1
|
Fu R, Wang W, Huo Y, Li L, Chen R, Lin Z, Tao Y, Peng X, Huang W, Guo C. The mechanosensitive ion channel Piezo1 contributes to podocyte cytoskeleton remodeling and development of proteinuria in lupus nephritis. Kidney Int 2024; 106:625-639. [PMID: 39084260 DOI: 10.1016/j.kint.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Piezo1 functions as a special transducer of mechanostress into electrochemical signals and is implicated in the pathogenesis of various diseases across different disciplines. However, whether Piezo1 contributes to the pathogenesis of lupus nephritis (LN) remains elusive. To study this, we applied an agonist and antagonist of Piezo1 to treat lupus-prone MRL/lpr mice. Additionally, a podocyte-specific Piezo1 knockout mouse model was also generated to substantiate the role of Piezo1 in podocyte injury induced by pristane, a murine model of LN. A marked upregulation of Piezo1 was found in podocytes in both human and murine LN. The Piezo1 antagonist, GsMTx4, significantly alleviated glomerulonephritis and tubulointerstitial damage, improved kidney function, decreased proteinuria, and mitigated podocyte foot process effacement in MRL/lpr mice. Moreover, podocyte-specific Piezo1 deletion showed protective effects on the progression of proteinuria and podocyte foot process effacement in the murine LN model. Mechanistically, Piezo1 expression was upregulated by inflammatory cytokines (IL-6, TNF-α and IFN-γ), soluble urokinase Plasminogen Activator Receptor and its own activation. Activation of Piezo1 elicited calcium influx, which subsequently enhanced Rac1 activity and increased active paxillin, thereby promoting cytoskeleton remodeling and decreasing podocyte motility. Thus, our work demonstrated that Piezo1 contributed to podocyte injury and proteinuria progression in LN. Hence, targeted therapy aimed at decreasing or inhibiting Piezo1 could represent a novel strategy to treat LN.
Collapse
Affiliation(s)
- Rong Fu
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenqian Wang
- Department of Hematology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yongbao Huo
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liu Li
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ruilin Chen
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zeying Lin
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Tao
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuan Peng
- Department of Nephrology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Wenhui Huang
- Department of Rheumatology, Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Chaohuan Guo
- Department of Rheumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Kwak Y, Lee JY, Kim JS, Yang JW, Hwang KH, Cha SK, Eom M. Clinical and pathological significance of Orai1 channel expression in human diabetic nephropathy. Kidney Res Clin Pract 2024; 43:626-634. [PMID: 39109399 PMCID: PMC11467362 DOI: 10.23876/j.krcp.23.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Targeted therapies for diabetic nephropathy (DN) are lacking, partly due to their irreversible nature. The role of Orai1, a store-operated Ca2+ channel, in DN remains debated, with conflicting evidence on its effect on proteinuria in animal models. We aimed to elucidate the functional relevance of Orai1 expression for clinicopathological parameters in patients with DN. METHODS In this study, we included 93 patients diagnosed with DN between 2009 and 2019. Immunohistochemical staining for Orai1 was performed on paraffin-embedded kidney sections. The significance of Orai1 expression in human DN was assessed by examining its correlation with DN's pathological and clinical parameters using Pearson's correlation coefficient and univariate logistic regression. RESULTS Orai1 was significantly overexpressed in DN patients compared to control. A strong correlation was observed between increased Orai1 expression and higher Renal Pathology Society DN classification, enhanced interstitial fibrosis and tubular atrophy scores. Positive correlations with serum creatinine levels and prognosis of chronic kidney disease (CKD) by glomerular filtration rate (GFR) and albuminuria category were noted but the estimated GFR was inversely related to Orai1 expression. Orai1's association with advanced CKD stages persisted even after adjusting for confounding variables in multivariate logistic regression analysis. CONCLUSION Orai1 expression is closely associated with histological and clinical severities of DN, suggesting its potential as a predictive biomarker for disease progression and prognosis. These findings provide new perspectives on therapeutic interventions targeting Orai1 in DN.
