1
|
Rishi V, Abou Taka A, Hratchian HP, McCaslin LM. Quantifying Design Principles for Light-Emitting Materials with Inverted Singlet-Triplet Energy Gaps. J Phys Chem Lett 2025:5213-5220. [PMID: 40387203 DOI: 10.1021/acs.jpclett.5c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Molecular engineering of organic emitter molecules with inverted singlet-triplet energy gaps (INVEST) has emerged as a powerful approach for enhancing fluorescence efficiency through triplet harvesting. In these unique materials, the first excited singlet state (S1) lies below the lowest triplet state (T1), enabling efficient reverse intersystem crossing. Previous computational studies have focused on accurately calculating the inverted energy gap and establishing qualitative structure-property relationships. Here, we present quantitative relationships that link the molecular structure to the S1-T1 energy gap, ΔEST, by introducing a benchmark set of 15 heptazine-based INVEST molecules (HEPTA-INVEST15). We identify a strong linear correlation (R2 > 0.94) between ΔEST and both the degree of intramolecular charge transfer and the deviation from a single-excitation character, as quantified by %R1 values and transition density matrix norms. These trends persist across our expanded set of 44 mono-, di-, and tri-substituted heptazines (HEPTA-INVEST44), underscoring the generality of our findings. Notably, strongly electron-donating groups, such as -NH2, minimize the magnitude of inverted gaps in mono-substituted heptazines yet produce the most negative ΔEST in certain tri-substituted derivatives, a result arising from competing resonance effects and excited-state aromaticity. Although ΔEST shows no clear correlation with Hammett parameters, our results reveal that physically meaningful, computable descriptors offer a mechanistic foundation for the future data-driven design of INVEST emitters. These findings pave the way for machine-learning approaches that connect the molecular structure to ΔEST without requiring high-level excited-state calculations.
Collapse
Affiliation(s)
- Varun Rishi
- Sandia National Laboratories, Livermore, California 94550, United States
| | - Ali Abou Taka
- Sandia National Laboratories, Livermore, California 94550, United States
| | - Hrant P Hratchian
- University of California, Merced, Merced, California 95340, United States
| | - Laura M McCaslin
- Sandia National Laboratories, Livermore, California 94550, United States
| |
Collapse
|
2
|
Lee G, Kim YE, Kim H, Lee HK, Park JY, Oh S, Yoo H. Organic Synaptic Transistors and Printed Circuit Board Defect Inspection with Photonic Stimulation: A Novel Approach Using Oblique Angle Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501997. [PMID: 40331564 DOI: 10.1002/smll.202501997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/19/2025] [Indexed: 05/08/2025]
Abstract
This study introduces a photonic stimulation-based synaptic transistor utilizing oblique angle deposition (OAD) of dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). While OAD enables advanced nanostructures, its application to organic materials remains largely unexplored. Here, the electrical characteristics and photoinduced trap behavior of obliquely deposited DNTT transistors are systematically investigated, successfully replicating key synaptic functions. OAD-controlled grain size and spacing in the DNTT channel yield distinct performance metrics compared to conventional devices. The introduced trap regions enable stable synaptic behavior across diverse gate voltage (VG) conditions. By adjusting presynaptic photonic pulse intensity, duration, and repetition, a robust transition is achieved to long-term memory (LTM). The device further demonstrates reliable optoelectronic synaptic operation over 52 durability cycles. Concurrent photonic stimulation enables parallel potentiation-depression dynamics, enhancing processing speed and performance, highlighting its promise for next-generation neuromorphic computing. Its application is also showed in printed circuit board (PCB) defect inspection, successfully mimicking biological synapses under simultaneous photonic stimulation.
Collapse
Affiliation(s)
- Gyeongho Lee
- Semiconductor Total Solution Center, Korea Institute of Ceramic Engineering and Technology, 3321 Gyeongchung-daero, Icheon, 17303, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seoul, 02841, Republic of Korea
| | - Yeo Eun Kim
- Department of Semiconductor Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, Republic of Korea
| | - Hyeonjung Kim
- Division of Electrical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Han-Koo Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), 80 Jigok-ro, Pohang, 37673, Republic of Korea
| | - Jae Yeon Park
- Radiation Fusion Technology Research Division, Advanced Radiation Technology Institute (ARTI)/Korea Atomic Energy Research (KAERI), 29 Geum gu-gil, Jeongeup, 56212, Republic of Korea
| | - Seyong Oh
- Division of Electrical Engineering, Hanyang University ERICA, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Hanyang University, 222 Wangsimni-ro, Seoul, 04763, Republic of Korea
| |
Collapse
|
3
|
Qian Y, Zhai Y, Li M, Qin Y, Lv L, James TD, Wang L, Chen Z. Bio-Based Thermoplastic Room Temperature Phosphorescent Materials with Closed-Loop Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414439. [PMID: 40085139 PMCID: PMC12061272 DOI: 10.1002/advs.202414439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/29/2024] [Indexed: 03/16/2025]
Abstract
Producing thermoplastic room temperature phosphorescent (RTP) materials with closed-loop recyclability from natural sources is an attractive approach but hard to achieve. Here, the study develops such RTP materials, Poly(TA)/Cell, by thermally polymerizing thioctic acid in the presence of cellulose. Specifically, polymerized thioctic acid poly(TA) forms strong hydrogen bonding interactions with CNF, promoting formation of molecular clusters between the oxygen-containing units. The as-formed clusters generate humidity- and excitation-sensitive green RTP emission. Red afterglow emission is also obtained by integrating Poly(TA)/Cell together with Rhodamine B (RhB) via an energy transfer process. Attributed to the thermoplastic properties, the as-obtained Poly(TA)/Cell can be thermally molded into flexible shapes with uncompromised RTP performance. Moreover, owing to the alkali-cleavable properties of the disulfide bond in Poly(TA)/Cell, thioctic acid and cellulose can be successfully recycled from Poly(TA)/Cell with a yield of 92.3% and 81.5%, respectively. As a demonstrator for potential utility, Poly(TA)/Cell is used to fabricate materials for information encryption.
