1
|
Muñoz-Castro A. Bonding Interaction Within Concentric Structural Layers in Gold Superatoms. The Concentric Bond. Chemphyschem 2025; 26:e202400892. [PMID: 39530692 DOI: 10.1002/cphc.202400892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/27/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Ligand-protected gold clusters display a rich structural diversity, featuring remarkable structures such as Au25(SR)18, Au55(PPh3)12Cl6, and CuAu144(SR)60 3+, involving a central core composed of consecutive layers. The respective Au@Au12, Au@Au12@Au42, and Cu@Au12@Au42@Au60 cores with concentric structural layers enable a variable bonding/antibonding character between the electronic shells ascribed to each layer. Here, we rationalize the bonding within concentric structural layers in order to gain a further understanding of the related bonding patterns in such species. The proposed bonding concept differs from the classical situation in adjacent atoms, now being considered between concentric shells and, thus, coined as the concentric bond. From this approach, the bonding/antibonding character of each concentric shell is evaluated, and its contribution to the overall bonding is discussed. The concentric bond enables building a clear picture of the bonding acting in the overall cluster under the superatom concept. Such an approach expands the understanding of multi-layered cluster cores and is useful to further rationalize the bonding situation in metallic nanostructures.
Collapse
Affiliation(s)
- Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile
| |
Collapse
|
2
|
Chakraborty P, Malola S, Weis P, Neumaier M, Schneider EK, Häkkinen H, Kappes MM. Tailoring Vacancy Defects in Isolated Atomically Precise Silver Clusters through Mercury-Doped Intermediates. J Phys Chem Lett 2023; 14:11659-11664. [PMID: 38109267 DOI: 10.1021/acs.jpclett.3c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Vacancy defects are known to have significant effects on the physical and chemical properties of nanomaterials. However, the formation and structural dynamics of vacancy defects in atomically precise coinage metal clusters have hardly been explored due to the challenges associated with isolation of such defected clusters. Herein, we isolate [Ag28(BDT)12]2- (BDT is 1,3-benzenedithiol), a cluster with a "missing atom" site compared to [Ag29(BDT)12]3-, whose precise structure is known from X-ray diffraction. [Ag28(BDT)12]2- was formed in the gas-phase by collisional heating of [Ag28Hg(BDT)12]2-, a Hg-doped analogue of the parent cluster. The structural changes resulting from the loss of the Hg heteroatom were investigated by trapped ion mobility mass spectrometry. Density functional theory calculations were performed to provide further insights into the defect structures, and molecular dynamics simulations revealed defect site-dependent structural relaxation processes.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erik Karsten Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Xu C, Jin Y, Fang H, Zheng H, Carozza JC, Pan Y, Wei PJ, Zhang Z, Wei Z, Zhou Z, Han H. A High-Nuclearity Copper Sulfide Nanocluster [S-Cu 50] Featuring a Double-Shell Structure Configuration with Cu(II)/Cu(I) Valences. J Am Chem Soc 2023; 145:25673-25685. [PMID: 37889075 DOI: 10.1021/jacs.3c08549] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
This work represents an important step in the quest for creating atomically precise binary semiconductor nanoclusters (BS-NCs). Compared with coinage metal NCs, the preparation of BS-NCs requires strict control of the reaction kinetics to guarantee the formation of an atomically precise single phase under mild conditions, which otherwise could lead to the generation of multiple phases. Herein, we developed an acid-assisted thiolate dissociation approach that employs suitable acid to induce cleavage of the S-C bonds in the Cu-S-R (R = alkyl) precursor, spontaneously fostering the formation of the [Cu-S-Cu] skeleton upon the addition of extra Cu sources. Through this method, a high-nuclearity copper sulfide nanocluster, Cu50S12(SC(CH3)3)20(CF3COO)12 (abbreviated as [S-Cu50] hereafter), has been successfully prepared in high yield, and its atomic structure was accurately modeled through single-crystal X-ray diffraction. It was revealed that [S-Cu50] exhibits a unique double-shell structural configuration of [Cu14S12]@[Cu36S20], and the innermost [Cu14] moiety displays a rhombic dodecahedron geometry, which has never been observed in previously synthesized Cu metal, hydride, or chalcogenide NCs. Importantly, [S-Cu50] represents the first example incorporating mixed Cu(II)/Cu(I) valences in reported atomically precise copper sulfide NCs, which was unambiguously confirmed by XPS, EPR, and XANES. In addition, the electronic structure of [S-Cu50] was established by a variety of optical investigations, including absorption, photoluminescence, and ultrafast transient absorption spectroscopies, as well as theoretical calculations. Moreover, [S-Cu50] is air-stable and demonstrates electrocatalytic activity in ORR with a four-electron pathway.