Collapse
Affiliation(s)
- Yooujin Kwak
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jun Young Lee
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Transplantation Center, Wonju Severance Christian Hospital, Wonju, Republic of Korea
- Center of Evidence-Based Medicine, Institute of Convergence Science, Yonsei University, Seoul, Republic of Korea
- National Health Big Data Clinical Research Institute, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Seok Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jae Won Yang
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Kyu-Hee Hwang
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Seung-Kuy Cha
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Minseob Eom
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
3
|
Ma R, Tao Y, Wade ML, Mallet RT. Non-voltage-gated Ca 2+ channel signaling in glomerular cells in kidney health and disease. Am J Physiol Renal Physiol 2024; 327:F249-F264. [PMID: 38867675 PMCID: PMC11460346 DOI: 10.1152/ajprenal.00130.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024] Open
Abstract
Positioned at the head of the nephron, the renal corpuscle generates a plasma ultrafiltrate to initiate urine formation. Three major cell types within the renal corpuscle, the glomerular mesangial cells, podocytes, and glomerular capillary endothelial cells, communicate via endocrine- and paracrine-signaling mechanisms to maintain the structure and function of the glomerular capillary network and filtration barrier. Ca2+ signaling mediated by several distinct plasma membrane Ca2+ channels impacts the functions of all three cell types. The past two decades have witnessed pivotal advances in understanding of non-voltage-gated Ca2+ channel function and regulation in the renal corpuscle in health and renal disease. This review summarizes the current knowledge of the physiological and pathological impact of non-voltage-gated Ca2+ channel signaling in mesangial cells, podocytes and glomerular capillary endothelium. The main focus is on transient receptor potential and store-operated Ca2+ channels, but ionotropic N-methyl-d-aspartate receptors and purinergic receptors also are discussed. This update of Ca2+ channel functions and their cellular signaling cascades in the renal corpuscle is intended to inform the development of therapeutic strategies targeting these channels to treat kidney diseases, particularly diabetic nephropathy.
Collapse
Affiliation(s)
- Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Michael L Wade
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, United States
| |
Collapse
|
4
|
Kim JH, Hwang KH, Kim SH, Kim HJ, Kim JM, Lee MY, Cha SK, Lee J. Particulate Matter-Induced Neurotoxicity: Unveiling the Role of NOX4-Mediated ROS Production and Mitochondrial Dysfunction in Neuronal Apoptosis. Int J Mol Sci 2024; 25:6116. [PMID: 38892302 PMCID: PMC11172693 DOI: 10.3390/ijms25116116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Urban air pollution, a significant environmental hazard, is linked to adverse health outcomes and increased mortality across various diseases. This study investigates the neurotoxic effects of particulate matter (PM), specifically PM2.5 and PM10, by examining their role in inducing oxidative stress and subsequent neuronal cell death. We highlight the novel finding that PM increases mitochondrial ROS production via stimulating NOX4 activity, not through its expression level in Neuro-2A cells. Additionally, PMs provoke ROS production via increasing the expression and activity of NOX2 in SH-SY5Y human neuroblastoma cells, implying differential regulation of NOX proteins. This increase in mitochondrial ROS triggers the opening of the mitochondrial permeability transition pore (mPTP), leading to apoptosis through key mediators, including caspase3, BAX, and Bcl2. Notably, the voltage-dependent anion-selective channel 1 (VDAC1) increases at 1 µg/mL of PM2.5, while PM10 triggers an increase from 10 µg/mL. At the same concentration (100 µg/mL), PM2.5 causes 1.4 times higher ROS production and 2.4 times higher NOX4 activity than PM10. The cytotoxic effects induced by PMs were alleviated by NOX inhibitors GKT137831 and Apocynin. In SH-SY5Y cells, both PM types increase ROS and NOX2 levels, leading to cell death, which Apocynin rescues. Variability in NADPH oxidase sources underscores the complexity of PM-induced neurotoxicity. Our findings highlight NOX4-driven ROS and mitochondrial dysfunction, suggesting a potential therapeutic approach for mitigating PM-induced neurotoxicity.