Collapse
Affiliation(s)
- Yuanyuan Qian
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Yingxiang Zhai
- Key Laboratory of Bio‐based Material Science & TechnologyNortheast Forestry UniversityHarbin150040P. R. China
| | - Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Yinping Qin
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Liang Lv
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Tony D. James
- Department of ChemistryUniversity of BathBathBA2 7AYUK
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiang453007P. R. China
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi‐Pollutants Control, Department of Environmental Science and EngineeringNorth China Electric Power UniversityBaoding071003P. R. China
| | - Zhijun Chen
- Key Laboratory of Bio‐based Material Science & TechnologyNortheast Forestry UniversityHarbin150040P. R. China
| |
Collapse
|
4
|
Yan D, Zhang M, Wang J, Jing X, Sun J, Zhang Y, Yang L, Sheng R, Chen P. Blue Exciplexes in Organic Light-Emitting Diodes: Opportunities and Challenges. Molecules 2025; 30:1556. [PMID: 40286180 PMCID: PMC11990462 DOI: 10.3390/molecules30071556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Blue exciplexes, a critical innovative component in organic light-emitting diodes (OLEDs) technology, exhibit substantial potential for enhancing device efficiency, reducing driving voltage, and simplifying structural designs. This article reviews the pivotal role of blue exciplexes in OLEDs, analyzing their unique advantages and challenges as emitters and host materials. Through optimized molecular design, blue exciplexes achieve high color purity and emission efficiency, surpassing conventional fluorescent materials. Additionally, their wide energy bands and high triplet energy provide opportunities to improve the performance of sky-blue, deep-blue, and white OLEDs. However, limitations in deep-blue efficiency, material degradation due to high-energy excitons, and spectral red-shift pose significant challenges to their development. This review offers a comprehensive perspective and research reference on the photophysical mechanisms of blue exciplexes and their applications in display and lighting fields.
Collapse
Affiliation(s)
- Duxu Yan
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Mengmeng Zhang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Jintao Wang
- School of Information Engineering, Yantai Institute of Technology, Yantai 264005, China;
| | - Xiaoqing Jing
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Jun Sun
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Yongan Zhang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Liping Yang
- School of Information Engineering, Yantai Institute of Technology, Yantai 264005, China;
| | - Ren Sheng
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| | - Ping Chen
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (D.Y.); (M.Z.); (X.J.); (J.S.); (Y.Z.)
| |
Collapse
|
5
|
Fausia KH, Nharangatt B, Muhsina K, Rappai JP, Chatanathodi R, Jose D, Sandeep K. Dynamic bandgap modulation in CsPbBr 3 perovskite nanocrystals through reversible ammonia intercalation. RSC Adv 2025; 15:3562-3569. [PMID: 39906631 PMCID: PMC11792498 DOI: 10.1039/d4ra07759h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
Modulation of the electronic states of a semiconductor is an intriguing area of research because of its interesting applications. In general, physical methods are used to reversibly manipulate the bandgap of semiconductors. Herein, we have used a simple molecule, ammonia, and allowed it to intercalate inside the crystal lattice of CsPbBr3 perovskites to alter the band positions. The molecular intercalation of ammonia induces strain in the crystal structure of perovskite, which widens the bandgap. Ammonia intercalation results in fall-off of the visible absorption and emission of the CsPbBr3 perovskites and a new absorption emerges in the ultraviolet region. Interestingly, with time, the deintercalation takes place, as a result of the population in the antibonding orbitals formed due to the mixing of s orbital of the Pb and p orbital of N in the intercalated NH3. The deintercalation of gaseous ammonia results in the narrowing of the bandgap which results in the regaining of the visible absorption. Together with the density functional theory calculations, herein, we demonstrate the reversible bandgap modulation in CsPbBr3 perovskite nanocrystals. Aspects discussed here can give directions to develop newer methodologies to tune the band positions of semiconductors by the intercalation of the right molecules inside their crystal lattice.
