1
|
Igarashi J. Future projections for mammalian whole-brain simulations based on technological trends in related fields. Neurosci Res 2025; 215:64-76. [PMID: 39571736 DOI: 10.1016/j.neures.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 12/13/2024]
Abstract
Large-scale brain simulation allows us to understand the interaction of vast numbers of neurons having nonlinear dynamics to help understand the information processing mechanisms in the brain. The scale of brain simulations continues to rise as computer performance improves exponentially. However, a simulation of the human whole brain has not yet been achieved as of 2024 due to insufficient computational performance and brain measurement data. This paper examines technological trends in supercomputers, cell type classification, connectomics, and large-scale activity measurements relevant to whole-brain simulation. Based on these trends, we attempt to predict the feasible timeframe for mammalian whole-brain simulation. Our estimates suggest that mouse whole-brain simulation at the cellular level could be realized around 2034, marmoset around 2044, and human likely later than 2044.
Collapse
Affiliation(s)
- Jun Igarashi
- High Performance Artificial Intelligence Systems Research Team, Center for Computational Science, RIKEN, Japan.
| |
Collapse
|
2
|
van Bree S, Levenstein D, Krause MR, Voytek B, Gao R. Processes and measurements: a framework for understanding neural oscillations in field potentials. Trends Cogn Sci 2025; 29:448-466. [PMID: 39753446 DOI: 10.1016/j.tics.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 05/09/2025]
Abstract
Various neuroscientific theories maintain that brain oscillations are important for neuronal computation, but opposing views claim that these macroscale dynamics are 'exhaust fumes' of more relevant processes. Here, we approach the question of whether oscillations are functional or epiphenomenal by distinguishing between measurements and processes, and by reviewing whether causal or inferentially useful links exist between field potentials, electric fields, and neurobiological events. We introduce a vocabulary for the role of brain signals and their underlying processes, demarcating oscillations as a distinct entity where both processes and measurements can exhibit periodicity. Leveraging this distinction, we suggest that electric fields, oscillating or not, are causally and computationally relevant, and that field potential signals can carry information even without causality.
Collapse
Affiliation(s)
- Sander van Bree
- Department of Medicine, Justus Liebig University, Giessen, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Daniel Levenstein
- MILA - Quebec AI Institute, Montreal, QC, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Matthew R Krause
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Bradley Voytek
- Department of Cognitive Science, Halıcıŏglu Data Science Institute, Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA
| | - Richard Gao
- Machine Learning in Science, Excellence Cluster Machine Learning and Tübingen AI Center, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Fang W, Jiang X, Chen J, Zhang C, Wang L. Oscillatory control over representational geometry of sequence working memory in macaque frontal cortex. Curr Biol 2025; 35:1495-1507.e5. [PMID: 40086442 DOI: 10.1016/j.cub.2025.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
To process sequential streams of information, e.g., language, the brain must encode multiple items in sequence working memory (SWM) according to their ordinal relationship. While the geometry of neural states could represent sequential events in the frontal cortex, the control mechanism over these neural states remains unclear. Using high-throughput electrophysiology recording in the macaque frontal cortex, we observed widespread theta responses after each stimulus entry. Crucially, by applying targeted dimensionality reduction to extract task-relevant neural subspaces from both local field potential (LFP) and spike data, we found that theta power transiently encoded each sequentially presented stimulus regardless of its order. At the same time, theta-spike interaction was rank-selectively associated with memory subspaces, thereby potentially supporting the binding of items to appropriate ranks. Furthermore, this putative theta control can generalize to length-variable and error sequences, predicting behavior. Thus, decomposed entry/rank-WM subspaces and theta-spike interactions may underlie the control of SWM.
Collapse
Affiliation(s)
- Wen Fang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xi Jiang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwen Chen
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cong Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-Inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Academy of Natural Sciences (SANS), Fudan University, Shanghai 200031, China.
| |
Collapse
|
4
|
Liebe S, Niediek J, Pals M, Reber TP, Faber J, Boström J, Elger CE, Macke JH, Mormann F. Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks. Nat Neurosci 2025; 28:873-882. [PMID: 40128390 PMCID: PMC11976290 DOI: 10.1038/s41593-025-01893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/15/2025] [Indexed: 03/26/2025]
Abstract
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials (921 channels) in the medial temporal lobe of 16 patients with epilepsy performing a working-memory task for temporal order. During memory maintenance, we observe theta oscillations, preferential firing of single neurons to theta phase and a close relationship between phase of firing and item position. However, the firing order did not match item order. Training recurrent neural networks to perform an analogous task, we also show the generation of theta oscillations, theta phase-dependent firing related to item position and, again, no match between firing and item order. Rather, our results suggest a mechanistic link between phase order, stimulus timing and oscillation frequency. In both biological and artificial neural networks, we provide evidence supporting the role of phase of firing in working-memory processing.