Collapse
Affiliation(s)
- Ji-Hee Kim
- Department of Occupational Therapy, Soonchunhyang University, Asan-si 31538, Republic of Korea;
| | - Kyu-Hee Hwang
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Seong-Heon Kim
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea;
| | - Hi-Ju Kim
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| | - Jung-Min Kim
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Republic of Korea; (J.-M.K.); (M.-Y.L.)
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan-si 31538, Republic of Korea; (J.-M.K.); (M.-Y.L.)
- Department of Medical Biotechnology, Soonchunhyang University, Asan-si 31538, Republic of Korea
| | - Seung-Kuy Cha
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Jinhee Lee
- Department of Psychiatry, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea;
| |
Collapse
|
5
|
Song L, Shen W, Wang L, Song J, Tu W, Ke B, Fang X. Annexin A1 may contribute to the morphological changes in podocytes by mediating endocytic vesicle fusion and transport via promotion of SNARE assembly in idiopathic membranous nephropathy. Nephrology (Carlton) 2024; 29:76-85. [PMID: 37927194 DOI: 10.1111/nep.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Annexin A1 is a membrane-associated calcium-binding protein that participates in the progression of many diseases by facilitating vesicle aggregation. It has been documented that reducing vesicle formation alleviates podocyte injury and albuminuria in idiopathic membranous nephropathy (IMN). However, the role of Annexin A1 (ANXA1) in IMN is unknown. METHODS Electron microscopy was used to observe the numbers of vesicles in podocytes. The expression of ANXA1 in IMN was investigated by bioinformatics analysis. We validated the hub genes with the Nephroseq V5 online tool and microarray data from the GEO. Immunohistochemical staining and qPCR were performed to measure gene and protein expression. RESULTS The numbers of vesicles in IMN podocytes were significantly increased. Bioinformatics analysis showed that ANXA1, one of the differentially expressed genes, was upregulated in glomeruli from IMN patients. In the validation database and dataset, we confirmed that ANXA1 expression was upregulated in the glomeruli of IMN patients. We revealed that the increased expression of ANXA1 was negatively correlated with the glomerular filtration rate (GFR) and proteinuria. Moreover, ANXA1 was enriched in the biological process of vesicle fusion, in which the expression of SNAREs and the SNARE complex was increased. Finally, the expression of ANXA1 and genes related to SNAREs and the SNARE complex was upregulated in glomeruli from IMN patients according to immunohistochemical staining and qPCR. CONCLUSION We conclude that ANXA1 may mediate endocytic vesicle fusion and transport by promoting SNARE assembly, contributing to the morphological changes in podocytes and massive proteinuria in IMN.
Collapse
Affiliation(s)
- Lei Song
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Daza-Arnedo R, Rico-Fontalvo J, Aroca-Martínez G, Rodríguez-Yanez T, Martínez-Ávila MC, Almanza-Hurtado A, Cardona-Blanco M, Henao-Velásquez C, Fernández-Franco J, Unigarro-Palacios M, Osorio-Restrepo C, Uparella-Gulfo I. Insulin and the kidneys: a contemporary view on the molecular basis. FRONTIERS IN NEPHROLOGY 2023; 3:1133352. [PMID: 37675359 PMCID: PMC10479562 DOI: 10.3389/fneph.2023.1133352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/07/2023] [Indexed: 09/08/2023]
Abstract