Collapse
Affiliation(s)
- Cheng Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuhao Jin
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Hao Fang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huijuan Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping-Jie Wei
- Key Laboratory for Advanced Materials of MOE & Department of Chemistry, East China University of Science and Technology Shanghai, Shanghai 200237, China
| | - Zhenyi Zhang
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Zheng Wei
- Department of Chemistry, University at Albany, Albany, New York 12222, United States
| | - Zheng Zhou
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Haixiang Han
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
4
|
Fang L, Fan W, Bian G, Wang R, You Q, Gu W, Xia N, Liao L, Li J, Deng H, Yan N, Wu Z. Sandwich-Kernelled AgCu Nanoclusters with Golden Ratio Geometry and Promising Photothermal Efficiency. Angew Chem Int Ed Engl 2023; 62:e202305604. [PMID: 37208858 DOI: 10.1002/anie.202305604] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/21/2023]
Abstract
Metal nanoclusters have recently attracted extensive interest from the scientific community. However, unlike carbon-based materials and metal nanocrystals, they rarely exhibit a sheet kernel structure, probably owing to the instability caused by the high exposure of metal atoms (particularly in the relatively less noble Ag or Cu nanoclusters) in such a structure. Herein, we synthesized a novel AgCu nanocluster with a sandwich-like kernel (diameter≈0.9 nm and length≈0.25 nm) by introducing the furfuryl mercaptan ligand (FUR) and the alloying strategy. Interestingly, the kernel consists of a centered silver atom and two planar Ag10 pentacle units with completely mirrored symmetry after a rotation of 36 degrees. The two Ag10 pentacles and some extended structures show an unreported golden ratio geometry, and the two inner five-membered rings and the centered Ag atom form an unanticipated full-metal ferrocene-like structure. The featured kernel structure causes the dominant radial direction transition of excitation electrons, as determined via time-dependent density functional theory calculations, which affords the protruding absorption at 612 nm and contributes to the promising photothermal conversion efficiency of 67.6 % of the as-obtained nanocluster, having important implications for structure-property correlation and the development of nanocluser-based photothermal materials.
Collapse
Grants
- 21925303, 21829501, 22171267, 22171268, 21701179, 21771186, 21501181, 21222301, 21171170, and 21528303 National Natural Science Foundation of China
- 2008085MB31, 2108085MB56 Anhui Provincial Natural Science Foundation
- YZJJ202102 and YZJJ202306-TS Special Foundation of President of HFIPS
- 2020HSC-CIP005, 2022HSC-CIP018 Collaborative Innovation Program of Hefei Science Center, CAS
- 2023468 Youth Innovation Promotion Association CAS
Collapse
Affiliation(s)
- Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
5
|
Cesari C, Berti B, Bortoluzzi M, Femoni C, Funaioli T, Vivaldi FM, Iapalucci MC, Zacchini S. From M 6 to M 12, M 19 and M 38 molecular alloy Pt-Ni carbonyl nanoclusters: selective growth of atomically precise heterometallic nanoclusters. Dalton Trans 2023; 52:3623-3642. [PMID: 36866767 DOI: 10.1039/d2dt03607j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Heterometallic Chini-type clusters [Pt6-xNix(CO)12]2- (x = 0-6) were obtained by reactions of [Pt6(CO)12]2- with Ni-clusters such as [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, or from [Pt9(CO)18]2- and [Ni6(CO)12]2-. The Pt/Ni composition of [Pt6-xNix(CO)12]2- (x = 0-6) depended on the nature of the reagents employed and their stoichiometry. Reactions of [Pt9(CO)18]2- with [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, as well as reactions of [Pt12(CO)24]2- with [Ni6(CO)12]2-, [Ni9(CO)18]2- and [H2Ni12(CO)21]2-, afforded [Pt9-xNix(CO)18]2- (x = 0-9) species. [Pt6-xNix(CO)12]2- (x = 1-5) were converted into [Pt12-xNix(CO)21]4- (x = 2-10) upon heating in CH3CN at 80 °C, with almost complete retention of the Pt/Ni composition. Reaction of [Pt12-xNix(CO)21]4- (x ≈ 8) with HBF4·Et2O afforded the [HPt14+xNi24-x(CO)44]5- (x ≈ 0.7) nanocluster. Finally, [Pt19-xNix(CO)22]4- (x = 2-6) could be obtained by heating [Pt9-xNix(CO)18]2- (x = 1-3) in CH3CN at 80 °C, or [Pt6-xNix(CO)12]2- (2-4) in DMSO at 130 °C. The molecular structures of these new alloy nanoclusters have been determined by single crystal X-ray diffraction. The site preference of Pt and Ni within their metal cages has been computationally investigated. The electrochemical and IR spectroelectrochemical behavior of [Pt19-xNix(CO)22]4- (x = 3.11) has been studied and compared to the isostructural homometallic nanocluster [Pt19(CO)22]4-.