Collapse
Grants
- This work was supported by the German Research Foundation (DFG): SPP 2241 (PN 520287829), Germany’s Excellence Strategy (EXC-Number 2064/1)
- German Research Foundation (DFG): SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG): MO 930/4-2 (PN 212842712), MO 930/15/1 (PN 545587701), SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG) SFB 1089, SFB 1233 (PN 276693517), SPP 2205, the Volkswagen Foundation: 86 507; the NRW network program iBehave;
Collapse
Affiliation(s)
- Stefanie Liebe
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
- University Hospital Tübingen, Department of Neurology and Epileptology, Tübingen, Germany.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Matthijs Pals
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
| | - Thomas P Reber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Jennifer Faber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
5
|
Liu P, Xu J, Chen Y, Xu Q, Zhang W, Hu B, Li A, Zhu Q. Electrophysiological Signatures in Global Cerebral Ischemia: Neuroprotection Via Chemogenetic Inhibition of CA1 Pyramidal Neurons in Rats. J Am Heart Assoc 2024; 13:e036146. [PMID: 39673154 PMCID: PMC11935537 DOI: 10.1161/jaha.124.036146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/19/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Although there has been limited research into the perturbation of electrophysiological activity in the brain after ischemia, the activity signatures during ischemia and reperfusion remain to be fully elucidated. We aim to comprehensively describe these electrophysiological signatures and interrogate their correlation with ischemic damage during global cerebral ischemia and reperfusion. METHODS AND RESULTS We used the 4-vessel occlusion method of inducing global cerebral ischemia in rats. We used in vivo electrophysiological techniques to simultaneously record single units, scalp electroencephalogram, and local field potentials in awake animals. Neuronal damage and astrocyte reactivation were examined by immunofluorescence, immunoblotting, and quantitative real-time reverse-transcription polymerase chain reaction under chemogenetic inhibition of glutamatergic neurons. Electroencephalogram/local field potentials power and phase-amplitude coupling of the theta and low-gamma bands were reduced during ischemia and the acute phase of reperfusion. The firing rate of single units was enhanced by ischemia-reperfusion, and the phase relationship between the local field potentials theta band and neuronal firing was altered. Precise inhibition of hippocampus CA1 pyramidal neuron hyperactivity by chemogenetics rescued the firing dysfunction, ischemic neuronal damage, and A1 astrocyte activation. CONCLUSIONS Our results provide a comprehensive description of the characteristics of electrophysiological activity that accompany ischemia-reperfusion and highlight the significance of this activity in ischemic damage.
Collapse
Affiliation(s)
- Penglai Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Jiang Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Yilan Chen
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Qi Xu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Wei Zhang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Bin Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| | - Qiuju Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
6
|
Freelin A, Wolfe C, Lega B. Models of human hippocampal specialization: a look at the electrophysiological evidence. Trends Cogn Sci 2024:S1364-6613(24)00318-8. [PMID: 39668062 DOI: 10.1016/j.tics.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
From an anatomical perspective, the concept that the anterior and posterior hippocampus fulfill distinct cognitive roles may seem unsurprising. When compared with the posterior hippocampus, the anterior region is proportionally larger, with visible expansion of the CA1 subfield and intimate continuity with adjacent medial temporal lobe (MTL) structures such as the uncus and amygdala. However, the functional relevance emerging from these anatomical differences remains to be established in humans. Drawing on both rodent and human data, several models of hippocampal longitudinal specialization have been proposed. For the brevity and clarity of this review, we focus on human electrophysiological evidence supporting and contravening these models with limited inclusion of noninvasive data. We then synthesize these data to propose a novel longitudinal model based on the amount of contextual information, drawing on previous conceptions described within the past decade.
Collapse
Affiliation(s)
- Anne Freelin
- Department of Neuroscience, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Zheng J, Yebra M, Schjetnan AGP, Patel K, Katz CN, Kyzar M, Mosher CP, Kalia SK, Chung JM, Reed CM, Valiante TA, Mamelak AN, Kreiman G, Rutishauser U. Theta phase precession supports memory formation and retrieval of naturalistic experience in humans. Nat Hum Behav 2024; 8:2423-2436. [PMID: 39363119 DOI: 10.1038/s41562-024-01983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/13/2024] [Indexed: 10/05/2024]
Abstract
Associating different aspects of experience with discrete events is critical for human memory. A potential mechanism for linking memory components is phase precession, during which neurons fire progressively earlier in time relative to theta oscillations. However, no direct link between phase precession and memory has been established. Here we recorded single-neuron activity and local field potentials in the human medial temporal lobe while participants (n = 22) encoded and retrieved memories of movie clips. Bouts of theta and phase precession occurred following cognitive boundaries during movie watching and following stimulus onsets during memory retrieval. Phase precession was dynamic, with different neurons exhibiting precession in different task periods. Phase precession strength provided information about memory encoding and retrieval success that was complementary with firing rates. These data provide direct neural evidence for a functional role of phase precession in human episodic memory.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Neurological Surgery, University of California, Davis, Davis, CA, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mar Yebra
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea G P Schjetnan
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Kramay Patel
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chaim N Katz
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael Kyzar
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Clayton P Mosher
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suneil K Kalia
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Taufik A Valiante
- Krembil Research Institute and Division of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Amil AF, Albesa-González A, Verschure PFMJ. Theta oscillations optimize a speed-precision trade-off in phase coding neurons. PLoS Comput Biol 2024; 20:e1012628. [PMID: 39621800 PMCID: PMC11637358 DOI: 10.1371/journal.pcbi.1012628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/12/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
Theta-band oscillations (3-8 Hz) in the mammalian hippocampus organize the temporal structure of cortical inputs, resulting in a phase code that enables rhythmic input sampling for episodic memory formation and spatial navigation. However, it remains unclear what evolutionary pressures might have driven the selection of theta over higher-frequency bands that could potentially provide increased input sampling resolution. Here, we address this question by introducing a theoretical framework that combines the efficient coding and neural oscillatory sampling hypotheses, focusing on the information rate (bits/s) of phase coding neurons. We demonstrate that physiologically realistic noise levels create a trade-off between the speed of input sampling, determined by oscillation frequency, and encoding precision in rodent hippocampal neurons. This speed-precision trade-off results in a maximum information rate of ∼1-2 bits/s within the theta frequency band, thus confining the optimal oscillation frequency to the low end of the spectrum. We also show that this framework accounts for key hippocampal features, such as the preservation of the theta band along the dorsoventral axis despite physiological gradients, and the modulation of theta frequency and amplitude by running speed. Extending the analysis beyond the hippocampus, we propose that theta oscillations could also support efficient stimulus encoding in the visual cortex and olfactory bulb. More broadly, our framework lays the foundation for studying how system features, such as noise, constrain the optimal sampling frequencies in both biological and artificial brains.
