1
|
Zhou G, Wang W. Protein Engineering for Spatiotemporally Resolved Cellular Monitoring. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:217-240. [PMID: 39999860 PMCID: PMC12081197 DOI: 10.1146/annurev-anchem-070124-035857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Protein engineering has been extensively applied to the development of genetically encoded reporters for spatiotemporally resolved monitoring of dynamic biochemical activity across cellular compartments in living cells. Genetically encoded reporters facilitate the visualization and recording of cellular processes, including transmission of signaling molecules, protease activity, and protein-protein interactions. In this review, we describe and assess common reporter motifs and protein engineering strategies for designing genetically encoded reporters. We also discuss essential parameters for evaluating genetically encoded reporters, along with future protein engineering opportunities in this field.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute and Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Wenjing Wang
- Life Sciences Institute and Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; ,
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
El Hajji L, Bunel B, Joliot O, Li C, Tebo AG, Rampon C, Volovitch M, Fischer E, Pietrancosta N, Perez F, Morin X, Vriz S, Gautier A. A tunable and versatile chemogenetic near-infrared fluorescent reporter. Nat Commun 2025; 16:2594. [PMID: 40091099 PMCID: PMC11911394 DOI: 10.1038/s41467-025-58017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Near-infrared (NIR) fluorescent reporters open interesting perspectives for multiplexed imaging with higher contrast and depth using less toxic light. Here, we propose nirFAST, a small (14 kDa) chemogenetic NIR fluorescent reporter, displaying higher cellular brightness compared to top-performing NIR fluorescent proteins. nirFAST binds and stabilizes the fluorescent state of synthetic cell permeant fluorogenic chromophores (so-called fluorogens), otherwise dark when free. nirFAST displays tunable NIR, far-red or red emission through change of fluorogen. nirFAST allows imaging and spectral multiplexing in live cultured mammalian cells, chicken embryo tissues and zebrafish larvae. Its suitability for stimulated emission depletion nanoscopy enabled protein imaging with subdiffraction resolution in live cells. nirFAST enabled the design of a two-color cell cycle indicator for monitoring the different phases of the cell cycle. Finally, bisection of nirFAST allowed the design of a chemically induced dimerization technology with NIR fluorescence readout, enabling the control and visualization of protein proximity.
Collapse
Affiliation(s)
- Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
- Institut Curie, INSERM, CNRS, Chemical Biology of Cancer (CBC), 75005, Paris, France
| | - Benjamin Bunel
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Octave Joliot
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
| | - Chenge Li
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
| | - Alison G Tebo
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
- Howard Hughes Medical Institute - Janelia Research Campus, Ashburn, VA, USA
| | - Christine Rampon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
- Université Paris Cité, 75006, Paris, France
| | - Michel Volovitch
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
| | - Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Franck Perez
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Sophie Vriz
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France
- Université Paris Cité, 75006, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Chimie Physique et Chimie du Vivant (CPCV), 75005, Paris, France.
- Institut Curie, INSERM, CNRS, Chemical Biology of Cancer (CBC), 75005, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
3
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
4
|
Nevot G, Santos-Moreno J, Campamà-Sanz N, Toloza L, Parra-Cid C, Jansen PAM, Barbier I, Ledesma-Amaro R, van den Bogaard EH, Güell M. Synthetically programmed antioxidant delivery by a domesticated skin commensal. Cell Syst 2025; 16:101169. [PMID: 39919749 DOI: 10.1016/j.cels.2025.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025]
Abstract
Bacteria represent a promising dynamic delivery system for the treatment of disease. In the skin, the relevant location of Cutibacterium acnes within the hair follicle makes this bacterium an attractive chassis for dermal biotechnological applications. Here, we provide a genetic toolbox for the engineering of this traditionally intractable bacterium, including basic gene expression tools, biocontainment strategies, markerless genetic engineering, and dynamic transcriptional regulation. As a proof of concept, we develop an antioxidant-secreting strain capable of reducing oxidative stress in a UV stress model.
