cycles and aquatic trophic food webs. Their taxonomic and functional diversity are increasingly well described due to recent advances in sequencing technologies. However, the vast amount of data produced by -omics approaches require data-driven methodologies to make predictions about these microorganisms' role within ecosystems. Using metatranscriptomics data, we employed a sequence similarity network-based approach to explore the metabolic specificities of microbial eukaryotes with different trophic modes in a freshwater ecosystem (Lake Pavin, France). RESULTS A total of 2,165,106 proteins were clustered in connected components enabling analysis of a great number of sequences without any references in public databases. This approach coupled with the use of an in-house trophic modes database improved the number of proteins considered by 42%. Our study confirmed the versatility of mixotrophic metabolisms with a large number of shared protein families among mixotrophic and phototrophic microorganisms as well as mixotrophic and heterotrophic microorganisms. Genetic similarities in proteins of saprotrophs and parasites also suggest that fungi-like organisms from Lake Pavin, such as Chytridiomycota and Oomycetes, exhibit a wide range of lifestyles, influenced by their degree of dependence on a host. This plasticity may occur at a fine taxonomic level (e.g., species level) and likely within a single organism in response to environmental parameters. While we observed a relative functional redundancy of primary metabolisms (e.g., amino acid and carbohydrate metabolism) nearly 130,000 protein families appeared to be trophic mode-specific. We found a particular specificity in obligate parasite-related Specific Protein Clusters, underscoring a high degree of specialization in these organisms. CONCLUSIONS Although no universal marker for parasitism was identified, candidate genes can be proposed at a fine taxonomic scale. We notably provide several protein families that could serve as keys to understanding host-parasite interactions representing pathogenicity factors (e.g., involved in hijacking host resources, or associated with immune evasion mechanisms). All these protein families could offer valuable insights for developing antiparasitic treatments in health and economic contexts. Video Abstract.
Collapse
Affiliation(s)
- Arthur Monjot
- CNRS, Laboratoire Microorganismes: Génome Et Environnement, Université Clermont Auvergne, Clermont-Ferrand, 63000, France.
| | - Jérémy Rousseau
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université Des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome Et Environnement, Université Clermont Auvergne, Clermont-Ferrand, 63000, France.
| |
Collapse
|
2
|
Terzin M, Robbins SJ, Bell SC, Lê Cao KA, Gruber RK, Frade PR, Webster NS, Yeoh YK, Bourne DG, Laffy PW. Gene content of seawater microbes is a strong predictor of water chemistry across the Great Barrier Reef. MICROBIOME 2025; 13:11. [PMID: 39819379 PMCID: PMC11737092 DOI: 10.1186/s40168-024-01972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/08/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Seawater microbes (bacteria and archaea) play essential roles in coral reefs by facilitating nutrient cycling, energy transfer, and overall reef ecosystem functioning. However, environmental disturbances such as degraded water quality and marine heatwaves, can impact these vital functions as seawater microbial communities experience notable shifts in composition and function when exposed to stressors. This sensitivity highlights the potential of seawater microbes to be used as indicators of reef health. Microbial indicator analysis has centered around measuring the taxonomic composition of seawater microbial communities, but this can obscure heterogeneity of gene content between taxonomically similar microbes, and thus, microbial functional genes have been hypothesized to have more scope for predictive potential, though empirical validation for this hypothesis is still pending. Using a metagenomics study framework, we establish a functional baseline of seawater microbiomes across offshore Great Barrier Reef (GBR) sites to compare the diagnostic value between taxonomic and functional information in inferring continuous physico-chemical metrics in the surrounding reef. RESULTS Integrating gene-centric metagenomics analyses with 17 physico-chemical variables (temperature, salinity, and