1
|
Kung PH, Greaves MD, Guerrero-Hreins E, Harrison BJ, Davey CG, Felmingham KL, Carey H, Sumithran P, Brown RM, Moffat BA, Glarin RK, Jamieson AJ, Steward T. Habenula contributions to negative self-cognitions. Nat Commun 2025; 16:4231. [PMID: 40335503 PMCID: PMC12059057 DOI: 10.1038/s41467-025-59611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Self-related cognitions are integral to personal identity and psychological wellbeing. Persistent engagement with negative self-cognitions can precipitate mental ill health; whereas the ability to restructure them is protective. Here, we leverage ultra-high field 7T fMRI and dynamic causal modelling to characterise a negative self-cognition network centred on the habenula - a small midbrain region linked to the encoding of punishment and negative outcomes. We model habenula effective connectivity in a discovery sample of healthy young adults (n = 45) and in a replication cohort (n = 56) using a cognitive restructuring task during which participants repeated or restructured negative self-cognitions. The restructuring of negative self-cognitions elicits an excitatory effect from the habenula to the posterior orbitofrontal cortex that is reliably observed across both samples. Furthermore, we identify an excitatory effect of the habenula on the posterior cingulate cortex during both the repeating and restructuring of self-cognitions. Our study provides evidence demonstrating the habenula's contribution to processing self-cognitions. These findings yield unique insights into habenula's function beyond processing external reward/punishment to include abstract internal experiences.
Collapse
Affiliation(s)
- Po-Han Kung
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Matthew D Greaves
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
- School of Psychological Sciences, Monash University, Victoria, Australia
| | - Eva Guerrero-Hreins
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Ben J Harrison
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | | | - Kim L Felmingham
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Holly Carey
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Priya Sumithran
- Department of Surgery, School of Translational Medicine, Monash University, Victoria, Australia
- Department of Endocrinology and Diabetes, Alfred Health, Victoria, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - Bradford A Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Victoria, Australia
| | - Rebecca K Glarin
- Melbourne Brain Centre Imaging Unit, Department of Radiology, University of Melbourne, Victoria, Australia
| | - Alec J Jamieson
- Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - Trevor Steward
- Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.
- Department of Psychiatry, University of Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Dosenbach NUF, Raichle ME, Gordon EM. The brain's action-mode network. Nat Rev Neurosci 2025; 26:158-168. [PMID: 39743556 DOI: 10.1038/s41583-024-00895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
The brain is always intrinsically active, using energy at high rates while cycling through global functional modes. Awake brain modes are tied to corresponding behavioural states. During goal-directed behaviour, the brain enters an action-mode of function. In the action-mode, arousal is heightened, attention is focused externally and action plans are created, converted to goal-directed movements and continuously updated on the basis of relevant feedback, such as pain. Here, we synthesize classical and recent human and animal evidence that the action-mode of the brain is created and maintained by an action-mode network (AMN), which we had previously identified and named the cingulo-opercular network on the basis of its anatomy. We discuss how rather than continuing to name this network anatomically, annotating it functionally as controlling the action-mode of the brain increases its distinctiveness from spatially adjacent networks and accounts for the large variety of the associated functions of an AMN, such as increasing arousal, processing of instructional cues, task general initiation transients, sustained goal maintenance, action planning, sympathetic drive for controlling physiology and internal organs (connectivity to adrenal medulla), and action-relevant bottom-up signals such as physical pain, errors and viscerosensation. In the functional mode continuum of the awake brain, the AMN-generated action-mode sits opposite the default-mode for self-referential, emotional and memory processing, with the default-mode network and AMN counterbalancing each other as yin and yang.