Collapse
Affiliation(s)
- Guillermo Nevot
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Javier Santos-Moreno
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain.
| | - Nil Campamà-Sanz
- Department of Cell and Molecular Biology, Karolinska Institutet, Södermanland and Uppland, 17165 Stockholm, Sweden
| | - Lorena Toloza
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Cristóbal Parra-Cid
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain
| | - Patrick A M Jansen
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Içvara Barbier
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, Greater London, London SW72AZ, UK
| | - Ellen H van den Bogaard
- Department of Dermatology, Radboud University Medical Center, Nijmegen 6525GA, Güeldres, the Netherlands
| | - Marc Güell
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Cataluña, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, 08003 Barcelona, Cataluña, Spain.
| |
Collapse
|
5
|
Da Silva K, Kumar P, Choonara YE. The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives. Wound Repair Regen 2025; 33:e13251. [PMID: 39780313 PMCID: PMC11711308 DOI: 10.1111/wrr.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine. Despite the progress in this field, clinical translation of secretome-containing products is limited by several challenges including but not limited to ensuring batch-to-batch consistency, the prevention of further heterogeneity, production of sufficient secretome quantities, product registration, good manufacturing practice protocols and the pharmacokinetic/pharmacodynamic profiles of all the components. Despite this, the secretome may hold the key to unlocking the regenerative blockage scientists have encountered for years. This review critically analyses the secretome derived from different cell sources and used in several tissues for tissue regeneration. Furthermore, it provides an overview of the current delivery strategies and the future perspectives for the secretome as a potential therapeutic. The success and possible shortcomings of the secretome are evaluated.
Collapse
Affiliation(s)
- Kate Da Silva
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
6
|
Hansen DT, Tu J, Bouck AW, Mathis CL, Barrios AM. Multipartite Fluorogenic Sensors for Monitoring Tyrosine Phosphatase Activity. Chembiochem 2024; 25:e202400607. [PMID: 39406683 DOI: 10.1002/cbic.202400607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Fluorogenic substrates are essential tools for studying the activity of many enzymes including the protein tyrosine phosphatases (PTPs). Here, we have taken the first step toward the development of genetically encodable sensors for PTP activity using fluorescent and fluorogen-activating proteins. The Fluorescence-Activating and absorption Shifting Tag (FAST) is a small protein that becomes fluorescent upon binding to a small molecule dye. We demonstrate that FAST protein can be used as a sensor for PTP-mediated dephosphorylation of phosphorylated dye molecules. Phosphorylated 4-hydroxybenzylidene rhodanine (pHBR) is not able to bind to the FAST protein and induce fluorescence, but provides a sensitive assay for PTP activity, readily detecting 100 pM concentrations of PTP1B in the presence of FAST with a kcat value of 19±1 s-1 and a KM value of 93±3 μM. In addition, while phosphorylation of the C-terminal peptide of split GFP does not result in appreciable change in fluorescence of the reconstituted protein, phosphorylation of the C-terminal peptide of the split FAST protein abrogates fluorescence. Upon PTP-mediated dephosphorylation of the C-terminal peptide, the ability of the N- and C-terminal components to form a fluorescent complex with the small molecule dye is restored, leading to fluorescence.
Collapse
Affiliation(s)
- Daniel T Hansen
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Alison W Bouck
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Cheryl L Mathis
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT, 84112, USA
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
7
|
Jia D, Cui M, Ding X. Visualizing DNA/RNA, Proteins, and Small Molecule Metabolites within Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404482. [PMID: 39096065 DOI: 10.1002/smll.202404482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Live cell imaging is essential for obtaining spatial and temporal insights into dynamic molecular events within heterogeneous individual cells, in situ intracellular networks, and in vivo organisms. Molecular tracking in live cells is also a critical and general requirement for studying dynamic physiological processes in cell biology, cancer, developmental biology, and neuroscience. Alongside this context, this review provides a comprehensive overview of recent research progress in live-cell imaging of RNAs, DNAs, proteins, and small-molecule metabolites, as well as their applications in molecular diagnosis, immunodiagnosis, and biochemical diagnosis. A series of advanced live-cell imaging techniques have been introduced and summarized, including high-precision live-cell imaging, high-resolution imaging, low-abundance imaging, multidimensional imaging, multipath imaging, rapid imaging, and computationally driven live-cell imaging methods, all of which offer valuable insights for disease prevention, diagnosis, and treatment. This review article also addresses the current challenges, potential solutions, and future development prospects in this field.