Insulin is a hormone that is composed of 51 amino acids and structurally organized as a hexamer comprising three heterodimers. Insulin is the central hormone involved in the control of glucose and lipid metabolism, aiding in processes such as body homeostasis and cell growth. Insulin is synthesized as a large preprohormone and has a leader sequence or signal peptide that appears to be responsible for transport to the endoplasmic reticulum membranes. The interaction of insulin with the kidneys is a dynamic and multicenter process, as it acts in multiple sites throughout the nephron. Insulin acts on a range of tissues, from the glomerulus to the renal tubule, by modulating different functions such as glomerular filtration, gluconeogenesis, natriuresis, glucose uptake, regulation of ion transport, and the prevention of apoptosis. On the other hand, there is sufficient evidence showing the insulin receptor's involvement in renal functions and its responsibility for the regulation of glucose homeostasis, which enables us to understand its contribution to the insulin resistance phenomenon and its association with the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Rodrigo Daza-Arnedo
- Department of Nephrology, Colombian Association of Nephrology, Cartagena, Colombia
| | - Jorge Rico-Fontalvo
- Department of Nephrology, Colombian Association of Nephrology, Cartagena, Colombia
- Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
| | - Gustavo Aroca-Martínez
- Department of Nephrology, Colombian Association of Nephrology, Cartagena, Colombia
- Faculty of Medicine, Universidad Simón Bolívar, Barranquilla, Colombia
| | | | | | | | - María Cardona-Blanco
- Department of Nephrology, Colombian Association of Nephrology, Cartagena, Colombia
| | | | - Jorge Fernández-Franco
- Department of Internal Medicine, Endocrinology Fellowship, Fundación Universitaria de Ciencias de la Salud—Hospital San José, Bogotá, Colombia
| | - Mario Unigarro-Palacios
- Department of Internal Medicine, Endocrinology Fellowship, Fundación Universitaria de Ciencias de la Salud—Hospital San José, Bogotá, Colombia
| | | | | |
Collapse
|
7
|
Wang L, Liu H, Wang Y, Hong X, Huang X, Han M, Wang D, Shan W, Li P, Gu H, Liu B, Bao K. Sanqi Qushi Granule Alleviates Proteinuria and Podocyte Damage in NS Rat: A Network Pharmacology Study and in vivo Experimental Validation. Drug Des Devel Ther 2023; 17:1847-1861. [PMID: 37360573 PMCID: PMC10289100 DOI: 10.2147/dddt.s403617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Background Nephrotic syndrome (NS) and its numerous complications remain the leading causes of morbidity and mortality globally. Sanqi Qushi granule (SQG) is clinically effective in NS. However, its potential mechanisms have yet to be elucidated. Methods A network pharmacology approach was employed in this study. Based on oral bioavailability and drug-likeness, potential active ingredients were picked out. After acquiring overlapping targets for drug genes and disease-related genes, a component-target-disease network and protein-protein interaction analysis (PPI) were constructed using Cytoscape, followed by GO and KEGG enrichment analyses. Adriamycin was injected into adult male Sprague-Dawley (SD) rats via the tail vein to establish NS model. Kidney histology, 24-hr urinary protein level, creatinine (Cr), blood urea nitrogen (BUN), triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL-C) level were assessed. Western blotting, immunohistochemistry, and TUNEL staining were applied. Results In total, 144 latent targets in SQG acting on NS were screened by a network pharmacology study, containing AKT, Bax, and Bcl-2. KEGG enrichment analysis suggested that PI3K/AKT pathway was enriched primarily. In vivo validation results revealed that SQG intervention ameliorated urine protein level and podocyte lesions in the NS model. Moreover, SQG therapy significantly inhibited renal cells apoptosis and decreased the ratio of Bax/Bcl-2 protein expression. Moreover, we found that Caspase-3 regulated the PI3K/AKT pathway in NS rats, which mediated the anti-apoptosis effect. Conclusion By combining network pharmacology with experimental verification in vivo, this work confirmed the treatment efficacy of SQG for NS. SQG protected podocyte from injury and inhibited kidney apoptosis in NS rats via the PI3K/AKT pathway at least partially.