particulate and dissolved nutrients) across 48 reefs revealed that associations between microbial functions and environmental parameters were twice as stable compared to taxonomy-environment associations. Distinct seasonal variations in surface water chemistry were observed, with nutrient concentrations up to threefold higher during austral summer, explained by enhanced production of particulate organic matter (POM) by photoautotrophic picocyanobacteria, primarily Synechococcus. In contrast, nutrient levels were lower in winter, and POM production was also attributed to Prochlorococcus. Additionally, heterotrophic microbes (e.g., Rhodospirillaceae, Burkholderiaceae, Flavobacteriaceae, and Rhodobacteraceae) were enriched in reefs with elevated dissolved organic carbon (DOC) and phytoplankton-derived POM, encoding functional genes related to membrane transport, sugar utilization, and energy metabolism. These microbes likely contribute to the coral reef microbial loop by capturing and recycling nutrients derived from Synechococcus and Prochlorococcus, ultimately transferring nutrients from picocyanobacterial primary producers to higher trophic levels. CONCLUSION This study reveals that functional information in reef-associated seawater microbes more robustly associates with physico-chemical variables than taxonomic data, highlighting the importance of incorporating microbial function in reef monitoring initiatives. Our integrative approach to mine for stable seawater microbial biomarkers can be expanded to include additional continuous metrics of reef health (e.g., benthic cover of corals and macroalgae, fish counts/biomass) and may be applicable to other large-scale reef metagenomics datasets beyond the GBR. Video Abstract.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Steven J Robbins
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Sara C Bell
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics and School of Mathematics and Statistics, University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Renee K Gruber
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, Vienna, 1010, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- College of Science and Engineering, James Cook University, Townsville, 4811, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
3
|
Ju Z, Lee SS, Chen J, Deng L, Zhang X, Xu Z, Liu H. Deciphering the key stressors shaping the relative success of core mixoplankton across spatiotemporal scales. ISME COMMUNICATIONS 2025; 5:ycaf053. [PMID: 40270584 PMCID: PMC12017963 DOI: 10.1093/ismeco/ycaf053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/13/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025]
Abstract
Deciphering the spatiotemporal dynamics and relative competitive advantages of trophic functional traits under multiple stressors has been a long-standing challenge. Here, we integrated the core taxa identification with robust simulation modeling to reveal key environmental factors influencing the three core trophic groups (autotroph, heterotroph, and mixotroph), with a particular focus on mixoplankton. Temporally, core mixoplankton exhibited a higher relative proportion in spring and winter in contrast to core heterotrophs and a more uniform spatial distribution pattern. While seasonal patterns were observed in the environmental responses of the trophic groups, temperature, dissolved oxygen (DO), and nitrate (NO3-N) were identified as the key drivers affecting the core mixoplankton by random forest. Furthermore, through univariate regression and generalized additive mixed model (GAMM), we captured the niche preferences of core mixoplankton across three stressors gradients and characterized the coupled additive or antagonistic effects. Notably, the potential optimal threshold for core mixoplankton was a high level of NO3-N (0.64 mg/L), lower temperature (18.6°C), and DO (3.5 mg/L), which contrasted with the results obtained from single-factor regression analyses. Specifically, GAMM indicated that the preferred niche shifted upward for NO3-N and downward for DO when three drivers were included simultaneously, while temperature remained constant. Our study linked the ecological niche preference of core mixoplankton with key stressors, facilitating a more precise monitoring and comprehension of spatiotemporal dynamics of trophic functional groups under scenarios of escalating global climate change and anthropogenic disturbances.