Collapse
Affiliation(s)
- Karayadi H Fausia
- Government Victoria College, Research Center under University of Calicut Palakkad 678001 India
- Department of Chemistry, MES Keveeyam College Valanchery Kerala 676552 India
| | - Bijoy Nharangatt
- Department of Physics, National Institute of Technology Calicut Kerala 673601 India
| | - Kavundath Muhsina
- Government Victoria College, Research Center under University of Calicut Palakkad 678001 India
| | - John P Rappai
- Government Victoria College, Research Center under University of Calicut Palakkad 678001 India
- Government Arts and Science College Ollur Kerala India
| | - Raghu Chatanathodi
- Department of Physics, National Institute of Technology Calicut Kerala 673601 India
| | - Deepthi Jose
- Department of Chemistry, Providence Women's College (Autonomous) Calicut 673009 India
| | - Kulangara Sandeep
- Government Victoria College, Research Center under University of Calicut Palakkad 678001 India
| |
Collapse
|
6
|
Wang Y, Wu S, Xu S, Du X, Sun Y, Yan A, Zhou G, Yang X. Atmospheric Pressure Chemical Ionization Q-Orbitrap Mass Spectrometry Analysis of Gas-Phase High-Energy Dissociation Routes of Triarylamine Derivatives. Molecules 2024; 29:5807. [PMID: 39683964 DOI: 10.3390/molecules29235807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
Triarylamine groups have been widely utilized in the development of high-performance charge-transporting or luminescent materials for fabricating organic light-emitting diodes (OLEDs). In this study, atmospheric pressure chemical ionization (APCI) Q-Orbitrap mass spectrometry was adopted to investigate the dissociation behaviors of these triarylamine derivatives. Specifically, taking [M+H]+ as the precursor ion, high-energy collision dissociation (HCD) experiments within the energy range from 0 to 80 eV were carried out. The results showed that triarylamine derivatives with specific structures exhibited distinct fragmentation patterns. For diarylamine, the formation of odd-electron ions was ascribed to the single-electron transfer (SET) reaction mediated by ion-neutral complexes (INCs). In the low-energy range (below 40 eV), proton transfer served as the predominant mechanism for generating even-electron ions. Conversely, in the high-energy range (60 eV and above), the INC-SET reaction dominated. The precursor ion's structure affects compliance with the "even-electron rule", which has exceptions. Here, even-electron ion fragmentation was energy-dependent and could deviate from the rule, yet did not conflict with its concept, reflecting dissociation complexity. This research provides insights for triarylamine-based OLED materials, facilitating analysis and identification, and is expected to aid OLED material development.
Collapse
Affiliation(s)
- Yi Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengxiu Wu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shipan Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xuyang Du
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanhui Sun
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - An Yan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guijiang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaolong Yang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Zhao ZK, He TF, Gao Q, Ren AM, Wu TS, Guo JF, Chu HY, Su ZM, Li H, Zou LY. Theoretical Investigation and Molecular Design: A Series of Tripod-Type Cu(I) Blue Light Thermally Activated Delayed Fluorescence Materials. Inorg Chem 2024. [PMID: 39231304 DOI: 10.1021/acs.inorgchem.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The photophysical properties and luminescent mechanism of a series of tripod-type Cu(I) complexes in solution and solids were comprehensively investigated through theoretical simulations. From a microscopic perspective, the experimental phenomenon is explained: (1) The intrinsic reason for the quenching of complex 1 in solution was attributed to the significant nonradiative transition caused by structural deformation; (2) In the solid, the reduced ΔEST for complex 2 effectively facilitate reverse intersystem crossing (RISC) and improves its luminescence efficiency; (3) The enhanced performance of complex 3 in solution is attributed to that its stronger steric hindrance is advantageous to decrease not only the ΔEST but also the reorganization energy through intramolecular weak interactions. Based on complex 3, the tert-butyl substituted isomeric complex 4 was designed. Complex 4 further amplifies the advantages of 3 to further promote the RISC to make full use of excitons. Meanwhile, it has an emission wavelength of 462.6 nm, which makes it an excellent candidate for high-efficiency deep-blue TADF materials. This study provides valuable information for obtaining efficient blue phosphorescence and TADF dual-channel luminescent materials.
Collapse
Affiliation(s)
- Zi-Kang Zhao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Teng-Fei He
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Qiang Gao
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Ai-Min Ren
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Tong-Shun Wu
- Key Laboratory of Functional Materials Physics and Chemistry of Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Jing-Fu Guo
- School of Physics, Northeast Normal University, Changchun 130024, P. R. China
| | - Hui-Ying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Lu-Yi Zou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| |
Collapse
|
8
|
Zhou X, Chen Y, Li Q, Yang S, Han C. A novel method for interfacial energy gap determination. Sci Rep 2024; 14:16919. [PMID: 39043860 PMCID: PMC11266581 DOI: 10.1038/s41598-024-67987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
A precise quantification of energy gap for a molecular semiconductor is crucial. However, there has always been a lack of a suitable method which results in an inaccurate measurement. In this research, a three-terminal vertical structure (Al/AlOX/Au/ molecular semiconductor/Al), named hot electron transistor has been designed to be the most powerful method for energy gap determination. By analysing the IC-hot-VEB curves, the electron injected barrier and hole injected barrier can be extracted. In combination of the both, the energy gap of four objects, including PBDB-T-2Cl, C60, PTCDA, and Alq3, has been determined finally.
Collapse
Affiliation(s)
- Xuehua Zhou
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China.
| | - Yushu Chen
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China
| | - Qingxia Li
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China
| | - Shixing Yang
- Anhui Key Laboratory of Photoelectric-Magnetic Functional Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China
| | - Chao Han
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, People's Republic of China.
- Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
9
|
Guan M, Liu J, Xie L, Liu D, Xie Z, Qiu L, Wu Y, Dang P, Xie Y, Mao W, Dai Z, Li G. In Situ Self-Assembled 1D/3D Mixed-Dimensional Perovskite Heterostructures for Efficient White Light Emission. Inorg Chem 2024; 63:11708-11715. [PMID: 38865675 DOI: 10.1021/acs.inorgchem.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Mixed-dimensional perovskite (MDP) heterostructures are promising optoelectronic semiconductors. Yet, the current preparation methods involve complex experimental procedures and material compatibility constraints, limiting their widespread applications. Here, we present a one-step room temperature solution-based approach to synthesize a range of 1D C4N2H14PbBr4 and 3D APbBr3 (A = Cs+, MA+, FA+) self-assembled MDP heterostructures exhibiting high-efficiency white light-emitting properties. The ultra-broadband emission results from the synergy between the self-captured blue broadband emission from 1D perovskites and the green emission of 3D perovskites, covering the entire visible-light spectrum with a full width at half-maximum exceeding 170 nm and a remarkable photoluminescence quantum yield of 26%. This work establishes a novel prototype for the preparation of highly luminescent MDP heterostructures, offering insights for future research and industrialization in the realm of white light LEDs.