Collapse
Affiliation(s)
- Adrián F. Amil
- Donders Institute for Brain, Cognition and Behaviour–Radboud Universiteit, Nijmegen, The Netherlands
| | | | - Paul F. M. J. Verschure
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas (CSIC)–Universidad Miguel Hernández de Elche, Alicante, Spain
- Department of Health Psychology, Universidad Miguel Hernández de Elche, Alicante, Spain
| |
Collapse
|
9
|
Bittar A, Garner PN. Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks. Front Neurosci 2024; 18:1449181. [PMID: 39385848 PMCID: PMC11461475 DOI: 10.3389/fnins.2024.1449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Understanding cognitive processes in the brain demands sophisticated models capable of replicating neural dynamics at large scales. We present a physiologically inspired speech recognition architecture, compatible and scalable with deep learning frameworks, and demonstrate that end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network. Significant cross-frequency couplings, indicative of these oscillations, are measured within and across network layers during speech processing, whereas no such interactions are observed when handling background noise inputs. Furthermore, our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronizing neural activity to improve recognition performance. Overall, on top of developing our understanding of synchronization phenomena notably observed in the human auditory pathway, our architecture exhibits dynamic and efficient information processing, with relevance to neuromorphic technology.
Collapse
Affiliation(s)
- Alexandre Bittar
- Idiap Research Institute, Audio Inference, Martigny, Switzerland
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
10
|
Liao Z, Losonczy A. Learning, Fast and Slow: Single- and Many-Shot Learning in the Hippocampus. Annu Rev Neurosci 2024; 47:187-209. [PMID: 38663090 PMCID: PMC11519319 DOI: 10.1146/annurev-neuro-102423-100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
The hippocampus is critical for memory and spatial navigation. The ability to map novel environments, as well as more abstract conceptual relationships, is fundamental to the cognitive flexibility that humans and other animals require to survive in a dynamic world. In this review, we survey recent advances in our understanding of how this flexibility is implemented anatomically and functionally by hippocampal circuitry, during both active exploration (online) and rest (offline). We discuss the advantages and limitations of spike timing-dependent plasticity and the more recently discovered behavioral timescale synaptic plasticity in supporting distinct learning modes in the hippocampus. Finally, we suggest complementary roles for these plasticity types in explaining many-shot and single-shot learning in the hippocampus and discuss how these rules could work together to support the learning of cognitive maps.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| | - Attila Losonczy
- Department of Neuroscience and Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA;
| |
Collapse
|
11
|
Toth J, Sidleck B, Lombardi O, Hou T, Eldo A, Kerlin M, Zeng X, Saeed D, Agarwal P, Leonard D, Andrino L, Inbar T, Malina M, Insanally MN. Dynamic gating of perceptual flexibility by non-classically responsive cortical neurons. RESEARCH SQUARE 2024:rs.3.rs-4650869. [PMID: 39108496 PMCID: PMC11302693 DOI: 10.21203/rs.3.rs-4650869/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The ability to flexibly respond to sensory cues in dynamic environments is essential to adaptive auditory-guided behaviors. Cortical spiking responses during behavior are highly diverse, ranging from reliable trial-averaged responses to seemingly random firing patterns. While the reliable responses of 'classically responsive' cells have been extensively studied for decades, the contribution of irregular spiking 'non-classically responsive' cells to behavior has remained underexplored despite their prevalence. Here, we show that flexible auditory behavior results from interactions between local auditory cortical circuits comprised of heterogeneous responses and inputs from secondary motor cortex. Strikingly, non-classically responsive neurons in auditory cortex were preferentially recruited during learning, specifically during rapid learning phases when the greatest gains in behavioral performance occur. Population-level decoding revealed that during rapid learning mixed ensembles comprised of both classically and non-classically responsive cells encode significantly more task information than homogenous ensembles of either type and emerge as a functional unit critical for learning. Optogenetically silencing inputs from secondary motor cortex selectively modulated non-classically responsive cells in the auditory cortex and impaired reversal learning by preventing the remapping of a previously learned stimulus-reward association. Top-down inputs orchestrated highly correlated non-classically responsive ensembles in sensory cortex providing a unique task-relevant manifold for learning. Thus, non-classically responsive cells in sensory cortex are preferentially recruited by top-down inputs to enable neural and behavioral flexibility.