Collapse
Affiliation(s)
- Zhicheng Ju
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Sangwook Scott Lee
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Lixia Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Xiaodong Zhang
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, 000000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong SAR, 510000, China
| |
Collapse
|
4
|
Guan X, Jia D, Liu X, Ding C, Guo J, Yao M, Zhang Z, Zhou M, Sun J. Combined influence of the nanoplastics and polycyclic aromatic hydrocarbons exposure on microbial community in seawater environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173772. [PMID: 38871313 DOI: 10.1016/j.scitotenv.2024.173772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Nanoplastics (NPs) and polycyclic aromatic hydrocarbons (PAHs) are recognized as persistent organic pollutant (POPs) with demonstrated physiological toxicity. When present in aquatic environments, the two pollutants could combine with each other, resulting in cumulative toxicity to organisms. However, the combined impact of NPs and PAHs on microorganisms in seawater is not well understood. In this study, we conducted an exposure experiment to investigate the individual and synergistic effects of NPs and PAHs on the composition, biodiversity, co-occurrence networks of microbial communities in seawater. Exposure of individuals to PAHs led to a reduction in microbial community richness, but an increase in the relative abundance of species linked to PAHs degradation. These PAHs-degradation bacteria acting as keystone species, maintained a microbial network complexity similar to that of the control treatment. Exposure to individual NPs resulted in a reduction in the complexity of microbial networks. Furthermore, when PAHs and NPs were simultaneously present, the toxic effect of NPs hindered the presence of keystone species involved in PAHs degradation, subsequently limiting the degradation of PAHs by marine microorganisms, resulting in a decrease in community diversity and symbiotic network complexity. This situation potentially poses a heightened threat to the ecological stability of marine ecosystems. Our work strengthened the understanding of the combined impact of NPs and PAHs on microorganisms in seawater.
Collapse
Affiliation(s)
- Xin Guan
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Dai Jia
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China.
| | - Xinyu Liu
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Changling Ding
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China; Institute for Advanced Marine Research, China University of Geosciences (Wuhan), Guangzhou, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Jinfei Guo
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Min Yao
- Jiangsu Hydrology and Water Resources Survey Bureau, Nanjing, China
| | - Zhan Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxi Zhou
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Sun
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China; Institute for Advanced Marine Research, China University of Geosciences (Wuhan), Guangzhou, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China.
| |
Collapse
|
5
|
Pereira O, Qin W, Galand PE, Debroas D, Lami R, Hochart C, Zhou Y, Zhou J, Zhang C. Metabolic activities of marine ammonia-oxidizing archaea orchestrated by quorum sensing. MLIFE 2024; 3:417-429. [PMID: 39359677 PMCID: PMC11442133 DOI: 10.1002/mlf2.12144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024]
Abstract
Ammonia-oxidizing archaea (AOA) play crucial roles in marine carbon and nitrogen cycles by fixing inorganic carbon and performing the initial step of nitrification. Evaluation of carbon and nitrogen metabolism popularly relies on functional genes such as amoA and accA. Increasing studies suggest that quorum sensing (QS) mainly studied in biofilms for bacteria may serve as a universal communication and regulatory mechanism among prokaryotes; however, this has yet to be demonstrated in marine planktonic archaea. To bridge this knowledge gap, we employed a combination of metabolic activity markers (amoA, accA, and grs) to elucidate the regulation of AOA-mediated nitrogen, carbon processes, and their interactions with the surrounding heterotrophic population. Through co-transcription investigations linking metabolic markers to potential key QS genes, we discovered that QS molecules could regulate AOA's carbon, nitrogen, and lipid metabolisms under different conditions. Interestingly, specific AOA ecotypes showed a preference for employing distinct QS systems and a distinct QS circuit involving a typical population. Overall, our data demonstrate that QS orchestrates nitrogen and carbon metabolism, including the exchange of organic metabolites between AOA and surrounding heterotrophic bacteria, which has been previously overlooked in marine AOA research.