Collapse
Affiliation(s)
- Mengyu Guan
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Jun Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Linpeng Xie
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Dan Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Zongyuan Xie
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Lei Qiu
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Yiwen Wu
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China
| | - Yunlong Xie
- Institute for Advanced Materials, Hubei Normal University, Huangshi 435002, China
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, Huangshi 435002, Hubei, P. R. China
| | - Wenxin Mao
- Australian Research Council Centre of Excellence in Exciton Science, Department of Chemical and Biological Engineering, The Australian Centre for Advanced Photovoltaics (ACAP), Monash University, Clayton, Victoria 3800, Australia
| | - Zhigao Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen 518063, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Kwon JH. Editorial: High color purity boron-based OLED materials. Front Chem 2024; 12:1441517. [PMID: 38939164 PMCID: PMC11209734 DOI: 10.3389/fchem.2024.1441517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Jang Hyuk Kwon
- Organic Optoelectronic Device Lab (OODL), Department of Information Display, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang Q, Zhang D, Cao B, Poddar S, Mo X, Fan Z. Improving the Operational Lifetime of Metal-Halide Perovskite Light-Emitting Diodes with Dimension Control and Ligand Engineering. ACS NANO 2024; 18:8557-8570. [PMID: 38482819 DOI: 10.1021/acsnano.3c13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Perovskite light-emitting diodes (LEDs) have emerged as one of the most propitious candidates for next-generation lighting and displays, with the highest external quantum efficiency (EQE) of perovskite LEDs already surpassing the 20% milestone. However, the further development of perovskite LEDs primarily relies on addressing operational instability issues. This Perspective examines some of the key factors that impact the lifetime of perovskite LED devices and some representative reports on recent advancements aimed at improving the lifetime. Our analysis underscores the significance of "nano" strategies in achieving long-term stable perovskite LEDs. Significant efforts must be directed toward proper device encapsulation, perovskite material passivation, interfacial treatment to address environment-induced material instability, bias-induced phase separation, and ion migration issues.
Collapse
Affiliation(s)
- Qianpeng Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Daquan Zhang
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Bryan Cao
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Swapnadeep Poddar
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiaoliang Mo
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong SAR, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
12
|
Trindade GF, Sul S, Kim J, Havelund R, Eyres A, Park S, Shin Y, Bae HJ, Sung YM, Matjacic L, Jung Y, Won J, Jeon WS, Choi H, Lee HS, Lee JC, Kim JH, Gilmore IS. Direct identification of interfacial degradation in blue OLEDs using nanoscale chemical depth profiling. Nat Commun 2023; 14:8066. [PMID: 38052834 DOI: 10.1038/s41467-023-43840-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Understanding the degradation mechanism of organic light-emitting diodes (OLED) is essential to improve device performance and stability. OLED failure, if not process-related, arises mostly from chemical instability. However, the challenges of sampling from nanoscale organic layers and interfaces with enough analytical information has hampered identification of degradation products and mechanisms. Here, we present a high-resolution diagnostic method of OLED degradation using an Orbitrap mass spectrometer equipped with a gas cluster ion beam to gently desorb nanometre levels of materials, providing unambiguous molecular information with 7-nm depth resolution. We chemically depth profile and analyse blue phosphorescent and thermally-activated delayed fluorescent (TADF) OLED devices at different degradation levels. For OLED devices with short operational lifetimes, dominant chemical degradation mainly relate to oxygen loss of molecules that occur at the interface between emission and electron transport layers (EML/ETL) where exciton distribution is maximised, confirmed by emission zone measurements. We also show approximately one order of magnitude increase in lifetime of devices with slightly modified host materials, which present minimal EML/ETL interfacial degradation and show the method can provide insight for future material and device architecture development.
Collapse
Affiliation(s)
| | - Soohwan Sul
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Joonghyuk Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Rasmus Havelund
- National Physical Laboratory, NiCE-MSI, Teddington, TW11 0LW, UK
| | - Anya Eyres
- National Physical Laboratory, NiCE-MSI, Teddington, TW11 0LW, UK
| | - Sungjun Park
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Youngsik Shin
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Hye Jin Bae
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Young Mo Sung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Lidija Matjacic
- National Physical Laboratory, NiCE-MSI, Teddington, TW11 0LW, UK
| | - Yongsik Jung
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Jungyeon Won
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Woo Sung Jeon
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Hyeonho Choi
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Hyo Sug Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
| | - Jae-Cheol Lee
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea
- Korea Research Institute of Material Property Analysis (KRIMPA), 712, Nongseo-dong 455, Yongin, 17111, Republic of Korea
| | - Jung-Hwa Kim
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd., 130 Samsung-ro, Suwon, 16678, Republic of Korea.
| | - Ian S Gilmore
- National Physical Laboratory, NiCE-MSI, Teddington, TW11 0LW, UK.