Collapse
Affiliation(s)
- Lijuan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Huoliang Liu
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yi Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - XiaoFan Hong
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Xiaoyan Huang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
| | - Miaoru Han
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dan Wang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Wenjun Shan
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Ping Li
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| | - Haowen Gu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bo Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Chirality Research on Active Components of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Kun Bao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory on Chinese Medicine and Immune Disease Research, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Gusev K, Shalygin A, Kolesnikov D, Shuyskiy L, Makeenok S, Glushankova L, Sivak K, Yakovlev K, Orshanskaya Y, Wang G, Bakhtyukov A, Derkach K, Shpakov A, Kaznacheyeva E. Reorganization and Suppression of Store-Operated Calcium Entry in Podocytes of Type 2 Diabetic Rats. Int J Mol Sci 2023; 24:ijms24087259. [PMID: 37108424 PMCID: PMC10139047 DOI: 10.3390/ijms24087259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes mellitus (DM2) is a widespread metabolic disorder that results in podocyte damage and diabetic nephropathy. Previous studies demonstrated that TRPC6 channels play a pivotal role in podocyte function and their dysregulation is associated with development of different kidney diseases including nephropathy. Here, using single channel patch clamp technique, we demonstrated that non-selective cationic TRPC6 channels are sensitive to the Ca2+ store depletion in human podocyte cell line Ab8/13 and in freshly isolated rat glomerular podocytes. Ca2+ imaging indicated the involvement of ORAI and sodium-calcium exchanger in Ca2+ entry induced upon store depletion. In male rats fed a high-fat diet combined with a low-dose streptozotocin injection, which leads to DM2 development, we observed the reduction of a store-operated Ca2+ entry (SOCE) in rat glomerular podocytes. This was accompanied by a reorganization of store-operated Ca2+ influx such that TRPC6 channels lost their sensitivity to Ca2+ store depletion and ORAI-mediated Ca2+ entry was suppressed in TRPC6-independent manner. Altogether our data provide new insights into the mechanism of SOCE organization in podocytes in the norm and in pathology, which should be taken into account when developing pharmacological treatment of the early stages of diabetic nephropathy.
Collapse
Affiliation(s)
- Konstantin Gusev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Alexey Shalygin
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Dmitrii Kolesnikov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Leonid Shuyskiy
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Sofia Makeenok
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Lyubov Glushankova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Kirill Yakovlev
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Yana Orshanskaya
- Smorodintsev Research Institute of Influenza WHO National Influenza Centre of Russia, St. Petersburg 197376, Russia
| | - Guanghui Wang
- Department of Pharmacology, College of Pharmaceutic Sciences, Soochow University, Suzhou 215031, China
| | - Andrey Bakhtyukov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Kira Derkach
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Alexander Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Elena Kaznacheyeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
9
|
CircRNA_0017076 acts as a sponge for miR-185-5p in the control of epithelial-to-mesenchymal transition of tubular epithelial cells during renal interstitial fibrosis. Hum Cell 2023; 36:1024-1040. [PMID: 36828974 DOI: 10.1007/s13577-023-00877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/04/2023] [Indexed: 02/26/2023]
Abstract
Renal interstitial fibrosis (RIF) is a common pathological hallmark of progressive chronic kidney disease (CKD). Circular RNAs (circRNAs) are involved in certain renal diseases, but their role in RIF is largely unknown. The present study investigated the effects and potential mechanisms of circRNA_0017076 in RIF. CircRNA_0017076 expression was markedly upregulated in transforming growth factor-β1 (TGF-β1)-treated renal tubular epithelial cells (RTECs) and kidney biopsy samples from patients with RIF. Functional assays showed that circRNA_0017076 colocalized with microRNA-185-5p (miR-185-5p) and inhibited miR-185-5p function via direct binding to miR-185-5p. In vitro, the knockdown of circRNA_0017076 inhibited the calcium ion (Ca2+) influx-mediated epithelial-to-mesenchymal transition (EMT) of RTECs and downregulated the expression of stromal interaction molecule 1 (STIM1), which is a target protein of miR-185-5p. Silencing mmu_circ_0004488 reduced fibrotic lesions in the kidneys of unilateral ureteral obstruction (UUO) mice by targeting the miR-185-5p/Stim1 axis. For the first time, we identified circRNA_0017076 as a sponge for miR-185-5p, which regulates STIM1 gene expression and is involved in RIF. Our results support circRNA_0017076 as a potential therapeutic target for RIF disease.