Collapse
Affiliation(s)
- Jade Toth
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Blake Sidleck
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Olivia Lombardi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Tiange Hou
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Abraham Eldo
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Madelyn Kerlin
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xiangjian Zeng
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Danyall Saeed
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Priya Agarwal
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Dylan Leonard
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
| | - Luz Andrino
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tal Inbar
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Michael Malina
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Michele N. Insanally
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA 15213
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213
| |
Collapse
|
12
|
Insanally MN, Albanna BF, Toth J, DePasquale B, Fadaei SS, Gupta T, Lombardi O, Kuchibhotla K, Rajan K, Froemke RC. Contributions of cortical neuron firing patterns, synaptic connectivity, and plasticity to task performance. Nat Commun 2024; 15:6023. [PMID: 39019848 PMCID: PMC11255273 DOI: 10.1038/s41467-024-49895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/20/2024] [Indexed: 07/19/2024] Open
Abstract
Neuronal responses during behavior are diverse, ranging from highly reliable 'classical' responses to irregular 'non-classically responsive' firing. While a continuum of response properties is observed across neural systems, little is known about the synaptic origins and contributions of diverse responses to network function, perception, and behavior. To capture the heterogeneous responses measured from auditory cortex of rodents performing a frequency recognition task, we use a novel task-performing spiking recurrent neural network incorporating spike-timing-dependent plasticity. Reliable and irregular units contribute differentially to task performance via output and recurrent connections, respectively. Excitatory plasticity shifts the response distribution while inhibition constrains its diversity. Together both improve task performance with full network engagement. The same local patterns of synaptic inputs predict spiking response properties of network units and auditory cortical neurons from in vivo whole-cell recordings during behavior. Thus, diverse neural responses contribute to network function and emerge from synaptic plasticity rules.
Collapse
Affiliation(s)
- Michele N Insanally
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Badr F Albanna
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jade Toth
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brian DePasquale
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Saba Shokat Fadaei
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Trisha Gupta
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Olivia Lombardi
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Pittsburgh Hearing Research Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kishore Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kanaka Rajan
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
- Kempner Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Center for Neural Science, New York University, New York, NY, 10003, USA.
| |
Collapse
|
13
|
Wang R, Zhang L, Wang X, Li W, Jian T, Yin P, Wang X, Chen Q, Chen X, Qin H. Electrophysiological activity pattern of mouse hippocampal CA1 and dentate gyrus under isoflurane anesthesia. Front Cell Neurosci 2024; 18:1392498. [PMID: 39104439 PMCID: PMC11299216 DOI: 10.3389/fncel.2024.1392498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
General anesthesia can impact a patient's memory and cognition by influencing hippocampal function. The CA1 and dentate gyrus (DG), serving as the primary efferent and gateway of the hippocampal trisynaptic circuit facilitating cognitive learning and memory functions, exhibit significant differences in cellular composition, molecular makeup, and responses to various stimuli. However, the effects of isoflurane-induced general anesthesia on CA1 and DG neuronal activity in mice are not well understood. In this study, utilizing electrophysiological recordings, we examined neuronal population dynamics and single-unit activity (SUA) of CA1 and DG in freely behaving mice during natural sleep and general anesthesia. Our findings reveal that isoflurane anesthesia shifts local field potential (LFP) to delta frequency and reduces the firing rate of SUA in both CA1 and DG, compared to wakefulness. Additionally, the firing rates of DG neurons are significantly lower than CA1 neurons during isoflurane anesthesia, and the recovery of theta power is slower in DG than in CA1 during the transition from anesthesia to wakefulness, indicating a stronger and more prolonged impact of isoflurane anesthesia on DG. This work presents a suitable approach for studying brain activities during general anesthesia and provides evidence for distinct effects of isoflurane anesthesia on hippocampal subregions.
Collapse
Affiliation(s)
- Rui Wang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Linzhong Zhang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Wen Li
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Pengcheng Yin
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhi Wang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianwei Chen
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaowei Chen
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Han Qin
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| |
Collapse
|
14
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Mertens EJ, Leibner Y, Pie J, Galakhova AA, Waleboer F, Meijer J, Heistek TS, Wilbers R, Heyer D, Goriounova NA, Idema S, Verhoog MB, Kalmbach BE, Lee BR, Gwinn RP, Lein ES, Aronica E, Ting J, Mansvelder HD, Segev I, de Kock CPJ. Morpho-electric diversity of human hippocampal CA1 pyramidal neurons. Cell Rep 2024; 43:114100. [PMID: 38607921 PMCID: PMC11106460 DOI: 10.1016/j.celrep.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eline J Mertens
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Yoni Leibner
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean Pie
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Femke Waleboer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julia Meijer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai Heyer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, location VUmc, Amsterdam 1081 HV, the Netherlands
| | - Matthijs B Verhoog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Noguchi Y. Harmonic memory signals in the human cerebral cortex induced by semantic relatedness of words. NPJ SCIENCE OF LEARNING 2024; 9:6. [PMID: 38355685 PMCID: PMC10866900 DOI: 10.1038/s41539-024-00221-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
When we memorize multiple words simultaneously, semantic relatedness among those words assists memory. For example, the information about "apple", "banana," and "orange" will be connected via a common concept of "fruits" and become easy to retain and recall. Neural mechanisms underlying this semantic integration in verbal working memory remain unclear. Here I used electroencephalography (EEG) and investigated neural signals when healthy human participants memorized five nouns semantically related (Sem trial) or not (NonSem trial). The regularity of oscillatory signals (8-30 Hz) during the retention period was found to be lower in NonSem than Sem trials, indicating that memorizing words unrelated to each other induced a non-harmonic (irregular) waveform in the temporal cortex. These results suggest that (i) semantic features of a word are retained as a set of neural oscillations at specific frequencies and (ii) memorizing words sharing a common semantic feature produces harmonic brain responses through a resonance or integration (sharing) of the oscillatory signals.