| |
Collapse
|
13
|
Cakaj A, Schmid M, Hofmann A, Brütting W. Controlling Spontaneous Orientation Polarization in Organic Semiconductors─The Case of Phosphine Oxides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54721-54731. [PMID: 37970727 DOI: 10.1021/acsami.3c13049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Upon film growth by physical vapor deposition, the preferential orientation of polar organic molecules can result in a nonzero permanent dipole moment (PDM) alignment, causing a macroscopic film polarization. This effect, known as spontaneous orientation polarization (SOP), was studied in the case of different phosphine oxides (POs). We investigate the control of SOP by molecular design and film-growth conditions. Our results show that using less polar POs with just one phosphor-oxygen bond yields an exceptionally high degree of SOP with the so-called giant surface potential (slope), reaching more than 150 mV nm-1 in a neat bis-4-(N-carbazol(yl)phenyl)phenyl phosphine oxide (BCPO) film grown at room temperature. Additionally, by altering the evaporation rate and substrate temperature, we are able to control the SOP magnitude over a broad range from 0 to almost 300 mV nm-1. Diluting BCPO in a nonpolar host enhances the PDM alignment only marginally, but combining temperature control with dipolar doping can result in highly aligned molecules with more than 80% of their PDMs standing upright on the substrate on average.
Collapse
Affiliation(s)
- Albin Cakaj
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Markus Schmid
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Alexander Hofmann
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| | - Wolfgang Brütting
- Institute of Physics, University of Augsburg, Augsburg 86135, Germany
| |
Collapse
|
14
|
Dcosta JV, Ochoa D, Sanaur S. Recent Progress in Flexible and Wearable All Organic Photoplethysmography Sensors for SpO 2 Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302752. [PMID: 37740697 PMCID: PMC10625116 DOI: 10.1002/advs.202302752] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/09/2023] [Indexed: 09/25/2023]
Abstract
Flexible and wearable biosensors are the next-generation healthcare devices that can efficiently monitor human health conditions in day-to-day life. Moreover, the rapid growth and technological advancements in wearable optoelectronics have promoted the development of flexible organic photoplethysmography (PPG) biosensor systems that can be implanted directly onto the human body without any additional interface for efficient bio-signal monitoring. As an example, the pulse oximeter utilizes PPG signals to monitor the oxygen saturation (SpO2 ) in the blood volume using two distinct wavelengths with organic light emitting diode (OLED) as light source and an organic photodiode (OPD) as light sensor. Utilizing the flexible and soft properties of organic semiconductors, pulse oximeter can be both flexible and conformal when fabricated on thin polymeric substrates. It can also provide highly efficient human-machine interface systems that can allow for long-time biological integration and flawless measurement of signal data. In this work, a clear and systematic overview of the latest progress and updates in flexible and wearable all-organic pulse oximetry sensors for SpO2 monitoring, including design and geometry, processing techniques and materials, encapsulation and various factors affecting the device performance, and limitations are provided. Finally, some of the research challenges and future opportunities in the field are mentioned.
Collapse
Affiliation(s)
- Jostin Vinroy Dcosta
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| | - Daniel Ochoa
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| | - Sébastien Sanaur
- Mines Saint‐ÉtienneCentre Microélectronique de ProvenceDepartment of Flexible Electronics880, Avenue de MimetGardanne13541France
| |
Collapse
|
15
|
Izawa S, Morimoto M, Fujimoto K, Banno K, Majima Y, Takahashi M, Naka S, Hiramoto M. Blue organic light-emitting diode with a turn-on voltage of 1.47 V. Nat Commun 2023; 14:5494. [PMID: 37730676 PMCID: PMC10511415 DOI: 10.1038/s41467-023-41208-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Among the three primary colors, blue emission in organic light-emitting diodes (OLEDs) are highly important but very difficult to develop. OLEDs have already been commercialized; however, blue OLEDs have the problem of requiring a high applied voltage due to the high-energy of blue emission. Herein, an ultralow voltage turn-on at 1.47 V for blue emission with a peak wavelength at 462 nm (2.68 eV) is demonstrated in an OLED device with a typical blue-fluorescent emitter that is widely utilized in a commercial display. This OLED reaches 100 cd/m2, which is equivalent to the luminance of a typical commercial display, at 1.97 V. Blue emission from the OLED is achieved by the selective excitation of the low-energy triplet states at a low applied voltage by using the charge transfer (CT) state as a precursor and triplet-triplet annihilation, which forms one emissive singlet from two triplet excitons.
Collapse
Affiliation(s)
- Seiichiro Izawa
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
- Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Masahiro Morimoto
- Academic Assembly Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan.
| | - Keisuke Fujimoto
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan.
| | - Koki Banno
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Yutaka Majima
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Masaki Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka, 432-8561, Japan
| | - Shigeki Naka
- Academic Assembly Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Masahiro Hiramoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
16
|
Zhou X, Li Q, Fang Y, Xu H, Han C. Going ballistic: a novel characterization for the electronic energy gap. Phys Chem Chem Phys 2023; 25:24234-24243. [PMID: 37665272 DOI: 10.1039/d3cp03190j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The energy gap of molecular semiconductors is a critical parameter in molecule-based devices because it fundamentally determines the operating principle and device performance, such as the charge transfer driving force. Hence, an accurate quantification of the energy gap of a molecular semiconductor is essential. The hot electron technique, which is implemented using a hot electron transistor and ballistic electron emission microscope, has been verified as the most powerful characterization in recent years. By monitoring the charge transport on the metal/molecule interface, an electron-injection barrier (or LUMO) and hole-injection barrier (or HOMO) can be achieved, which contributes to the electronic energy gap determination. In this review, a comprehensive comparison of these two techniques was made. It helps us to select a suitable method in specific situations and provides a profound comprehension of the charge transport process in molecular semiconductor and molecule-based devices.