Collapse
Affiliation(s)
- Olivier Pereira
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Institut WUT-AMU Wuhan University of Technology and Aix-Marseille Université Wuhan China
| | - Wei Qin
- School of Biological Sciences, Institute for Environmental Genomics University of Oklahoma Norman Oklahoma USA
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Didier Debroas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement Clermont-Ferrand France
| | - Raphael Lami
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM) Banyuls sur Mer France
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB) Banyuls sur Mer France
| | - Yangkai Zhou
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School Tsinghua University Shenzhen China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Geo-Omics of Archaea, Department of Science and Engineering Southern University of Science and Technology Shenzhen China
- Shanghai Sheshan National Geophysical Observatory Shanghai Earthquake Agency Shanghai China
| |
Collapse
|
6
|
Schickele A, Debeljak P, Ayata SD, Bittner L, Pelletier E, Guidi L, Irisson JO. The genomic potential of photosynthesis in piconanoplankton is functionally redundant but taxonomically structured at a global scale. SCIENCE ADVANCES 2024; 10:eadl0534. [PMID: 39151014 PMCID: PMC11328907 DOI: 10.1126/sciadv.adl0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Carbon fixation is a key metabolic function shaping marine life, but the underlying taxonomic and functional diversity involved is only partially understood. Using metagenomic resources targeted at marine piconanoplankton, we provide a reproducible machine learning framework to derive the potential biogeography of genomic functions through the multi-output regression of gene read counts on environmental climatologies. Leveraging the Marine Atlas of Tara Oceans Unigenes, we investigate the genomic potential of primary production in the global ocean. The latter is performed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) and is often associated with carbon concentration mechanisms in piconanoplankton, major marine unicellular photosynthetic organisms. We show that the genomic potential supporting C4 enzymes and RUBISCO exhibits strong functional redundancy and important affinity toward tropical oligotrophic waters. This redundancy is taxonomically structured by the dominance of Mamiellophyceae and Prymnesiophyceae in mid and high latitudes. These findings enhance our understanding of the relationship between functional and taxonomic diversity of microorganisms and environmental drivers of key biogeochemical cycles.
Collapse
Affiliation(s)
- Alexandre Schickele
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
| | - Pavla Debeljak
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- SupBiotech, Villejuif, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, IRD, MNHN, Laboratoire d'Océanographie et du Climat, Institut Pierre Simon Laplace, LOCEAN-IPSL, F-75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Lucie Bittner
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, EPHE, Université des Antilles, Institut de Systématique, Evolution, Biodiversité (ISYEB), F-75005, Paris, France
- Institut Universitaire de France, Paris, France
| | - Eric Pelletier
- Metabolic Genomics, Genoscope, Institut de Biologie François Jacob, CEA, CNRS, Université d'Evry, Université Paris Saclay, 91000 Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Jean-Olivier Irisson
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, F-06230 Villefranche-sur-Mer, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| |
Collapse
|
7
|
Zhang F, Cui K, Yuan X, Huang Y, Yu K, Li CX, Zhang X, Chen Y. Differentiated cognition of the effects of human activities on typical persistent organic pollutants and bacterioplankton community in drinking water source. ENVIRONMENTAL RESEARCH 2024; 252:118815. [PMID: 38555085 DOI: 10.1016/j.envres.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Accelerated urbanization in developing countries led to a typical gradient of human activities (low, moderate and high human activities), which affected the pollution characteristics and ecological functions of aquatic environment. However, the occurrence characteristics of typical persistent organic pollutants, including organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs), and bacterioplankton associated with the gradient of human activities in drinking water sources is still lacking. Our study focused on a representative case - the upper reaches of the Dongjiang River (Pearl River Basin, China), a drinking water source characterized by a gradient of human activities. A comprehensive analysis of PAHs, OCPs and bacterioplankton in the water phase was performed using gas chromatography-mass spectrometry (GC-MS) and the Illumina platform. Moderate human activity could increase the pollution of OCPs and PAHs due to local agricultural activities. The gradient of human activities obviously influenced the bacterioplankton community composition and interaction dynamics, and low human activity resulted in low bacterioplankton diversity. Co-occurrence network analysis indicated that moderate human activity could promote a more modular organization of the bacterioplankton community. Structural equation models showed that nutrients could exert a negative influence on the composition of bacterioplankton, and this phenomenon did not change with the gradient of human activities. OCPs played a negative role in shaping bacterioplankton composition under the low and high human activities, but had a positive effect under the moderate human activity. In contrast, PAHs showed a strong positive effect on bacterioplankton composition under low and high human activities and a weak negative effect under moderate human activity. Overall, these results shed light on the occurrence characteristics of OCPs, PAHs and their ecological effects on bacterioplankton in drinking water sources along the gradient of human activities.