Collapse
Affiliation(s)
- Cristiana Cesari
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Beatrice Berti
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Marco Bortoluzzi
- Dipartimento di Scienze Molecolari e Nanosistemi, Ca' Foscari University of Venice, Via Torino 155, 30175 Mestre (Ve), Italy
| | - Cristina Femoni
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Federico Maria Vivaldi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Maria Carmela Iapalucci
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| | - Stefano Zacchini
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
| |
Collapse
|
6
|
Li Q, Yang S, Chai J, Zhang H, Zhu M. Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. NANOSCALE 2022; 14:15804-15811. [PMID: 36254852 DOI: 10.1039/d2nr05291a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the rules governing the size regulation of nanoclusters is of great importance not only in fundamental research, but also in practical applications because of the high structure-property correlation in nanoclusters. Diphosphine-mediated size tailoring is recognized as a powerful method for modulating the size, configuration, and properties of nanoclusters, but the role of diphosphines in these size-controlled processes is still poorly understood due to a lack of systematic studies. Herein, using Au23(SR)16- as the template for modification, the factors influencing the size-modulation of nanoclusters by diphosphines were systematically investigated. It is revealed that by controlling the length of the diphosphines (from shorter to longer), Au21(SR)12L2+ (L = diphosphine) and Au22(SR)14L can be produced. Moreover, introducing a rigid group into the diphosphines can twist the structural framework or lead to the formation of a new surface motif configuration in the nanoclusters, forming twisted Au22(SR)14L and Au25(SR)16L2+. The size regulation of these nanoclusters enables fine-tuning of the optical properties, including the absorption wavelengths and photoluminescence emission intensity, affording an avenue for precise control of the physicochemical properties of nanoclusters for practical applications.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
7
|
Li T, Wang Z, Zhang Y, Wu Z. Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3837. [PMID: 36364613 PMCID: PMC9656650 DOI: 10.3390/nano12213837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Coinage metal nanoclusters (MNCs) are a new type of ultra-small nanoparticles on the sub-nanometer (typically < three nm) scale intermediate between atoms and plasmonic nanoparticles. At the same time, the ultra-small size and discrete energy levels of MNCs enable them to exhibit molecular-like energy gaps, and the total structure involving the metal core and surface ligand together leads to their unique properties. As a novel environmentally friendly chromophore, MNCs are promising candidates for the construction of electroluminescent light-emitting diodes (LEDs). However, a systematic summary is urgently needed to correlate the properties of MNCs with their influences on electroluminescent LED applications, describe the synthetic strategies of highly luminescent MNCs for LEDs’ construction, and discuss the general influencing factors of MNC-based electroluminescent LEDs. In this review, we first discuss relevant photoemissions of MNCs that may have major influences on the performance of MNC-based electroluminescent LEDs, and then demonstrate the main synthetic strategies of highly luminescent MNCs. To this end, we illustrate the recent development of electroluminescent LEDs based on MNCs and present our perspectives on the opportunities and challenges, which may shed light on the design of MNC-based electroluminescent LEDs in the near future.