Collapse
Affiliation(s)
- Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Trier HA, Khalighinejad N, Hamilton S, Harbison C, Priestley L, Laubach M, Klein-Flügge M, Scholl J, Rushworth MFS. A distributed subcortical circuit linked to instrumental information-seeking about threat. Proc Natl Acad Sci U S A 2025; 122:e2410955121. [PMID: 39813246 PMCID: PMC11761969 DOI: 10.1073/pnas.2410955121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/07/2024] [Indexed: 01/18/2025] Open
Abstract
Daily life for humans and other animals requires switching between periods of threat- and reward-oriented behavior. We investigated neural activity associated with spontaneous switching, in a naturalistic task, between foraging for rewards and seeking information about potential threats with 7T fMRI in healthy humans. Switching was driven by estimates of likelihood of threat and reward. Both tracking of threat and switching to a vigilant mode in which people sought more information about potential threats were associated with specific but distributed patterns of activity spanning habenula, dorsal raphe nucleus (DRN), anterior cingulate cortex, and anterior insula cortex. Different aspects of the distributed activity patterns were linked to monitoring the threat level, seeking information about the threat, and actual threat detection. A distinct pattern of activity in the same circuit and elsewhere occurred during returns to reward-oriented behavior. Individual variation in DRN activity reflected individual variation in the seeking of information about threats.
Collapse
Affiliation(s)
- Hailey A. Trier
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Sorcha Hamilton
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Caroline Harbison
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Luke Priestley
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
| | - Mark Laubach
- Department of Neuroscience, American University, Washington, DC20016
| | - Miriam Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Warneford Hospital, OxfordOX3 7JX, United Kingdom
- Université Claude Bernard Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center U1028 UMR5292, PsyR2 Team, Centre Hospitalier Le Vinatier, 9678Bron, France
| | - Matthew F. S. Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, OxfordOX1 3TA, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, University of Oxford, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, OxfordOX3 9DU, United Kingdom
| |
Collapse
|
4
|
Grohn J, Khalighinejad N, Jahn CI, Bongioanni A, Schüffelgen U, Sallet J, Rushworth MFS, Kolling N. General mechanisms of task engagement in the primate frontal cortex. Nat Commun 2024; 15:4802. [PMID: 38839745 PMCID: PMC11153620 DOI: 10.1038/s41467-024-49128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Staying engaged is necessary to maintain goal-directed behaviors. Despite this, engagement exhibits continuous, intrinsic fluctuations. Even in experimental settings, animals, unlike most humans, repeatedly and spontaneously move between periods of complete task engagement and disengagement. We, therefore, looked at behavior in male macaques (macaca mulatta) in four tasks while recording fMRI signals. We identified consistent autocorrelation in task disengagement. This made it possible to build models capturing task-independent engagement. We identified task general patterns of neural activity linked to impending sudden task disengagement in mid-cingulate gyrus. By contrast, activity centered in perigenual anterior cingulate cortex (pgACC) was associated with maintenance of performance across tasks. Importantly, we carefully controlled for task-specific factors such as the reward history and other motivational effects, such as response vigor, in our analyses. Moreover, we showed pgACC activity had a causal link to task engagement: transcranial ultrasound stimulation of pgACC changed task engagement patterns.
Collapse
Affiliation(s)
- Jan Grohn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Caroline I Jahn
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08540, USA
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif/Yvette, France
| | - Urs Schüffelgen
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Jerome Sallet
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Nils Kolling
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 18 Avenue Doyen Lepine, 69500, Bron, France
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Psychiatry, University of Oxford, Oxford, UK
- Centre Hospitalier Le Vinatier, Pôle EST, Bron, France
| |
Collapse
|
5
|
Allen KR, Smith KA, Bird LA, Tenenbaum JB, Makin TR, Cowie D. Lifelong learning of cognitive styles for physical problem-solving: The effect of embodied experience. Psychon Bull Rev 2024; 31:1364-1375. [PMID: 38049575 PMCID: PMC11192818 DOI: 10.3758/s13423-023-02400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 12/06/2023]
Abstract
'Embodied cognition' suggests that our bodily experiences broadly shape our cognitive capabilities. We study how embodied experience affects the abstract physical problem-solving styles people use in a virtual task where embodiment does not affect action capabilities. We compare how groups with different embodied experience - 25 children and 35 adults with congenital limb differences versus 45 children and 40 adults born with two hands - perform this task, and find that while there is no difference in overall competence, the groups use different cognitive styles to find solutions. People born with limb differences think more before acting but take fewer attempts to reach solutions. Conversely, development affects the particular actions children use, as well as their persistence with their current strategy. Our findings suggest that while development alters action choices and persistence, differences in embodied experience drive changes in the acquisition of cognitive styles for balancing acting with thinking.