Collapse
Affiliation(s)
- Feng Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinrui Yuan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yuansheng Huang
- College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen-Xuan Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiangyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
8
|
de la Iglesia-Vélez B, Díaz-Pérez L, Acuña JL, Morán XAG. Spatial and seasonal variability of picoplankton abundance and growth rates in the southern Bay of Biscay. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106331. [PMID: 38181718 DOI: 10.1016/j.marenvres.2023.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Autotrophic and heterotrophic picoplankton play fundamental roles in marine food webs and biogeochemical cycles. However, their growth responses have seldom been jointly assessed, including many temperate regions such as the Bay of Biscay. There, previous studies have shown their relevance in carbon fluxes. We describe here the spatio-temporal variability of the abundances and growth rates of the picoplanktonic groups routinely distinguished by flow cytometry (Synechococcus and Prochlorococcus cyanobacteria, two groups of differently sized picoeukaryotes and two groups of heterotrophic bacteria distinguished by their relative nucleic acid content) in the central Cantabrian Sea (S Bay of Biscay). To that end, from February to December 2021 we collected surface water on 5 occasions from 6 stations distributed along the S Bay of Biscay (6-3°W) and incubated it after removing protistan grazers in order to determine their dynamics along the seasonal cycle as well as the inshore-offshore and the west-east gradients. Seasonal variations in initial and maximum abundances generally matched previous knowledge of the region but growth rates were more variable, with Prochlorococcus and high nucleic acid (HNA) bacteria showing the maximum values (up to 2 d-1) while negative growth was observed in one third of Synechococcus incubations. Temporal differences generally overrode differences along the inshore-offshore gradient in trophic status while in situ and maximum abundances of most of the groups generally decreased towards the east following the increase in stratification and lower nutrient availability. Responses to stratification suggest Prochlorococcus and low nucleic acid (LNA) cells may prevail among autotrophic and heterotrophic bacteria, respectively, in a warmer ocean.
Collapse
Affiliation(s)
| | - Laura Díaz-Pérez
- Centro Oceanográfico de Gijón/Xixón (IEO-CSIC), 33212, Gijón/Xixón, Spain
| | - José Luis Acuña
- Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo/Uviéu, 33071, Oviedo/Uviéu, Spain
| | | |
Collapse
|
9
|
Terzin M, Laffy PW, Robbins S, Yeoh YK, Frade PR, Glasl B, Webster NS, Bourne DG. The road forward to incorporate seawater microbes in predictive reef monitoring. ENVIRONMENTAL MICROBIOME 2024; 19:5. [PMID: 38225668 PMCID: PMC10790441 DOI: 10.1186/s40793-023-00543-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.
Collapse
Affiliation(s)
- Marko Terzin
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| | - Patrick W Laffy
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Steven Robbins
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Yun Kit Yeoh
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia
| | - Pedro R Frade
- Natural History Museum Vienna, 1010, Vienna, Austria
| | - Bettina Glasl
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1030, Vienna, Austria
| | - Nicole S Webster
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia, QLD, 4072, Australia
- Australian Antarctic Program, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia
| | - David G Bourne
- Australian Institute of Marine Science, PMB no3 Townsville MC, Townsville, QLD, 4810, Australia.
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
- AIMS@JCU, James Cook University, Townsville, QLD, 4811, Australia.
| |
Collapse
|
10
|
Seppi M, Pasqualini J, Facchin S, Savarino EV, Suweis S. Emergent Functional Organization of Gut Microbiomes in Health and Diseases. Biomolecules 2023; 14:5. [PMID: 38275746 PMCID: PMC10813293 DOI: 10.3390/biom14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Continuous and significant progress in sequencing technologies and bioinformatics pipelines has revolutionized our comprehension of microbial communities, especially for human microbiomes. However, most studies have focused on studying the taxonomic composition of the microbiomes and we are still not able to characterize dysbiosis and unveil the underlying ecological consequences. This study explores the emergent organization of functional abundances and correlations of gut microbiomes in health and disease. Leveraging metagenomic sequences, taxonomic and functional tables are constructed, enabling comparative analysis. First, we show that emergent taxonomic and functional patterns are not useful to characterize dysbiosis. Then, through differential abundance analyses applied to functions, we reveal distinct functional compositions in healthy versus unhealthy microbiomes. In addition, we inquire into the functional correlation structure, revealing significant differences between the healthy and unhealthy groups, which may significantly contribute to understanding dysbiosis. Our study demonstrates that scrutinizing the functional organization in the microbiome provides novel insights into the underlying state of the microbiome. The shared data structure underlying the functional and taxonomic compositions allows for a comprehensive macroecological examination. Our findings not only shed light on dysbiosis, but also underscore the importance of studying functional interrelationships for a nuanced understanding of the dynamics of the microbial community. This research proposes a novel approach, bridging the gap between microbial ecology and functional analyses, promising a deeper understanding of the intricate world of the gut microbiota and its implications for human health.