Collapse
Affiliation(s)
- Xuehua Zhou
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P. R. China.
| | - Qingxia Li
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P. R. China.
| | - Yinyin Fang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, P. R. China.
| | - Huan Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| | - Chao Han
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, China.
- Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
17
|
Large-bandgap organic semiconductors with trap-free charge transport. NATURE MATERIALS 2023; 22:1063-1064. [PMID: 37644222 DOI: 10.1038/s41563-023-01621-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
|
18
|
Oono T, Okada T, Sasaki T, Inagaki K, Ushiku T, Shimizu T, Hatakeyama T, Fukagawa H. Unlocking the Full Potential of Electron-Acceptor Molecules for Efficient and Stable Hole Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210413. [PMID: 36571784 DOI: 10.1002/adma.202210413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Understanding the hole-injection mechanism and improving the hole-injection property are of pivotal importance in the future development of organic optoelectronic devices. Electron-acceptor molecules with high electron affinity (EA) are widely used in electronic applications, such as hole injection and p-doping. Although p-doping has generally been studied in terms of matching the ionization energy (IE) of organic semiconductors with the EA of acceptor molecules, little is known about the effect of the EA of acceptor molecules on the hole-injection property. In this work, the hole-injection mechanism in devices is completely clarified, and a strategy to optimize the hole-injection property of the acceptor molecule is developed. Efficient and stable hole injection is found to be possible even into materials with IEs as high as 5.8 eV by controlling the charged state of an acceptor molecule with an EA of about 5.0 eV. This excellent hole-injection property enables direct hole injection into an emitting layer, realizing a pure blue organic light-emitting diode with an extraordinarily low turn-on voltage of 2.67 V, a power efficiency of 29 lm W-1 , an external quantum efficiency of 28% and a Commission Internationale de l'Eclairage y coordinate of less than 0.10.
Collapse
Affiliation(s)
- Taku Oono
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuya Okada
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Tsubasa Sasaki
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Kaito Inagaki
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takuma Ushiku
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takahisa Shimizu
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirohiko Fukagawa
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| |
Collapse
|
19
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
20
|
Peñas-Garzón M, Gómez-Avilés A, Álvarez-Conde J, Bedia J, García-Frutos EM, Belver C. Azaindole grafted titanium dioxide for the photodegradation of pharmaceuticals under solar irradiation. J Colloid Interface Sci 2023; 629:593-603. [DOI: 10.1016/j.jcis.2022.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
|
21
|
Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering. Nat Commun 2022; 13:7828. [PMID: 36535962 PMCID: PMC9763412 DOI: 10.1038/s41467-022-35591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Preparing high-efficiency solution-processable orange-red thermally activated delayed fluorescence (TADF) emitters remains challenging. Herein, we design a series of emitters consisting of trinaphtho[3,3,3]propellane (TNP) core derivatized with different TADF units. Benefiting from the unique hexagonal stacking architecture of TNPs, TADF units are thus kept in the cavities between two TNPs, which decrease concentration quenching and annihilation of long-lived triplet excitons. According to the molecular engineering of TADF and host units, the excited states can further be regulated to effectively enhance spin-orbit coupling (SOC) processes. We observe a high-efficiency orange-red emission at 604 nm in one instance with high SOC value of 0.862 cm-1 and high photoluminescence quantum yield of 70.9%. Solution-processable organic light-emitting diodes exhibit a maximum external quantum efficiency of 24.74%. This study provides a universal strategy for designing high-performance TADF emitters through molecular packing and excited state regulation.
Collapse
|
22
|
Chowdhury TH, Reo Y, Yusoff ARBM, Noh Y. Sn-Based Perovskite Halides for Electronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203749. [PMID: 36257820 PMCID: PMC9685468 DOI: 10.1002/advs.202203749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Indexed: 06/16/2023]
Abstract
Because of its less toxicity and electronic structure analogous to that of lead, tin halide perovskite (THP) is currently one of the most favorable candidates as an active layer for optoelectronic and electric devices such as solar cells, photodiodes, and field-effect transistors (FETs). Promising photovoltaics and FETs performances have been recently demonstrated because of their desirable electrical and optical properties. Nevertheless, THP's easy oxidation from Sn2+ to Sn4+ , easy formation of tin vacancy, uncontrollable film morphology and crystallinity, and interface instability severely impede its widespread application. This review paper aims to provide a basic understanding of THP as a semiconductor by highlighting the physical structure, energy band structure, electrical properties, and doping mechanisms. Additionally, the key chemical instability issues of THPs are discussed, which are identified as the potential bottleneck for further device development. Based on the understanding of the THPs properties, the key recent progress of THP-based solar cells and FETs is briefly discussed. To conclude, current challenges and perspective opportunities are highlighted.