Collapse
Affiliation(s)
- Yasuki Noguchi
- Department of Psychology, Graduate School of Humanities, Kobe University, 1-1 Rokkodai-cho, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
18
|
Su M, Hu K, Liu W, Wu Y, Wang T, Cao C, Sun B, Zhan S, Ye Z. Theta Oscillations Support Prefrontal-hippocampal Interactions in Sequential Working Memory. Neurosci Bull 2024; 40:147-156. [PMID: 37847448 PMCID: PMC10838883 DOI: 10.1007/s12264-023-01134-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/28/2023] [Indexed: 10/18/2023] Open
Abstract
The prefrontal cortex and hippocampus may support sequential working memory beyond episodic memory and spatial navigation. This stereoelectroencephalography (SEEG) study investigated how the dorsolateral prefrontal cortex (DLPFC) interacts with the hippocampus in the online processing of sequential information. Twenty patients with epilepsy (eight women, age 27.6 ± 8.2 years) completed a line ordering task with SEEG recordings over the DLPFC and the hippocampus. Participants showed longer thinking times and more recall errors when asked to arrange random lines clockwise (random trials) than to maintain ordered lines (ordered trials) before recalling the orientation of a particular line. First, the ordering-related increase in thinking time and recall error was associated with a transient theta power increase in the hippocampus and a sustained theta power increase in the DLPFC (3-10 Hz). In particular, the hippocampal theta power increase correlated with the memory precision of line orientation. Second, theta phase coherences between the DLPFC and hippocampus were enhanced for ordering, especially for more precisely memorized lines. Third, the theta band DLPFC → hippocampus influence was selectively enhanced for ordering, especially for more precisely memorized lines. This study suggests that theta oscillations may support DLPFC-hippocampal interactions in the online processing of sequential information.
Collapse
Affiliation(s)
- Minghong Su
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kejia Hu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Liu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yunhao Wu
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunyan Cao
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zheng Ye
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
19
|
Kang L, Toyoizumi T. Distinguishing examples while building concepts in hippocampal and artificial networks. Nat Commun 2024; 15:647. [PMID: 38245502 PMCID: PMC10799871 DOI: 10.1038/s41467-024-44877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
The hippocampal subfield CA3 is thought to function as an auto-associative network that stores experiences as memories. Information from these experiences arrives directly from the entorhinal cortex as well as indirectly through the dentate gyrus, which performs sparsification and decorrelation. The computational purpose for these dual input pathways has not been firmly established. We model CA3 as a Hopfield-like network that stores both dense, correlated encodings and sparse, decorrelated encodings. As more memories are stored, the former merge along shared features while the latter remain distinct. We verify our model's prediction in rat CA3 place cells, which exhibit more distinct tuning during theta phases with sparser activity. Finally, we find that neural networks trained in multitask learning benefit from a loss term that promotes both correlated and decorrelated representations. Thus, the complementary encodings we have found in CA3 can provide broad computational advantages for solving complex tasks.
Collapse
Affiliation(s)
- Louis Kang
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.
- Graduate School of Informatics, Kyoto University, 36-1 Yoshida-honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Taro Toyoizumi
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Graduate School of Information Science and Technology, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
20
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
Wilbers R, Metodieva VD, Duverdin S, Heyer DB, Galakhova AA, Mertens EJ, Versluis TD, Baayen JC, Idema S, Noske DP, Verburg N, Willemse RB, de Witt Hamer PC, Kole MH, de Kock CP, Mansvelder HD, Goriounova NA. Human voltage-gated Na + and K + channel properties underlie sustained fast AP signaling. SCIENCE ADVANCES 2023; 9:eade3300. [PMID: 37824607 PMCID: PMC10569700 DOI: 10.1126/sciadv.ade3300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/09/2023] [Indexed: 10/14/2023]
Abstract
Human cortical pyramidal neurons are large, have extensive dendritic trees, and yet have unexpectedly fast input-output properties: Rapid subthreshold synaptic membrane potential changes are reliably encoded in timing of action potentials (APs). Here, we tested whether biophysical properties of voltage-gated sodium (Na+) and potassium (K+) currents in human pyramidal neurons can explain their fast input-output properties. Human Na+ and K+ currents exhibited more depolarized voltage dependence, slower inactivation, and faster recovery from inactivation compared with their mouse counterparts. Computational modeling showed that despite lower Na+ channel densities in human neurons, the biophysical properties of Na+ channels resulted in higher channel availability and contributed to fast AP kinetics stability. Last, human Na+ channel properties also resulted in a larger dynamic range for encoding of subthreshold membrane potential changes. Thus, biophysical adaptations of voltage-gated Na+ and K+ channels enable fast input-output properties of large human pyramidal neurons.