Collapse
Affiliation(s)
- Kelsey R Allen
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA.
| | - Kevin A Smith
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA
| | | | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, MIT and Center for Brains, Minds, and Machines, Cambridge, MA, USA
| | - Tamar R Makin
- MRC Cognition Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Dorothy Cowie
- Department of Psychology, Durham University, Durham, UK
| |
Collapse
|
6
|
Wang J, Li G, Ji G, Hu Y, Zhang W, Ji W, Yu J, Han Y, Cui G, Wang H, Manza P, Volkow ND, Wang GJ, Zhang Y. Habenula Volume and Functional Connectivity Changes Following Laparoscopic Sleeve Gastrectomy for Obesity Treatment. Biol Psychiatry 2024; 95:916-925. [PMID: 37480977 DOI: 10.1016/j.biopsych.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Neuroimaging studies have revealed alterations in habenular (Hb) structure and functional connectivity (FC) in psychiatric conditions. The Hb plays a particularly critical role in regulating negative emotions, which trigger excessive food intake and obesity. However, obesity and weight loss intervention (i.e., laparoscopic sleeve gastrectomy [LSG])-associated changes in Hb structure and FC have not been studied. METHODS We used voxel-based morphometry analysis to measure changes in gray matter volume (GMV) in the Hb in 56 patients with obesity at pre-LSG and 12 months post-LSG and in 78 normal-weight (NW) control participants. Then, we conducted Hb seed-based resting-state FC (RSFC) to examine obesity-related and LSG-induced alterations in RSFC. Finally, we used mediation analysis to characterize the interrelationships among Hb GMV, RSFC, and behaviors. RESULTS Compared with NW participants, Hb GMV was smaller in patients at pre-LSG and increased at 12 months post-LSG to levels equivalent to that of NW; in addition, increases in Hb GMV were correlated with reduced body mass index (BMI). Compared with NW participants, pre-LSG patients showed greater RSFCs of the Hb-insula, Hb-precentral gyrus, and Hb-rolandic operculum and weaker RSFCs of the Hb-thalamus, Hb-hypothalamus, and Hb-caudate; LSG normalized these RSFCs. Decreased RSFC of the Hb-insula was correlated with reduced BMI, Yale Food Addiction Scale rating, and emotional eating; reduced hunger levels were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus; and reduced BMI and Yale Food Addiction Scale ratings were correlated with increased RSFCs of the Hb-thalamus and Hb-hypothalamus, respectively. The bidirectional relationships between Hb GMV and RSFC of the Hb-insula contributed to reduced BMI. CONCLUSIONS These findings indicate that LSG increased Hb GMV and that its related improvement in RSFC of the Hb-insula may mediate long-term benefits of LSG for eating behaviors and weight loss.
Collapse
Affiliation(s)
- Jia Wang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Gang Ji
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Juan Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yu Han
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, China; International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China.
| |
Collapse
|
7
|
Bromberg-Martin ES, Feng YY, Ogasawara T, White JK, Zhang K, Monosov IE. A neural mechanism for conserved value computations integrating information and rewards. Nat Neurosci 2024; 27:159-175. [PMID: 38177339 PMCID: PMC10774124 DOI: 10.1038/s41593-023-01511-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/30/2023] [Indexed: 01/06/2024]
Abstract
Behavioral and economic theory dictate that we decide between options based on their values. However, humans and animals eagerly seek information about uncertain future rewards, even when this does not provide any objective value. This implies that decisions are made by endowing information with subjective value and integrating it with the value of extrinsic rewards, but the mechanism is unknown. Here, we show that human and monkey value judgements obey strikingly conserved computational principles during multi-attribute decisions trading off information and extrinsic reward. We then identify a neural substrate in a highly conserved ancient structure, the lateral habenula (LHb). LHb neurons signal subjective value, integrating information's value with extrinsic rewards, and the LHb predicts and causally influences ongoing decisions. Neurons in key input areas to the LHb largely signal components of these computations, not integrated value signals. Thus, our data uncover neural mechanisms of conserved computations underlying decisions to seek information about the future.