Collapse
|
10
|
Kim YJ, Hwang SW, Lee T, Lee JY, Uh Y. Association between urinary albumin creatinine ratio and cardiovascular disease. PLoS One 2023; 18:e0283083. [PMID: 36943853 PMCID: PMC10030008 DOI: 10.1371/journal.pone.0283083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION The association between microalbuminuria and cardiovascular disease (CVD) is accumulating in various patient populations. However, when stratified by sex, the relationship between microalbuminuria and CVD remains unclear. METHOD We obtained data from the 2011-2014 and 2019-2020 Korea National Health and Nutrition Examination Survey (KNHANES). Microalbuminuria was measured based on spot urine albumin-creatinine ratio (UACR). The Framingham risk score (FRS) model was implemented to evaluate the CVD risk. Linear and logistic regression models were used to identify the associations of microalbuminuria status with cardiometabolic predictors and CVD status determined by the FRS score. RESULTS Among 19,340 representative Korean participants, the (UACR) in Korean women and men with history of CVD was higher than in those without history of CVD. Among patients without history of CVD, multivariate regression analysis showed that a high UACR was related to older age, lower high-density lipoprotein cholesterol level, higher total cholesterol level, higher systolic blood pressure, higher prevalence of current smoking, higher prevalence of diabetes, and higher anti-hypertensive medication use in both women and men. The UACR showed a positive linear correlation with the Framingham risk score in both women and men. CONCLUSION The presence of microalbuminuria was significantly associated with the cardiometabolic risk factors and the increased risk of CVD evaluated by FRS model in both women and men in a nationally representative sample of Korea.
Collapse
Affiliation(s)
- Yoo Jin Kim
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sang Won Hwang
- Artificial Intelligence Bigdata Medical Center, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Taesic Lee
- Department of Family Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- The Study of Obesity and Metabolic Syndrome, KAFM, Korea
| | - Jun Young Lee
- Division of Nephrology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
11
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
12
|
Tao Y, Mallet RT, Mathis KW, Ma R. Store-operated Ca 2+ channel signaling: Novel mechanism for podocyte injury in kidney disease. Exp Biol Med (Maywood) 2022; 248:425-433. [PMID: 36533574 DOI: 10.1177/15353702221139187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Studies over the last decade have markedly broadened our understanding of store-operated Ca2+ channels (SOCs) and their roles in kidney diseases and podocyte dysfunction. Podocytes are terminally differentiated glomerular visceral epithelial cells which are tightly attached to the glomerular capillary basement membrane. Podocytes and their unique foot processes (pedicels) constitute the outer layer of the glomerular filtration membrane and the final barrier preventing filtration of albumin and other plasma proteins. Diabetic nephropathy and other renal diseases are associated with podocyte injury and proteinuria. Recent evidence demonstrates a pivotal role of store-operated Ca2+ entry (SOCE) in maintaining structural and functional integrity of podocytes. This article reviews the current knowledge of SOCE and its contributions to podocyte physiology. Recent studies of the contributions of SOC dysfunction to podocyte injury in both cell culture and animal models are discussed, including work in our laboratory. Several downstream signaling pathways mediating SOC function in podocytes also are examined. Understanding the pivotal roles of SOC in podocyte health and disease is essential, as SOCE-activated signaling pathways are potential treatment targets for podocyte injury-related kidney diseases.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Robert T Mallet
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Keisa W Mathis
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Ahmadian E, Eftekhari A, Atakishizada S, Valiyeva M, Ardalan M, Khalilov R, Kavetskyy T. Podocytopathy: The role of actin cytoskeleton. Biomed Pharmacother 2022; 156:113920. [DOI: 10.1016/j.biopha.2022.113920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022] Open
|
14
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
15
|