Collapse
Affiliation(s)
- René Wilbers
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Verjinia D. Metodieva
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Sarah Duverdin
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Djai B. Heyer
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Anna A. Galakhova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Eline J. Mertens
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Tamara D. Versluis
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Johannes C. Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - David P. Noske
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Niels Verburg
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Ronald B. Willemse
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Philip C. de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, VUmc Cancer Center, Amsterdam Brain Tumor Center, Amsterdam 1081 HV, Netherlands
| | - Maarten H. P. Kole
- Department of Axonal Signaling, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, Netherlands
| | - Christiaan P. J. de Kock
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| | - Natalia A. Goriounova
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam 1081 HV, Netherlands
| |
Collapse
|
22
|
Lu Y, Guo X, Weng X, Jiang H, Yan H, Shen X, Feng Z, Zhao X, Li L, Zheng L, Liu Z, Men W, Gao JH. Theta Signal Transfer from Parietal to Prefrontal Cortex Ignites Conscious Awareness of Implicit Knowledge during Sequence Learning. J Neurosci 2023; 43:6760-6778. [PMID: 37607820 PMCID: PMC10552945 DOI: 10.1523/jneurosci.2172-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
Unconscious acquisition of sequence structure from experienced events can lead to explicit awareness of the pattern through extended practice. Although the implicit-to-explicit transition has been extensively studied in humans using the serial reaction time (SRT) task, the subtle neural activity supporting this transition remains unclear. Here, we investigated whether frequency-specific neural signal transfer contributes to this transition. A total of 208 participants (107 females) learned a sequence pattern through a multisession SRT task, allowing us to observe the transitions. Session-by-session measures of participants' awareness for sequence knowledge were conducted during the SRT task to identify the session when the transition occurred. By analyzing time course RT data using switchpoint modeling, we identified an increase in learning benefit specifically at the transition session. Electroencephalogram (EEG)/magnetoencephalogram (MEG) recordings revealed increased theta power in parietal (precuneus) regions one session before the transition (pretransition) and a prefrontal (superior frontal gyrus; SFG) one at the transition session. Phase transfer entropy (PTE) analysis confirmed that directional theta transfer from precuneus → SFG occurred at the pretransition session and its strength positively predicted learning improvement at the subsequent transition session. Furthermore, repetitive transcranial magnetic stimulation (TMS) modulated precuneus theta power and altered transfer strength from precuneus to SFG, resulting in changes in both transition rate and learning benefit at that specific point of transition. Our brain-stimulation evidence supports a role for parietal → prefrontal theta signal transfer in igniting conscious awareness of implicitly acquired knowledge.SIGNIFICANCE STATEMENT There exists a pervasive phenomenon wherein individuals unconsciously acquire sequence patterns from their environment, gradually becoming aware of the underlying regularities through repeated practice. While previous studies have established the robustness of this implicit-to-explicit transition in humans, the refined neural mechanisms facilitating conscious access to implicit knowledge remain poorly understood. Here, we demonstrate that prefrontal activity, known to be crucial for conscious awareness, is triggered by neural signal transfer originating from the posterior brain region, specifically the precuneus. By employing brain stimulation techniques, we establish a causal link between neural signal transfer and the occurrence of awareness. Our findings unveil a mechanism by which implicit knowledge becomes consciously accessible in human cognition.
Collapse
Affiliation(s)
- Yang Lu
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xiuyan Guo
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Xue Weng
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Haoran Jiang
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Huidan Yan
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xianting Shen
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Department of Psychology, Fudan University, Shanghai, China, 200433
| | - Zhengning Feng
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Xinyue Zhao
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Lin Li
- School of Psychology and cognitive science, East China Normal University, Shanghai, China, 200062
| | - Li Zheng
- Fudan Institute on Ageing, Fudan University, Shanghai, China, 200433
- Ministry of education (MOE) Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai, China, 200433
| | - Zhiyuan Liu
- Shaanxi Key Laboratory of Behavior and Cognitive Neuroscience, School of Psychology, Shaanxi Normal University, Xi'an, China, 710062
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China, 100871
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China, 100871
| | - Jia-Hong Gao
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China, 100871
- Center for MRI Research and McGovern Institute for Brain Research, Peking University, Beijing, China, 100871
| |
Collapse
|
23
|
Müller-Komorowska D, Kuru B, Beck H, Braganza O. Phase information is conserved in sparse, synchronous population-rate-codes via phase-to-rate recoding. Nat Commun 2023; 14:6106. [PMID: 37777512 PMCID: PMC10543394 DOI: 10.1038/s41467-023-41803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Neural computation is often traced in terms of either rate- or phase-codes. However, most circuit operations will simultaneously affect information across both coding schemes. It remains unclear how phase and rate coded information is transmitted, in the face of continuous modification at consecutive processing stages. Here, we study this question in the entorhinal cortex (EC)- dentate gyrus (DG)- CA3 system using three distinct computational models. We demonstrate that DG feedback inhibition leverages EC phase information to improve rate-coding, a computation we term phase-to-rate recoding. Our results suggest that it i) supports the conservation of phase information within sparse rate-codes and ii) enhances the efficiency of plasticity in downstream CA3 via increased synchrony. Given the ubiquity of both phase-coding and feedback circuits, our results raise the question whether phase-to-rate recoding is a recurring computational motif, which supports the generation of sparse, synchronous population-rate-codes in areas beyond the DG.
Collapse
Affiliation(s)
- Daniel Müller-Komorowska
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
| | - Baris Kuru
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
| | - Heinz Beck
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e.V, Bonn, Germany
| | - Oliver Braganza
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn, Germany.