Collapse
Affiliation(s)
- Marcello Seppi
- Laboratory of Interdisciplinary Physics (LIPh), Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy; (M.S.); (J.P.)
| | - Jacopo Pasqualini
- Laboratory of Interdisciplinary Physics (LIPh), Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy; (M.S.); (J.P.)
| | - Sonia Facchin
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35121 Padua, Italy; (S.F.); (E.V.S.)
| | - Edoardo Vincenzo Savarino
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35121 Padua, Italy; (S.F.); (E.V.S.)
| | - Samir Suweis
- Laboratory of Interdisciplinary Physics (LIPh), Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy; (M.S.); (J.P.)
| |
Collapse
|
11
|
Reynolds R, Hyun S, Tully B, Bien J, Levine NM. Identification of microbial metabolic functional guilds from large genomic datasets. Front Microbiol 2023; 14:1197329. [PMID: 37455725 PMCID: PMC10348482 DOI: 10.3389/fmicb.2023.1197329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/26/2023] [Indexed: 07/18/2023] Open
Abstract
Heterotrophic microbes play an important role in the Earth System as key drivers of major biogeochemical cycles. Specifically, the consumption rate of organic matter is set by the interaction between diverse microbial communities and the chemical and physical environment in which they reside. Modeling these dynamics requires reducing the complexity of microbial communities and linking directly with biogeochemical functions. Microbial metabolic functional guilds provide one approach for reducing microbial complexity and incorporating microbial biogeochemical functions into models. However, we lack a way to identify these guilds. In this study, we present a method for defining metabolic functional guilds from annotated genomes, which are derived from both uncultured and cultured organisms. This method utilizes an Aspect Bernoulli (AB) model and was tested on three large genomic datasets with 1,733-3,840 genomes each. Ecologically relevant microbial metabolic functional guilds were identified including guilds related to DMSP degradation, dissimilatory nitrate reduction to ammonia, and motile copiotrophy. This method presents a way to generate hypotheses about functions co-occurring within individual microbes without relying on cultured representatives. Applying the concept of metabolic functional guilds to environmental samples will provide new insight into the role that heterotrophic microbial communities play in setting rates of carbon cycling.