Collapse
Affiliation(s)
- Towhid H. Chowdhury
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Youjin Reo
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| | - Yong‐Young Noh
- Department of Chemical EngineeringPohang University of Science and Technology77 Cheongam‐Ro, Nam‐GuPohang37673Republic of Korea
| |
Collapse
|
23
|
Li T, Wang Z, Zhang Y, Wu Z. Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3837. [PMID: 36364613 PMCID: PMC9656650 DOI: 10.3390/nano12213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Coinage metal nanoclusters (MNCs) are a new type of ultra-small nanoparticles on the sub-nanometer (typically < three nm) scale intermediate between atoms and plasmonic nanoparticles. At the same time, the ultra-small size and discrete energy levels of MNCs enable them to exhibit molecular-like energy gaps, and the total structure involving the metal core and surface ligand together leads to their unique properties. As a novel environmentally friendly chromophore, MNCs are promising candidates for the construction of electroluminescent light-emitting diodes (LEDs). However, a systematic summary is urgently needed to correlate the properties of MNCs with their influences on electroluminescent LED applications, describe the synthetic strategies of highly luminescent MNCs for LEDs’ construction, and discuss the general influencing factors of MNC-based electroluminescent LEDs. In this review, we first discuss relevant photoemissions of MNCs that may have major influences on the performance of MNC-based electroluminescent LEDs, and then demonstrate the main synthetic strategies of highly luminescent MNCs. To this end, we illustrate the recent development of electroluminescent LEDs based on MNCs and present our perspectives on the opportunities and challenges, which may shed light on the design of MNC-based electroluminescent LEDs in the near future.
Collapse
Affiliation(s)
- Tingting Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ying Zhang
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
24
|
Wu Y, Yang R, Wu Q, Huang M, Shu B, Wu W, Sun B, Xia J, Chen X, Liao Y. Trace Analysis of Emerging Virus: An Ultrasensitive ECL-Scan Imaging System for Viral Infectious Disease. ACS OMEGA 2022; 7:37499-37508. [PMID: 36312431 PMCID: PMC9609065 DOI: 10.1021/acsomega.2c04280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Emerging infectious diseases have brought a huge impact on human society in recent years. The outbreak of Zika virus (ZIKV) in the Americas resulted in a large number of babies born with microcephaly. More seriously, the Coronavirus Disease 2019 (COVID-19) was globally spread and caused immeasurable damages. Thus, the monitoring of highly pathogenic viruses is important to prevent and control emerging infectious diseases. Herein, a dendritic polymer probe-amplified ECL-scan imaging system was constructed to realize trace analysis of viral emerging infectious diseases. A dendritic polymer probe was employed as the efficient signal emitter component that could generate an amplified ECL signal on the integrated chip, and the signal was detected by a single-photon level charge coupled device-based ECL-scan imaging system. With this strategy, the ZIKV in a complex system of blood, urine, and saliva was detected. The results indicated that a high sensitivity of 50 copies and superior specificity were achieved. Furthermore, this strategy realized highly sensitive detection (10 copies) of the S and N protein gene sequence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov2) and spiked pseudovirus samples. Thus, the dendritic polymer probe-amplified ECL-scan imaging system suitably met the strict clinical requirements for trace analysis of an emerging virus, and thus has the potential to serve as a paradigm for monitoring emerging infectious diseases.
Collapse
Affiliation(s)
- Yunxia Wu
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Ronghua Yang
- Department
of Burn and Plastic Surgery, Guangzhou First
People’s Hospital, Guangzhou 510180, China
| | - Qikang Wu
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Mingxing Huang
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Bowen Shu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
| | - Wenjie Wu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
| | - Baoqing Sun
- Guangzhou
Institute of Respiratory Health, State Key Laboratory of Respiratory
Disease, National Clinical Research Center of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Jinyu Xia
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xiaodong Chen
- Department
of Burn Surgery & Department of Clinical Laboratory, First People’s Hospital of Foshan, Foshan 528000, China
| | - Yuhui Liao
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou 510091, China
- Department
of Infectious Disease, Fifth Affiliated
Hospital of Sun Yat-sen University, Zhuhai 519000, China
| |
Collapse
|
25
|
Holzhauer L, Liagre C, Fuhr O, Jung N, Bräse S. Scope of tetrazolo[1,5- a]quinoxalines in CuAAC reactions for the synthesis of triazoloquinoxalines, imidazoloquinoxalines, and rhenium complexes thereof. Beilstein J Org Chem 2022; 18:1088-1099. [PMID: 36105720 PMCID: PMC9443424 DOI: 10.3762/bjoc.18.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
The conversion of tetrazolo[1,5-a]quinoxalines to 1,2,3-triazoloquinoxalines and triazoloimidazoquinoxalines under typical conditions of a CuAAC reaction has been investigated. Derivatives of the novel compound class of triazoloimidazoquinoxalines (TIQ) and rhenium(I) triazoloquinoxaline complexes as well as a new TIQ rhenium complex were synthesized. As a result, a small 1,2,3-triazoloquinoxaline library was obtained and the method could be expanded towards 4-substituted tetrazoloquinoxalines. The compatibility of various aliphatic and aromatic alkynes towards the reaction was investigated and the denitrogenative annulation towards imidazoloquinoxalines could be observed as a competing reaction depending on the alkyne concentration and the substitutions at the quinoxaline.