Collapse
Affiliation(s)
- Dongling Jia
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Minhui Cui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianting Ding
- Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| |
Collapse
|
8
|
Onchan W, Attakitbancha C, Uttamapinant C. An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation. Curr Opin Chem Biol 2024; 82:102523. [PMID: 39226865 DOI: 10.1016/j.cbpa.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Localized protein translation occurs through trafficking of mRNAs and protein translation machineries to different compartments of the cell, leading to rapid on-site synthesis of proteins in response to signaling cues. The spatiotemporally precise nature of the local translation process necessitates continual developments of technologies reviewed herein to visualize and map biomolecular components and the translation process with better spatial and temporal resolution and with fewer artifacts. We also discuss approaches to control local translation, which can serve as a design paradigm for subcellular genetic devices for eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Warunya Onchan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chadaporn Attakitbancha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
9
|
Torrey ZR, Halbers LP, Scipioni L, Tedeschi G, Digman MA, Prescher JA. A versatile bioluminescent probe with tunable color. RSC Chem Biol 2024:d4cb00101j. [PMID: 39308479 PMCID: PMC11414822 DOI: 10.1039/d4cb00101j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Bioluminescence is a powerful method for imaging in vivo, but applications at the microscale are far from routine. This is due, in part, to a lack of versatile tools for visualizing dynamic events. To address this void, we developed a new platform-Bioluminescence Resonance Energy mAKe over with a Fluorescence-Activating absorption-Shifting Tag (BREAKFAST). BREAKFAST features a bright luciferase combined with a chemogenetic tag (pFAST) for rapid color switching. In the presence of luciferin and a discrete fluorogenic ligand, signal is observed via resonance energy transfer. We evaluated spectral outputs with various fluorogens and established the utility of BREAKFAST for combined fluorescence and bioluminescence imaging. Dynamic, four-color visualization was achieved with sequential ligand addition and spectral phasor analysis. We further showed selective signal quenching with a dark fluorogen. Collectively, this work establishes a new method for bioluminescence imaging at the cellular scale and sets the stage for continued probe development.
Collapse
Affiliation(s)
- Zachary R Torrey
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA
| | - Lila P Halbers
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Giulia Tedeschi
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine Irvine CA 92697 USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California Irvine Irvine CA 92697 USA
- Department of Pharmaceutical Sciences, University of California Irvine Irvine CA 92697 USA
- Department of Molecular Biology & Biochemistry, University of California Irvine Irvine CA 92697 USA
| |
Collapse
|
10
|
El Hajji L, Lam F, Avtodeeva M, Benaissa H, Rampon C, Volovitch M, Vriz S, Gautier A. Multiplexed In Vivo Imaging with Fluorescence Lifetime-Modulating Tags. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404354. [PMID: 38899800 PMCID: PMC11347991 DOI: 10.1002/advs.202404354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Fluorescence lifetime imaging microscopy (FLIM) opens new dimensions for highly multiplexed imaging in live cells and organisms using differences in fluorescence lifetime to distinguish spectrally identical fluorescent probes. Here, a set of fluorescence-activating and absorption-shifting tags (FASTs) capable of modulating the fluorescence lifetime of embedded fluorogenic 4-hydroxybenzylidene rhodanine (HBR) derivatives is described. It is shown that changes in the FAST protein sequence can vary the local environment of the chromophore and lead to significant changes in fluorescence lifetime. These fluorescence lifetime-modulating tags enable multiplexed imaging of up to three targets in one spectral channel using a single HBR derivative in live cells and live zebrafish larvae. The combination of fluorescence lifetime multiplexing with spectral multiplexing allows to successfully image six targets in live cells, opening great prospects for multicolor fluorescence lifetime multiplexing.