Collapse
Affiliation(s)
- Ryan Reynolds
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| | - Sangwon Hyun
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA, United States
| | - Benjamin Tully
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
- Wrigley Institute for Environmental Studies, University of Southern California, Los Angeles, CA, United States
| | - Jacob Bien
- Department of Data Sciences and Operations, University of Southern California, Los Angeles, CA, United States
| | - Naomi M. Levine
- Department of Marine and Environmental Biology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Lin W, Fan F, Xu G, Gong K, Cheng X, Yuan X, Zhang C, Gao Y, Wang S, Ng HY, Dong Y. Microbial community assembly responses to polycyclic aromatic hydrocarbon contamination across water and sediment habitats in the Pearl River Estuary. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131762. [PMID: 37285790 DOI: 10.1016/j.jhazmat.2023.131762] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
Along with rapid urbanization and intensive human activities, polycyclic aromatic hydrocarbon (PAH) pollution in the Pearl River Estuary (PRE) and its effects on the microbial community have attracted extensive attention. However, the potential and mechanism of microbial degradation of PAHs across water and sediment habitats remain obscure. Herein, the estuarine microbial community structure, function, assembly process and co-occurrence patterns impacted by PAHs were comprehensively analyzed using environmental DNA-based approaches. The contamination and distribution of PAHs were jointly affected by anthropogenic and natural factors. Some of the keystone taxa were identified as PAH-degrading bacteria (i.e., genera Defluviimonas, Mycobacterium, families 67-14, Rhodobacteraceae, Microbacteriaceae and order Gaiellales in water) or biomarkers (i.e., Gaiellales in sediment) that were significantly correlated with PAH levels. The proportion of deterministic process in the high PAH-polluted water (76%) was much higher than that in the low pollution area (7%), confirming the significant effect of PAHs on the microbial community assembly. In sediment, the communities with high phylogenetic diversity demonstrated a great extent of niche differentiation, exhibited a stronger response to environmental variables and were strongly influenced by deterministic processes (40%). Overall, deterministic and stochastic processes are closely related to the distribution and mass transfer of pollutants, and substantially affect the biological aggregation and interspecies interaction within communities in the habitats.
Collapse
Affiliation(s)
- Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Guangming Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Kaiyuan Gong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xingyu Yuan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cheng Zhang
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China; School of Engineering Technology, Beijing Normal University, Zhuhai 519087, China
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - How Yong Ng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
13
|
Da Silva O, Ayata SD, Ser-Giacomi E, Leconte J, Pelletier E, Fauvelot C, Madoui MA, Guidi L, Lombard F, Bittner L. Genomic differentiation of three pico-phytoplankton species in the Mediterranean Sea. Environ Microbiol 2022; 24:6086-6099. [PMID: 36053818 PMCID: PMC10087736 DOI: 10.1111/1462-2920.16171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
For more than a decade, high-throughput sequencing has transformed the study of marine planktonic communities and has highlighted the extent of protist diversity in these ecosystems. Nevertheless, little is known relative to their genomic diversity at the species-scale as well as their major speciation mechanisms. An increasing number of data obtained from global scale sampling campaigns is becoming publicly available, and we postulate that metagenomic data could contribute to deciphering the processes shaping protist genomic differentiation in the marine realm. As a proof of concept, we developed a findable, accessible, interoperable and reusable (FAIR) pipeline and focused on the Mediterranean Sea to study three a priori abundant protist species: Bathycoccus prasinos, Pelagomonas calceolata and Phaeocystis cordata. We compared the genomic differentiation of each species in light of geographic, environmental and oceanographic distances. We highlighted that isolation-by-environment shapes the genomic differentiation of B. prasinos, whereas P. cordata is impacted by geographic distance (i.e. isolation-by-distance). At present time, the use of metagenomics to accurately estimate the genomic differentiation of protists remains challenging since coverages are lower compared to traditional population surveys. However, our approach sheds light on ecological and evolutionary processes occurring within natural marine populations and paves the way for future protist population metagenomic studies.
