1
|
Dorival J, Yuan H, Walker AS, Tang GL, Eichman BF. Yatakemycin biosynthesis requires two deoxyribonucleases for toxin self-resistance. RSC Chem Biol 2025; 6:94-105. [PMID: 39649339 PMCID: PMC11621827 DOI: 10.1039/d4cb00203b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024] Open
Abstract
The highly active natural product yatakemycin (YTM) from Streptomyces sp. TP-A0356 is a potent DNA damaging agent with antimicrobial and antitumor properties. The YTM biosynthesis gene cluster (ytk) contains several toxin self-resistance genes. Of these, ytkR2 encodes a DNA glycosylase that is important for YTM production and host survival by excising lethal YTM-adenine lesions from the genome, presumably initiating a base excision repair (BER) pathway. However, the genes involved in repair of the resulting apurinic/apyrimidinic (AP) site as the second BER step have not been identified. Here, we show that ytkR4 and ytkR5 are essential for YTM production and encode deoxyribonucleases related to other known DNA repair nucleases. Purified YtkR4 and YtkR5 exhibit AP endonuclease activity specific for YtkR2-generated AP sites, providing a basis for BER of the toxic AP intermediate produced from YTM-adenine excision and consistent with co-evolution of ytkR2, ytkR4, and ytkR5. YtkR4 and YtkR5 also exhibit 3'-5' exonuclease activity with differing substrate specificities. The YtkR5 exonuclease is capable of digesting through a YTM-DNA lesion and may represent an alternative repair mechanism to BER. We also show that ytkR4 and ytkR5 homologs are often clustered together in putative gene clusters related to natural product production, consistent with non-redundant roles in repair of other DNA adducts derived from genotoxic natural products.
Collapse
Affiliation(s)
- Jonathan Dorival
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
| | - Hua Yuan
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
| | - Allison S Walker
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Chemistry, Vanderbilt University Nashville Tennessee USA
| | - Gong-Li Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University Nashville Tennessee USA
- Department of Biochemistry, Vanderbilt University School of Medicine Nashville Tennessee USA
| |
Collapse
|
2
|
Newly Discovered Mechanisms of Antibiotic Self-Resistance with Multiple Enzymes Acting at Different Locations and Stages. Antibiotics (Basel) 2022; 12:antibiotics12010035. [PMID: 36671236 PMCID: PMC9854587 DOI: 10.3390/antibiotics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Self-resistance determinants are essential for the biosynthesis of bioactive natural products and are closely related to drug resistance in clinical settings. The study of self-resistance mechanisms has long moved forward on the discovery of new resistance genes and the characterization of enzymatic reactions catalyzed by these proteins. However, as more examples of self-resistance have been reported, it has been revealed that the enzymatic reactions contribute to self-protection are not confined to the cellular location where the final toxic compounds are present. In this review, we summarize representative examples of self-resistance mechanisms for bioactive natural products functional at different cell locations to explore the models of resistance strategies involved. Moreover, we also highlight those resistance determinants that are widespread in nature and describe the applications of self-resistance genes in natural product mining to interrogate the landscape of self-resistance genes in drug resistance-related new drug discovery.
Collapse
|
3
|
Bradley NP, Wahl KL, Steenwyk JL, Rokas A, Eichman BF. Resistance-Guided Mining of Bacterial Genotoxins Defines a Family of DNA Glycosylases. mBio 2022; 13:e0329721. [PMID: 35311535 PMCID: PMC9040887 DOI: 10.1128/mbio.03297-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/22/2022] [Indexed: 11/20/2022] Open
Abstract
Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from Streptomyces and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes-one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins-and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. IMPORTANCE Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although Streptomyces produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential.