Collapse
Affiliation(s)
- Lina El Hajji
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
| | - France Lam
- Institut de Biologie Paris Seineplateforme imagerie photonique I2PS (FR3631)Sorbonne UniversitéCNRSParis75005France
| | - Maria Avtodeeva
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
| | - Hela Benaissa
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
| | - Christine Rampon
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
- Université Paris CitéParis75006France
| | - Michel Volovitch
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
| | - Sophie Vriz
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
- Université Paris CitéParis75006France
| | - Arnaud Gautier
- Sorbonne UniversitéÉcole Normale SupérieureUniversité PSLCNRSLaboratoire des BiomoléculesLBMParis75005France
- Institut Universitaire de FranceParis75006France
| |
Collapse
|
11
|
Frei MS, Mehta S, Zhang J. Next-Generation Genetically Encoded Fluorescent Biosensors Illuminate Cell Signaling and Metabolism. Annu Rev Biophys 2024; 53:275-297. [PMID: 38346245 PMCID: PMC11786609 DOI: 10.1146/annurev-biophys-030722-021359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Genetically encoded fluorescent biosensors have revolutionized the study of cell signaling and metabolism, as they allow for live-cell measurements with high spatiotemporal resolution. This success has spurred the development of tailor-made biosensors that enable the study of dynamic phenomena on different timescales and length scales. In this review, we discuss different approaches to enhancing and developing new biosensors. We summarize the technologies used to gain structural insights into biosensor design and comment on useful screening technologies. Furthermore, we give an overview of different applications where biosensors have led to key advances over recent years. Finally, we give our perspective on where future work is bound to make a large impact.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Sohum Mehta
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA; , ,
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Nam KH, Xu Y. Structural Analysis of the Large Stokes Shift Red Fluorescent Protein tKeima. Molecules 2024; 29:2579. [PMID: 38893454 PMCID: PMC11173989 DOI: 10.3390/molecules29112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The Keima family comprises large Stokes shift fluorescent proteins that are useful for dual-color fluorescence cross-correlation spectroscopy and multicolor imaging. The tKeima is a tetrameric large Stokes shift fluorescent protein and serves as the ancestor fluorescent protein for both dKeima and mKeima. The spectroscopic properties of tKeima have been previously reported; however, its structural basis and molecular properties have not yet been elucidated. In this study, we present the crystallographic results of the large Stokes shift fluorescent protein tKeima. The purified tKeima protein spontaneously crystallized after purification without further crystallization. The crystal structure of tKeima was determined at 3.0 Å resolution, revealing a β-barrel fold containing the Gln-Tyr-Gly chromophores mainly with cis-conformation. The tetrameric interfaces of tKeima were stabilized by numerous hydrogen bonds and salt-bridge interactions. These key residues distinguish the substituted residues in dKeima and mKeima. The key structure-based residues involved in the tetramer formation of tKeima provide insights into the generation of a new type of monomeric mKeima. This structural analysis expands our knowledge of the Keima family and provides insights into its protein engineering.
Collapse
Affiliation(s)
- Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, China
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, China
| |
Collapse
|
13
|
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes. Chem Rev 2024; 124:6198-6270. [PMID: 38717865 DOI: 10.1021/acs.chemrev.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.