Collapse
Affiliation(s)
| | - Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - J Kael White
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Kaining Zhang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
- Pain Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
8
|
Rech F, Duffau H. Beyond Avoiding Hemiplegia after Glioma Surgery: The Need to Map Complex Movement in Awake Patient to Preserve Conation. Cancers (Basel) 2023; 15:cancers15051528. [PMID: 36900318 PMCID: PMC10001205 DOI: 10.3390/cancers15051528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Improving the onco-functional balance has always been a challenge in glioma surgery, especially regarding motor function. Given the importance of conation (i.e., the willingness which leads to action) in patient's quality of life, we propose here to review the evolution of its intraoperative assessment through a reminder of the increasing knowledge of its neural foundations-based upon a meta-networking organization at three levels. Historical preservation of the primary motor cortex and pyramidal pathway (first level), which was mostly dedicated to avoid hemiplegia, has nonetheless shown its limits to prevent the occurrence of long-term deficits regarding complex movement. Then, preservation of the movement control network (second level) has permitted to prevent such more subtle (but possibly disabling) deficits thanks to intraoperative mapping with direct electrostimulations in awake conditions. Finally, integrating movement control in a multitasking evaluation during awake surgery (third level) enabled to preserve movement volition in its highest and finest level according to patients' specific demands (e.g., to play instrument or to perform sports). Understanding these three levels of conation and its underlying cortico-subcortical neural basis is therefore critical to propose an individualized surgical strategy centered on patient's choice: this implies an increasingly use of awake mapping and cognitive monitoring regardless of the involved hemisphere. Moreover, this also pleads for a finer and systematic assessment of conation before, during and after glioma surgery as well as for a stronger integration of fundamental neurosciences into clinical practice.
Collapse
Affiliation(s)
- Fabien Rech
- Department of Neurosurgery, CHRU de Nancy, Université de Lorraine, F-54000 Nancy, France
- Le Centre de Recherche en Automatique de Nancy, Le Centre National de la Recherche Scientifique, Université de Lorraine, F-54000 Nancy, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295 Montpellier, France
- Team ‘Plasticity of Central Nervous System, Stem Cells and Glial Tumours’, INSERM U1191, Institute of Genomics of Montpellier, University of Montpellier, F-34295 Montpellier, France
- Correspondence:
| |
Collapse
|
9
|
Preferences for seeking effort or reward information bias the willingness to work. Sci Rep 2022; 12:19486. [PMID: 36376340 PMCID: PMC9663561 DOI: 10.1038/s41598-022-21917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Research suggests that the temporal order in which people receive information about costs and benefits whilst making decisions can influence their choices. But, do people have a preference for seeking information about costs or benefits when making effort-based decisions, and does this impact motivation? Here, participants made choices about whether to exert different levels of physical effort to obtain different magnitudes of reward, or rest for low reward. Prior to each effort-based choice, they also had to decide which information they wanted to see first: how much physical effort would be required, or how large the reward would be. We found no overall preference for seeking reward or effort information first, but motivation did change when people saw reward or effort information first. Seeking effort information first, both someone's average tendency to do so and their choice to see effort first on a given trial, was associated with reductions in the willingness to exert higher effort. Moreover, the tendency to prefer effort information first was associated with reduced vigorous exercise and higher levels of fatigue in everyday life. These findings highlight that preferences for seeking effort information may be a bias that reduces people's willingness to exert effort in the lab and in everyday life.
Collapse
|
10
|
Klein-Flügge MC, Bongioanni A, Rushworth MFS. Medial and orbital frontal cortex in decision-making and flexible behavior. Neuron 2022; 110:2743-2770. [PMID: 35705077 DOI: 10.1016/j.neuron.2022.05.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/15/2022]
Abstract
The medial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and rodents and argue that several regions with different functional roles can be identified in the dorsal anterior cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner in which these areas represent the value of the environment and specific choices is different from subcortical brain regions and more complex than previously thought. Although activity in some regions reflects distributions of reward and opportunities across the environment, in other cases, activity reflects the structural relationships between features of the environment that animals can use to infer what decision to take even if they have not encountered identical opportunities in the past.
Collapse
Affiliation(s)
- Miriam C Klein-Flügge
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK; Department of Psychiatry, University of Oxford, Warneford Lane, Headington, Oxford OX3 7JX, UK.
| | - Alessandro Bongioanni
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3TA, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Nuffield Department of Clinical Neurosciences, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|