Bong AHL, Hua T, So CL, Peters AA, Robitaille M, Tan YY, Roberts-Thomson SJ, Monteith GR. AKT Regulation of ORAI1-Mediated Calcium Influx in Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14194794. [PMID: 36230716 PMCID: PMC9562175 DOI: 10.3390/cancers14194794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary A remodeling in calcium homeostasis and the protein kinase AKT signaling pathway often promotes tumorigenic traits in cancer cells. Changes in calcium signaling can be mediated through altered expression or activity of calcium channels and pumps, which constitute a class of targetable therapeutic targets. Currently, the interplay between the two signaling pathways in breast cancer cells is unclear. A better understanding of the association between calcium and AKT signaling, and the molecular players involved may identify novel therapeutic strategies for breast cancers with abnormal AKT signaling. Using fluorescence calcium imaging and gene silencing/knockout techniques, we showed that increased AKT activation results in increased calcium entry, and that this is mediated through ORAI1 calcium channels. Future studies exploring therapeutic strategies to target PTEN-deficient or hyperactivated AKT cancers should consider this novel correlation between AKT activation and ORAI1-mediated calcium influx. Abstract Although breast cancer cells often exhibit both abnormal AKT signaling and calcium signaling, the association between these two pathways is unclear. Using a combination of pharmacological tools, siRNA and CRISPR/Cas9 gene silencing techniques, we investigated the association between PTEN, AKT phosphorylation and calcium signaling in a basal breast cancer cell line. We found that siRNA-mediated PTEN silencing promotes AKT phosphorylation and calcium influx in MDA-MB-231 cells. This increase in AKT phosphorylation and calcium influx was phenocopied by the pharmacological AKT activator, SC79. The increased calcium influx associated with SC79 is inhibited by silencing AKT2, but not AKT1. This increase in calcium influx is suppressed when the store-operated calcium channel, ORAI1 is silenced. The results from this study open a novel avenue for therapeutic targeting of cancer cells with increased AKT activation. Given the association between ORAI1 and breast cancer, ORAI1 is a possible therapeutic target in cancers with abnormal AKT signaling.
Collapse
Affiliation(s)
- Alice Hui Li Bong
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Trinh Hua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Choon Leng So
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Amelia A. Peters
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yin Yi Tan
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | | | - Gregory R. Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
- Mater Research, Translational Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
- Correspondence:
| |
Collapse
|
16
|
Tao Y, Chaudhari S, Shotorbani PY, Ding Y, Chen Z, Kasetti R, Zode G, Ma R. Enhanced Orai1-mediated store-operated Ca 2+ channel/calpain signaling contributes to high glucose-induced podocyte injury. J Biol Chem 2022; 298:101990. [PMID: 35490782 PMCID: PMC9136128 DOI: 10.1016/j.jbc.2022.101990] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/09/2023] Open
Abstract
Podocyte injury induced by hyperglycemia is the main cause of kidney dysfunction in diabetic nephropathy. However, the underlying mechanism is unclear. Store-operated Ca2+ entry (SOCE) regulates a diversity of cellular processes in a variety of cell types. Calpain, a Ca2+-dependent cysteine protease, was recently shown to be involved in podocyte injury. In the present study, we sought to determine whether increased SOCE contributed to high glucose (HG)-induced podocyte injury through activation of the calpain pathway. In cultured human podocytes, whole-cell patch clamp indicated the presence of functional store-operated Ca2+ channels, which are composed of Orai1 proteins and mediate SOCE. Western blots showed that HG treatment increased the protein abundance of Orai1 in a dose-dependent manner. Consistently, calcium imaging experiments revealed that SOCE was significantly enhanced in podocytes following HG treatment. Furthermore, HG treatment caused overt podocyte F-actin disorganization as well as a significant decrease in nephrin protein abundance, both of which are indications of podocyte injury. These podocyte injury responses were significantly blunted by both pharmacological inhibition of Orai1 using the small molecule inhibitor BTP2 or by genetic deletion of Orai1 using CRISPR-Cas9 lentivirus. Moreover, activation of SOCE by thapsigargin, an inhibitor of Ca2+ pump on the endoplasmic/sarcoplasmic reticulum membrane, significantly increased the activity of calpain, which was inhibited by BTP2. Finally, the calpain-1/calpain-2 inhibitor calpeptin significantly blunted the nephrin protein reduction induced by HG treatment. Taken together, our results suggest that enhanced signaling via an Orai1/SOCE/Calpain axis contributes to HG-induced podocyte injury.
Collapse
Affiliation(s)
- Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | | | - Yanfeng Ding
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Zhenglan Chen
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ramesh Kasetti
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Gulab Zode
- The North Texas Eye Research Institute and Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA.
| |
Collapse
|