Collapse
Affiliation(s)
- Tingting Li
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130018, China
| | - Zhenyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ying Zhang
- Department of Pediatric Respiratory, The First Hospital of Jilin University, Changchun 130012, China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Gao ZH, Wei K, Wu T, Dong J, Jiang DE, Sun S, Wang LS. A Heteroleptic Gold Hydride Nanocluster for Efficient and Selective Electrocatalytic Reduction of CO 2 to CO. J Am Chem Soc 2022; 144:5258-5262. [PMID: 35290736 DOI: 10.1021/jacs.2c00725] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has been a long-standing challenge to create and identify the active sites of heterogeneous catalysts, because it is difficult to precisely control the interfacial chemistry at the molecular level. Here we report the synthesis and catalysis of a heteroleptic gold trihydride nanocluster, [Au22H3(dppe)3(PPh3)8]3+ [dppe = 1,2-bis(diphenylphosphino)ethane, PPh3 = triphenylphosphine]. The Au22H3 core consists of two Au11 units bonded via six uncoordinated Au sites. The three H atoms bridge the six uncoordinated Au atoms and are found to play a key role in catalyzing electrochemical reduction of CO2 to CO with a 92.7% Faradaic efficiency (FE) at -0.6 V (vs RHE) and high reaction activity (134 A/gAu mass activity). The CO current density and FECO remained nearly constant for the CO2 reduction reaction for more than 10 h, indicating remarkable stability of the Au22H3 catalyst. The Au22H3 catalytic performance is among the best Au-based catalysts reported thus far for electrochemical reduction of CO2. Density functional theory (DFT) calculations suggest that the hydride coordinated Au sites are the active centers, which facilitate the formation of the key *COOH intermediate.
Collapse
Affiliation(s)
- Ze-Hua Gao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Tao Wu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Jia Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - De-En Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Lai-Sheng Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
9
|
Ma X, Sun F, Qin L, Liu Y, Kang X, Wang L, Jiang DE, Tang Q, Tang Z. Electrochemical CO 2 reduction catalyzed by atomically precise alkynyl-protected Au 7Ag 8, Ag 9Cu 6, and Au 2Ag 8Cu 5 nanoclusters: probing the effect of multi-metal core on selectivity. Chem Sci 2022; 13:10149-10158. [PMID: 36128240 PMCID: PMC9430757 DOI: 10.1039/d2sc02886g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 11/03/2022] Open
Abstract
We report the first all-alkynyl-protected Au2Ag8Cu5 cluster, which adopts a M@M8@M6 core configuration similar with Au7Ag8/Ag9Cu6 clusters. The three clusters exhibited strong metal core effect toward CO2RR, which was understood by DFT calculations.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- New Energy Research Institute, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangdong, 510006, China
| | - Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Lubing Qin
- New Energy Research Institute, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangdong, 510006, China
| | - Yonggang Liu
- New Energy Research Institute, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangdong, 510006, China
| | - Xiongwu Kang
- New Energy Research Institute, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangdong, 510006, China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Shandong, 255049, China
| | - De-en Jiang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Zhenghua Tang
- New Energy Research Institute, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangdong, 510006, China
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangdong, 510632, China
| |
Collapse
|
10
|
Wu YG, Huang JH, Zhang C, Dong XY, Guo XK, Wu W, Zang SQ. Site-specific sulfur-for-metal replacement in silver nanocluster. Chem Commun (Camb) 2022; 58:7321-7324. [DOI: 10.1039/d2cc00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new Ag36 nanocluster with a closed electronic structure and eight valence electrons is reported, which has a similar structure to an open-shell Ag34 nanocluster with three valence electrons, except...
Collapse
|