Collapse
Affiliation(s)
- Noah P. Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Katherine L. Wahl
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Chen X, Bradley NP, Lu W, Wahl KL, Zhang M, Yuan H, Hou XF, Eichman B, Tang GL. Base excision repair system targeting DNA adducts of trioxacarcin/LL-D49194 antibiotics for self-resistance. Nucleic Acids Res 2022; 50:2417-2430. [PMID: 35191495 PMCID: PMC8934636 DOI: 10.1093/nar/gkac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
Two families of DNA glycosylases (YtkR2/AlkD, AlkZ/YcaQ) have been found to remove bulky and crosslinking DNA adducts produced by bacterial natural products. Whether DNA glycosylases eliminate other types of damage formed by structurally diverse antibiotics is unknown. Here, we identify four DNA glycosylases-TxnU2, TxnU4, LldU1 and LldU5-important for biosynthesis of the aromatic polyketide antibiotics trioxacarcin A (TXNA) and LL-D49194 (LLD), and show that the enzymes provide self-resistance to the producing strains by excising the intercalated guanine adducts of TXNA and LLD. These enzymes are highly specific for TXNA/LLD-DNA lesions and have no activity toward other, less stable alkylguanines as previously described for YtkR2/AlkD and AlkZ/YcaQ. Similarly, TXNA-DNA adducts are not excised by other alkylpurine DNA glycosylases. TxnU4 and LldU1 possess unique active site motifs that provide an explanation for their tight substrate specificity. Moreover, we show that abasic (AP) sites generated from TxnU4 excision of intercalated TXNA-DNA adducts are incised by AP endonuclease less efficiently than those formed by 7mG excision. This work characterizes a distinct class of DNA glycosylase acting on intercalated DNA adducts and furthers our understanding of specific DNA repair self-resistance activities within antibiotic producers of structurally diverse, highly functionalized DNA damaging agents.
Collapse
Affiliation(s)
- Xiaorong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Noah P Bradley
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Wei Lu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Katherine L Wahl
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Mei Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hua Yuan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xian-Feng Hou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brandt F Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Gong-Li Tang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Ferhati X, Jiménez-Moreno E, Hoyt EA, Salluce G, Cabeza-Cabrerizo M, Navo CD, Compañón I, Akkapeddi P, Matos MJ, Salaverri N, Garrido P, Martínez A, Laserna V, Murray TV, Jiménez-Osés G, Ravn P, Bernardes GJL, Corzana F. Single Mutation on Trastuzumab Modulates the Stability of Antibody-Drug Conjugates Built Using Acetal-Based Linkers and Thiol-Maleimide Chemistry. J Am Chem Soc 2022; 144:5284-5294. [PMID: 35293206 PMCID: PMC8972253 DOI: 10.1021/jacs.1c07675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibody-drug conjugates (ADCs) are a class of targeted therapeutics used to selectively kill cancer cells. It is important that they remain intact in the bloodstream and release their payload in the target cancer cell for maximum efficacy and minimum toxicity. The development of effective ADCs requires the study of factors that can alter the stability of these therapeutics at the atomic level. Here, we present a general strategy that combines synthesis, bioconjugation, linker technology, site-directed mutagenesis, and modeling to investigate the influence of the site and microenvironment of the trastuzumab antibody on the stability of the conjugation and linkers. Trastuzumab is widely used to produce targeted ADCs because it can target with high specificity a receptor that is overexpressed in certain breast cancer cells (HER2). We show that the chemical environment of the conjugation site of trastuzumab plays a key role in the stability of linkers featuring acid-sensitive groups such as acetals. More specifically, Lys-207, located near the reactive Cys-205 of a thiomab variant of the antibody, may act as an acid catalyst and promote the hydrolysis of acetals. Mutation of Lys-207 into an alanine or using a longer linker that separates this residue from the acetal group stabilizes the conjugates. Analogously, Lys-207 promotes the beneficial hydrolysis of the succinimide ring when maleimide reagents are used for conjugation, thus stabilizing the subsequent ADCs by impairing the undesired retro-Michael reactions. This work provides new insights for the design of novel ADCs with improved stability properties.
Collapse
Affiliation(s)
- Xhenti Ferhati
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Ester Jiménez-Moreno
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Emily A Hoyt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Giulia Salluce
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Mar Cabeza-Cabrerizo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Padma Akkapeddi
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria J Matos
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K
| | - Noelia Salaverri
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Pablo Garrido
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alfredo Martínez
- Angiogenesis Group, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Víctor Laserna
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Thomas V Murray
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Peter Ravn
- Biologics Engineering, R&D, Astra Zeneca, CB21 6GH Cambridge, U.K
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|