1
|
Plourde A, Ogata-Bean JC, Vahidi S. Mapping the structural heterogeneity of Pup ligase PafA using H/D exchange mass spectrometry. J Biol Chem 2025; 301:108437. [PMID: 40122174 PMCID: PMC12053664 DOI: 10.1016/j.jbc.2025.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025] Open
Abstract
The Pup-proteasome system (PPS) is a unique bacterial proteolytic pathway found in some bacterial species, including in Mycobacterium tuberculosis, that plays a vital role in maintaining proteome integrity and survival during infection. Pupylation is the process of tagging substrates with Pup for degradation and is catalyzed by PafA, the sole Pup ligase in bacteria. However, how PafA interacts with diverse targets and its oligomeric state remains poorly understood. Although X-ray crystal structures have characterized PafA as a domain-swapped dimer, it is widely regarded as functionally active in its monomeric form. It remains to be established whether PafA dimerizes in solution, and how dimerization influences its function. In this study, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS) alongside complementary biophysical techniques to explore the oligomeric states and conformational dynamics of PafA. We show that recombinantly-produced PafA exists in a monomeric and a domain-swapped dimeric state in solution. Although nucleotide binding stabilizes PafAdimer, it primarily adopts a catalytically inactive conformation. Our HDX-MS highlighted regions throughout the N- and C-terminal domains that facilitate the PafA dimerization process. HDX-MS also revealed nucleotide binding induces global conformational changes on PafAmonomer, underscoring the structural plasticity of this promiscuous enzyme. Our findings enhance our understanding of the structural and conformational heterogeneity of PafA and demonstrate how nucleotide binding and dimerization may influence its function.
Collapse
Affiliation(s)
- Alicia Plourde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jacquelyn C Ogata-Bean
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Siavash Vahidi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a depupylation regulator for an essential enzyme in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407239121. [PMID: 39585979 PMCID: PMC11626117 DOI: 10.1073/pnas.2407239121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb), proteins that are posttranslationally modified with a prokaryotic ubiquitin-like protein (Pup) can be degraded by bacterial proteasomes. A single Pup-ligase and depupylase shape the pupylome, but the mechanisms regulating their substrate specificity are incompletely understood. Here, we identified a depupylation regulator, a protein called CoaX, through its copurification with the depupylase Dop. CoaX is a pseudopantothenate kinase that showed evidence of binding to pantothenate, an essential nutrient Mtb synthesizes, but not its phosphorylation. In a ∆coaX mutant, pantothenate synthesis enzymes including PanB, a substrate of the Pup-proteasome system (PPS), were more abundant than in the parental strain. In vitro, CoaX specifically accelerated depupylation of Pup~PanB, while addition of pantothenate inhibited this reaction. In culture, media supplementation with pantothenate decreased PanB levels, which required CoaX. Collectively, we propose CoaX regulates PanB abundance in response to pantothenate levels by modulating its vulnerability to proteolysis by Mtb proteasomes.
Collapse
Affiliation(s)
- Shoshanna C. Kahne
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Jin Hee Yoo
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - James Chen
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Kehilwe Nakedi
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - Lakshminarayan M. Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Nora M. Samhadaneh
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - L. Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Damian C. Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - K. Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
3
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
4
|
Block MF, Delley CL, Keller LML, Stuehlinger TT, Weber-Ban E. Electrostatic interactions guide substrate recognition of the prokaryotic ubiquitin-like protein ligase PafA. Nat Commun 2023; 14:5266. [PMID: 37644028 PMCID: PMC10465538 DOI: 10.1038/s41467-023-40807-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.
Collapse
Affiliation(s)
- Matthias F Block
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | - Cyrille L Delley
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
- University of California, San Francisco, USA
| | - Lena M L Keller
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | - Timo T Stuehlinger
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology & Biophysics, Zurich, Switzerland.
| |
Collapse
|
5
|
Yoo JH, Kahne SC, Darwin KH. A conserved loop sequence of the proteasome system depupylase Dop regulates substrate selectivity in Mycobacterium tuberculosis. J Biol Chem 2022; 298:102478. [PMID: 36100038 PMCID: PMC9556782 DOI: 10.1016/j.jbc.2022.102478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
Mycobacteria use a proteasome system that is similar to a eukaryotic proteasome but do not use ubiquitin to target proteins for degradation. Instead, mycobacteria encode a prokaryotic ubiquitin-like protein (Pup) that posttranslationally modifies proteins to mark them for proteolysis. Pupylation occurs on lysines of targeted proteins and is catalyzed by the ligase PafA. Like ubiquitylation, pupylation can be reversed by the depupylase Dop, which shares high structural similarity with PafA. Unique to Dop near its active site is a disordered loop of approximately 40 amino acids that is highly conserved among diverse dop-containing bacterial genera. To understand the function of this domain, we deleted discrete sequences from the Dop loop and assessed pupylation in mutant strains of Mycobacterium tuberculosis. We determined that various Dop loop mutations resulted in altered pupylome profiles, in particular when mutant dop alleles were overexpressed. Taken together, our data suggest these conserved amino acids play a role in substrate selectivity for Dop.
Collapse
Affiliation(s)
- Jin Hee Yoo
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - Shoshanna C Kahne
- Department of Microbiology, New York University School of Medicine, New York, New York, USA
| | - K Heran Darwin
- Department of Microbiology, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
6
|
Li C, Liu S, Dong B, Li C, Jian L, He J, Zeng J, Zhou Q, Jia D, Luo Y, Sun Q. Discovery and Mechanistic Study of Mycobacterium tuberculosis PafA Inhibitors. J Med Chem 2022; 65:11058-11065. [PMID: 35926511 DOI: 10.1021/acs.jmedchem.2c00289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tuberculosis is caused by the bacterium Mycobacterium tuberculosis (Mtb) and is ranked as the second killer infectious disease after COVID-19. Proteasome accessory factor A (PafA) is considered an attractive target because of its low sequence conservation in humans and its role in virulence. In this study, we designed a mutant of Mtb PafA that enabled large-scale purification of active PafA. Using a devised high-throughput screening assay, two PafA inhibitors were discovered. ST1926 inhibited Mtb PafA by binding in the Pup binding groove, but it was less active against Corynebacterium glutamicum PafA because the ST1926-binding residues are not conserved. Bithionol bound to the conserved ATP-binding pocket, thereby, inhibits PafA in an ATP-competitive manner. Both ST1926 and bithionol inhibited the growth of an attenuated Mtb strain (H37Ra) at micromolar concentrations. Our work thus provides new tools for tuberculosis research and a foundation for future PafA-targeted drug development for treating tuberculosis.
Collapse
Affiliation(s)
- Cong Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, P. R. China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Baoyu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Chungen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Lunan Jian
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, P. R. China
| | - Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, P. R. China
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, P. R. China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu 610041, P. R. China
| |
Collapse
|