- Institute for Socio-Economics, University of Duisburg-Essen, Duisburg, Germany.
| |
Collapse
|
24
|
Santoyo AE, Gonzales MG, Iqbal ZJ, Backer KC, Balasubramaniam R, Bortfeld H, Shahin AJ. Neurophysiological time course of timbre-induced music-like perception. J Neurophysiol 2023; 130:291-302. [PMID: 37377190 PMCID: PMC10396220 DOI: 10.1152/jn.00042.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, pitch variation in a sound stream has been integral to music identity. We attempt to expand music's definition, by demonstrating that the neural code for musicality is independent of pitch encoding. That is, pitchless sound streams can still induce music-like perception and a neurophysiological hierarchy similar to pitched melodies. Previous work reported that neural processing of sounds with no-pitch, fixed-pitch, and irregular-pitch (melodic) patterns, exhibits a right-lateralized hierarchical shift, with pitchless sounds favorably processed in Heschl's gyrus (HG), ascending laterally to nonprimary auditory areas for fixed-pitch and even more laterally for melodic patterns. The objective of this EEG study was to assess whether sound encoding maintains a similar hierarchical profile when musical perception is driven by timbre irregularities in the absence of pitch changes. Individuals listened to repetitions of three musical and three nonmusical sound-streams. The nonmusical streams were comprised of seven 200-ms segments of white, pink, or brown noise, separated by silent gaps. Musical streams were created similarly, but with all three noise types combined in a unique order within each stream to induce timbre variations and music-like perception. Subjects classified the sound streams as musical or nonmusical. Musical processing exhibited right dominant α power enhancement, followed by a lateralized increase in θ phase-locking and spectral power. The θ phase-locking was stronger in musicians than in nonmusicians. The lateralization of activity suggests higher-level auditory processing. Our findings validate the existence of a hierarchical shift, traditionally observed with pitched-melodic perception, underscoring that musicality can be achieved with timbre irregularities alone.NEW & NOTEWORTHY EEG induced by streams of pitchless noise segments varying in timbre were classified as music-like and exhibited a right-lateralized hierarchy in processing similar to pitched melodic processing. This study provides evidence that the neural-code of musicality is independent of pitch encoding. The results have implications for understanding music processing in individuals with degraded pitch perception, such as in cochlear-implant listeners, as well as the role of nonpitched sounds in the induction of music-like perceptual states.
Collapse
Affiliation(s)
- Alejandra E Santoyo
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Mariel G Gonzales
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Zunaira J Iqbal
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
| | - Kristina C Backer
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| | - Heather Bortfeld
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
- Department of Psychology, University of California, Merced, California, United States
| | - Antoine J Shahin
- Department of Cognitive and Information Sciences, University of California, Merced, California, United States
- Health Sciences Research Institute, University of California, Merced, California, United States
| |
Collapse
|
25
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
26
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
27
|
Comrie AE, Frank LM, Kay K. Imagination as a fundamental function of the hippocampus. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210336. [PMID: 36314152 PMCID: PMC9620759 DOI: 10.1098/rstb.2021.0336] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 08/25/2023] Open
Abstract
Imagination is a biological function that is vital to human experience and advanced cognition. Despite this importance, it remains unknown how imagination is realized in the brain. Substantial research focusing on the hippocampus, a brain structure traditionally linked to memory, indicates that firing patterns in spatially tuned neurons can represent previous and upcoming paths in space. This work has generally been interpreted under standard views that the hippocampus implements cognitive abilities primarily related to actual experience, whether in the past (e.g. recollection, consolidation), present (e.g. spatial mapping) or future (e.g. planning). However, relatively recent findings in rodents identify robust patterns of hippocampal firing corresponding to a variety of alternatives to actual experience, in many cases without overt reference to the past, present or future. Given these findings, and others on hippocampal contributions to human imagination, we suggest that a fundamental function of the hippocampus is to generate a wealth of hypothetical experiences and thoughts. Under this view, traditional accounts of hippocampal function in episodic memory and spatial navigation can be understood as particular applications of a more general system for imagination. This view also suggests that the hippocampus contributes to a wider range of cognitive abilities than previously thought. This article is part of the theme issue 'Thinking about possibilities: mechanisms, ontogeny, functions and phylogeny'.