Collapse
Affiliation(s)
- Laura Holzhauer
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Chloé Liagre
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olaf Fuhr
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
26
|
De R, Sharma S, Sengupta S, Kumar Pal S. Discs to a 'Bright' Future: Exploring Discotic Liquid Crystals in Organic Light Emitting Diodes in the Era of New-Age Smart Materials. CHEM REC 2022; 22:e202200056. [PMID: 35594033 DOI: 10.1002/tcr.202200056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Indexed: 11/09/2022]
Abstract
With the advent of a new decade and the paradigm shift of every sphere of urban life to virtual platforms, it has become imperative for the global researcher community to channelize efforts into upgradation of the existing display-technology. In this context, discotic liquid crystals (DLCs) are a class of self-assembling organic materials that are recently being explored in fabricating the emissive layers of organic light emitting diodes (OLEDs). With their unique inherent structural and functional properties, they have the potential to challenge the currently prevailing OLED-emitters. Yet the applications of this promising class of materials in OLEDs have not been comprehensively reviewed in literature till now. In this account, we present an overview of the developments in the field of luminescent DLC-based emitters, supported by their associated photophysical phenomena and their performance parameters as emitters in fabricated OLED devices.
Collapse
Affiliation(s)
- Ritobrata De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), 140306, Mohali, Punjab, India
| |
Collapse
|
27
|
Hu Y, Chen L, Lin Z, Lee J, Wei W, Ko T, Lo C, Hung W, Wong K. Suppressing intermolecular interactions for enhancing the performance of exciplex‐based OLEDs. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan‐Cheng Hu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Li‐Ming Chen
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Zong‐Liang Lin
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Jhih‐Wei Lee
- Department of Optoelectronics and Materials Technology National Taiwan Ocean University Keelung Taiwan
| | - Wei‐Chih Wei
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Tzu‐Yu Ko
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Chun‐Yuan Lo
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Wen‐Yi Hung
- Department of Optoelectronics and Materials Technology National Taiwan Ocean University Keelung Taiwan
| | - Ken‐Tsung Wong
- Department of Chemistry National Taiwan University Taipei Taiwan
- Institute of Atomic and Molecular Science Academia Sinica Taipei Taiwan
| |
Collapse
|
28
|
Eltoukhi M, Fadda AA, Abdel-Latif E, Elmorsy MR. Low cost carbazole-based organic dyes bearing the acrylamide and 2-pyridone moieties for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Liu XT, Hua W, Nie HX, Chen M, Chang Z, Bu XH. Manipulating spatial alignment of donor and acceptor in host-guest MOF for TADF. Natl Sci Rev 2021; 9:nwab222. [PMID: 36105943 PMCID: PMC9466880 DOI: 10.1093/nsr/nwab222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Abstract
Thermally activated delayed fluorescence (TADF) was achieved when electron-rich triphenylene (Tpl) donors (D) were confined to a cage-based porous MOF host (NKU-111) composed of electron-deficient 2,4,6-tri(pyridin-4-yl)-1,3,5-triazine (Tpt) acceptor (A) as the ligand. The spatially-separated D and A molecules in a face-to-face stacking pattern generated strong through-space charge transfer (CT) interactions with a small singlet-triplet excited states energy splitting (∼0.1 eV), which enabled TADF. The resulting Tpl@NKU-111 exhibited an uncommon enhanced emission intensity as the temperature increased. Extensive steady-state and time-resolved spectroscopic measurements and first-principles simulations revealed the chemical and electronic structure of this compound in both the ground and low-lying excited states. A double-channel (T1, T2) intersystem crossing mechanism with S1 was found and explained as single-directional CT from the degenerate HOMO-1/HOMO of the guest donor to the LUMO + 1 of one of the nearest acceptors. The rigid skeleton of the compound and effective through-space CT enhanced the photoluminescence quantum yield (PLQY). A maximum PLQY of 57.36% was achieved by optimizing the Tpl loading ratio in the host framework. These results indicate the potential of the MOFs for the targeted construction and optimization of TADF materials.
Collapse
Affiliation(s)
- Xiao-Ting Liu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Weijie Hua
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Department of Applied Physics, School of Science, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hong-Xiang Nie
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Mingxing Chen
- Analytical Instrumentation Center, Peking University, Beijing100871, China
| | - Ze Chang
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin300350, China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
31
|
Xu H, Lin J, Jiang X, Jin Y, Lin Z, Zhang X, Li X, Yang H, Wu Z. Study on the difference in exciton generation processes for a single host and exciplex-type co-host. OPTICS LETTERS 2021; 46:4840-4843. [PMID: 34598213 DOI: 10.1364/ol.439516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
We distinctly reveal the difference in the exciton generation processes in phosphorescent organic light-emitting devices with an exciplex-type co-host and a single host. Excitons in the co-host consisting of 4,4,4-tris(N-carbazolyl)-triphenylamine and 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene are created via efficient energy transfer from the exciplex to the phosphorescent dopant. In contrast, excitons in the single host of 4,4,4-tris(N-carbazolyl)-triphenylamine are formed by the combination of holes and electrons trapped by the phosphorescent dopants. The optimized device utilizing the co-host system exhibits highly superior performance relative to the single-host device. The maximum external quantum efficiency and maximum luminance are 14.88% and 90,700cd/m2 for the co-host device, being 1.6 times and 3.6 times the maximum external efficiency and maximum luminance for the single-host device, respectively. Significantly, the critical current density, evaluating the device efficiency roll-off characteristic, is as high as 327.8mA/cm2, which is highly superior to 120.8mA/cm2 for the single-host device, indicating the notable alleviation in efficiency roll-off for the co-host device. The significant improvement in device performance is attributed to eliminating the exciton quenching resulting from the captured holes and the efficient energy transfer from the exciplex-type co-host to the phosphorescent emitter incurred by the reverse intersystem crossing process.
Collapse
|