Collapse
Affiliation(s)
- Ophélie Da Silva
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France
| | - Enrico Ser-Giacomi
- Sorbonne Université, UMR 7159 CNRS-IRD-MNHN, LOCEAN-IPSL, Paris, France.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jade Leconte
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Cécile Fauvelot
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
| | - Mohammed-Amin Madoui
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - Lionel Guidi
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France
| | - Fabien Lombard
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.,Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
14
|
Yao X, Zhao Z, Wang J, Ding Q, Ren M, Kimirei IA, Zhang L. Sediment organic matter properties facilitate understanding nitrogen transformation potentials in East African lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156607. [PMID: 35690192 DOI: 10.1016/j.scitotenv.2022.156607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
East African lakes include the most productive and alkaline lake group in the world. Yet, they generally receive fewer nutrient inputs than the densely populated subtropical and temperate lakes in the northern hemisphere. In these lakes with insufficient supplies of inorganic nitrogen, the mineralization of benthic organic matter can play an important role in driving the nutrient cycle and nitrogen loss. Using a suite of stable 15N isotope dilution and tracer techniques, we examined five main processes of the sediment nitrogen cycle in 16 lakes and reservoirs of Tanzania and Kenya, East Africa: gross nitrogen mineralization, ammonium immobilization, dissimilatory nitrate reduction to ammonium (DNRA), and the dinitrogen (N2) production via denitrification and anaerobic ammonium oxidation (anammox). Gross nitrogen mineralization and ammonium immobilization showed the maximum values of 9.84 and 12.39 μmol N kg-1 h-1, respectively. Potential DNRA rates ranged from 0.22 to 8.15 μmol N kg-1 h-1 and accounted for 10 %-74 % (average 25 %) of the total dissimilatory nitrate reduction. Potential nitrate reduction rates in most lakes were dominated by denitrification with a contribution of 26 %-85 % and a mean of 65 %. We further found that the sediment nitrogen transformations were driven mainly by benthic organic matter properties and water column phosphate concentrations, reflecting microbial metabolic responses to the changing carbon and nutrients availability. For instance, autochthonous production of protein-like organic matter attributed to active sediment nitrogen mineralization, DNRA, and denitrification. In contrast, the high degree of humification caused by the inputs of terrestrial humic-like substances slowed down the sediment nitrogen transformations. The contribution of DNRA to total dissimilatory nitrate reduction was significantly positively correlated to sediment C: N ratios. These results indicate that predictions of sediment N supply and loss in East African lakes can be improved by incorporating sediment organic matter properties.
Collapse
Affiliation(s)
- Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Qiqi Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | | | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Putt AD, Rafie SAA, Hazen TC. Large-Data Omics Approaches in Modern Remediation. JOURNAL OF ENVIRONMENTAL ENGINEERING 2022; 148. [DOI: 10.1061/(asce)ee.1943-7870.0002042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 09/02/2023]
Affiliation(s)
- Andrew D. Putt
- Ph.D. Candidate, Dept. of Earth and Planetary Sciences, Univ. of Tennessee, Knoxville, TN 37996. ORCID:
| | - Sa’ad Abd Ar Rafie
- Ph.D. Candidate, Dept. of Civil and Environmental Sciences, Univ. of Tennessee, Knoxville, TN 37996
| | - Terry C. Hazen
- Governor’s Chair Professor, Dept. of Earth and Planetary Sciences, Univ. of Tennessee, Knoxville, TN 37996; Dept. of Civil and Environmental Sciences, Univ. of Tennessee, Knoxville, TN 37996; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; Dept. of Microbiology, Univ. of Tennessee, Knoxville, TN 37996; Institute for a Secure and Sustainable Environment, Univ. of Tennessee, Knoxville, TN 37996 (corresponding author). ORCID:
| |
Collapse
|
16
|
Faure E, Ayata SD, Bittner L. Towards omics-based predictions of planktonic functional composition from environmental data. Nat Commun 2021; 12:4361. [PMID: 34272373 PMCID: PMC8285379 DOI: 10.1038/s41467-021-24547-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Marine microbes play a crucial role in climate regulation, biogeochemical cycles, and trophic networks. Unprecedented amounts of data on planktonic communities were recently collected, sparking a need for innovative data-driven methodologies to quantify and predict their ecosystemic functions. We reanalyze 885 marine metagenome-assembled genomes through a network-based approach and detect 233,756 protein functional clusters, from which 15% are functionally unannotated. We investigate all clusters' distributions across the global ocean through machine learning, identifying biogeographical provinces as the best predictors of protein functional clusters' abundance. The abundances of 14,585 clusters are predictable from the environmental context, including 1347 functionally unannotated clusters. We analyze the biogeography of these 14,585 clusters, identifying the Mediterranean Sea as an outlier in terms of protein functional clusters composition. Applicable to any set of sequences, our approach constitutes a step towards quantitative predictions of functional composition from the environmental context.
Collapse
Affiliation(s)
- Emile Faure
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France.
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France.
| | - Sakina-Dorothée Ayata
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV, Villefranche-sur-Mer, France
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Lucie Bittner
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|