Collapse
Affiliation(s)
- Alison E. Comrie
- Neuroscience Graduate Program, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Loren M. Frank
- Kavli Institute for Fundamental Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Center for Integrative Neuroscience, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Departments of Physiology and Psychiatry, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA 94158, USA
| | - Kenneth Kay
- Zuckerman Institute, Center for Theoretical Neuroscience, Columbia University, 3227 Broadway, New York, NY 10027, USA
| |
Collapse
|
28
|
Sherman BE, Graves KN, Huberdeau DM, Quraishi IH, Damisah EC, Turk-Browne NB. Temporal Dynamics of Competition between Statistical Learning and Episodic Memory in Intracranial Recordings of Human Visual Cortex. J Neurosci 2022; 42:9053-9068. [PMID: 36344264 PMCID: PMC9732826 DOI: 10.1523/jneurosci.0708-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The function of long-term memory is not just to reminisce about the past, but also to make predictions that help us behave appropriately and efficiently in the future. This predictive function of memory provides a new perspective on the classic question from memory research of why we remember some things but not others. If prediction is a key outcome of memory, then the extent to which an item generates a prediction signifies that this information already exists in memory and need not be encoded. We tested this principle using human intracranial EEG as a time-resolved method to quantify prediction in visual cortex during a statistical learning task and link the strength of these predictions to subsequent episodic memory behavior. Epilepsy patients of both sexes viewed rapid streams of scenes, some of which contained regularities that allowed the category of the next scene to be predicted. We verified that statistical learning occurred using neural frequency tagging and measured category prediction with multivariate pattern analysis. Although neural prediction was robust overall, this was driven entirely by predictive items that were subsequently forgotten. Such interference provides a mechanism by which prediction can regulate memory formation to prioritize encoding of information that could help learn new predictive relationships.SIGNIFICANCE STATEMENT When faced with a new experience, we are rarely at a loss for what to do. Rather, because many aspects of the world are stable over time, we rely on past experiences to generate expectations that guide behavior. Here we show that these expectations during a new experience come at the expense of memory for that experience. From intracranial recordings of visual cortex, we decoded what humans expected to see next in a series of photographs based on patterns of neural activity. Photographs that generated strong neural expectations were more likely to be forgotten in a later behavioral memory test. Prioritizing the storage of experiences that currently lead to weak expectations could help improve these expectations in future encounters.
Collapse
Affiliation(s)
- Brynn E Sherman
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Kathryn N Graves
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - David M Huberdeau
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
| | - Imran H Quraishi
- Department of Neurology, Yale University, 800 Howard Avenue, New Haven, CT 06519
| | - Eyiyemisi C Damisah
- Department of Neurosurgery, Yale University, 333 Cedar Street, New Haven, CT 06510
| | - Nicholas B Turk-Browne
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520
- Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510
| |
Collapse
|
29
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
30
|
Ratcliffe O, Shapiro K, Staresina BP. Fronto-medial theta coordinates posterior maintenance of working memory content. Curr Biol 2022; 32:2121-2129.e3. [PMID: 35385693 PMCID: PMC9616802 DOI: 10.1016/j.cub.2022.03.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 03/15/2022] [Indexed: 12/25/2022]
Abstract
How does the human brain manage multiple bits of information to guide goal-directed behavior? Successful working memory (WM) functioning has consistently been linked to oscillatory power in the theta frequency band (4–8 Hz) over fronto-medial cortex (fronto-medial theta [FMT]). Specifically, FMT is thought to reflect the mechanism of an executive sub-system that coordinates maintenance of memory contents in posterior regions. However, direct evidence for the role of FMT in controlling specific WM content is lacking. Here, we collected high-density electroencephalography (EEG) data while participants engaged in WM-dependent tasks and then used multivariate decoding methods to examine WM content during the maintenance period. Engagement of WM was accompanied by a focal increase in FMT. Importantly, decoding of WM content was driven by posterior sites, which, in turn, showed increased functional theta coupling with fronto-medial channels. Finally, we observed a significant slowing of FMT frequency with increasing WM load, consistent with the hypothesized broadening of a theta “duty cycle” to accommodate additional WM items. Together, these findings demonstrate that frontal theta orchestrates posterior maintenance of WM content. Moreover, the observed frequency slowing elucidates the function of FMT oscillations by specifically supporting phase-coding accounts of WM. FMT power supports WM functions During WM performance, posterior/parietal regions are coupled with FMT Multivariate decoding of WM content is mediated by these same posterior channels Frontal theta frequency slows with WM load supporting phase-coding models
Collapse
Affiliation(s)
- Oliver Ratcliffe
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kimron Shapiro
- School of Psychology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
32
|
Aguilar-Canto F, Calvo H. A Hebbian Approach to Non-Spatial Prelinguistic Reasoning. Brain Sci 2022; 12:brainsci12020281. [PMID: 35204044 PMCID: PMC8870645 DOI: 10.3390/brainsci12020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
This research integrates key concepts of Computational Neuroscience, including the Bienestock-CooperMunro (BCM) rule, Spike Timing-Dependent Plasticity Rules (STDP), and the Temporal Difference Learning algorithm, with an important structure of Deep Learning (Convolutional Networks) to create an architecture with the potential of replicating observations of some cognitive experiments (particularly, those that provided some basis for sequential reasoning) while sharing the advantages already achieved by the previous proposals. In particular, we present Ring Model B, which is capable of associating visual with auditory stimulus, performing sequential predictions, and predicting reward from experience. Despite its simplicity, we considered such abilities to be a first step towards the formulation of more general models of prelinguistic reasoning.
Collapse
|
33
|
Senoussi M, Verbeke P, Verguts T. Time-Based Binding as a Solution to and a Limitation for Flexible Cognition. Front Psychol 2022; 12:798061. [PMID: 35140662 PMCID: PMC8818715 DOI: 10.3389/fpsyg.2021.798061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023] Open
Abstract
Why can't we keep as many items as we want in working memory? It has long been debated whether this resource limitation is a bug (a downside of our fallible biological system) or instead a feature (an optimal response to a computational problem). We propose that the resource limitation is a consequence of a useful feature. Specifically, we propose that flexible cognition requires time-based binding, and time-based binding necessarily limits the number of (bound) memoranda that can be stored simultaneously. Time-based binding is most naturally instantiated via neural oscillations, for which there exists ample experimental evidence. We report simulations that illustrate this theory and that relate it to empirical data. We also compare the theory to several other (feature and bug) resource theories.
Collapse
|