Collapse
Affiliation(s)
- Masafumi Minoshima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Shahi Imam Reja
- Immunology Frontier Research Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Ryu Hashimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kohei Iijima
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Kazuya Kikuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
14
|
Xu J, Zhu N, Du Y, Han T, Zheng X, Li J, Zhu S. Biomimetic NIR-II fluorescent proteins created from chemogenic protein-seeking dyes for multicolor deep-tissue bioimaging. Nat Commun 2024; 15:2845. [PMID: 38565859 PMCID: PMC10987503 DOI: 10.1038/s41467-024-47063-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Near-infrared-I/II fluorescent proteins (NIR-I/II FPs) are crucial for in vivo imaging, yet the current NIR-I/II FPs face challenges including scarcity, the requirement for chromophore maturation, and limited emission wavelengths (typically < 800 nm). Here, we utilize synthetic protein-seeking NIR-II dyes as chromophores, which covalently bind to tag proteins (e.g., human serum albumin, HSA) through a site-specific nucleophilic substitution reaction, thereby creating proof-of-concept biomimetic NIR-II FPs. This chemogenic protein-seeking strategy can be accomplished under gentle physiological conditions without catalysis. Proteomics analysis identifies specific binding site (Cys 477 on DIII). NIR-II FPs significantly enhance chromophore brightness and photostability, while improving biocompatibility, allowing for high-performance NIR-II lymphography and angiography. This strategy is universal and applicable in creating a wide range of spectrally separated NIR-I/II FPs for real-time visualization of multiple biological events. Overall, this straightforward biomimetic approach holds the potential to transform fluorescent protein-based bioimaging and enables in-situ albumin targeting to create NIR-I/II FPs for deep-tissue imaging in live organisms.
Collapse
Affiliation(s)
- Jiajun Xu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding, 071002, P.R. China
| | - Ningning Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Yijing Du
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Tianyang Han
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Xue Zheng
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Jia Li
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China
| | - Shoujun Zhu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University, Changchun, 130021, P.R. China.
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
| |
Collapse
|
15
|
Baleeva NS, Bogdanova YA, Goncharuk MV, Sokolov AI, Myasnyanko IN, Kublitski VS, Smirnov AY, Gilvanov AR, Goncharuk SA, Mineev KS, Baranov MS. A Combination of Library Screening and Rational Mutagenesis Expands the Available Color Palette of the Smallest Fluorogen-Activating Protein Tag nanoFAST. Int J Mol Sci 2024; 25:3054. [PMID: 38474299 DOI: 10.3390/ijms25053054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
NanoFAST is the smallest fluorogen-activating protein, consisting of only 98 amino acids, used as a genetically encoded fluorescent tag. Previously, only a single fluorogen with an orange color was revealed for this protein. In the present paper, using rational mutagenesis and in vitro screening of fluorogens libraries, we expanded the color palette of this tag. We discovered that E46Q is one of the key substitutions enabling the range of possible fluorogens to be expanded. The introduction of this and several other substitutions has made it possible to use not only orange but also red and green fluorogens with the modified protein.
Collapse
Affiliation(s)
- Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Yulia A Bogdanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina V Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anatolii I Sokolov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Ivan N Myasnyanko
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Vadim S Kublitski
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander Yu Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| | - Aidar R Gilvanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey A Goncharuk
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Laboratory of Medicinal Substances Chemistry, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov 1, 117997 Moscow, Russia
| |
Collapse
|
16
|
Szlapa-Kula A, Kula S, Kaźmierski Ł, Biernasiuk A, Krawczyk P. Can a Small Change in the Heterocyclic Substituent Significantly Impact the Physicochemical and Biological Properties of ( Z)-2-(5-Benzylidene-4-oxo-2-thioxothiazolidin-3-yl)acetic Acid Derivatives? SENSORS (BASEL, SWITZERLAND) 2024; 24:1524. [PMID: 38475060 DOI: 10.3390/s24051524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Rhodanine-3-acetic acid derivatives are attractive compounds with versatile effects. What is very important is that compounds of this type have many biological properties. They are tested, among others, as fluorescent probes for bioimaging and aldose reductase inhibitors. Rhodanine-3-acetic acid derivatives also have antibacterial, antifungal and anticancer activity. The presented work demonstrates that a slight change in the five-membered heterocyclic substituent significantly affects the properties of the compounds under consideration. Three rhodanine-3-acetic acid derivatives (A-1-A-3) were obtained in the Knoevenagel condensation reaction with good yields, ranging from 54% to 71%. High thermal stability of the tested compounds was also demonstrated above 240 °C. The absorption and emission maxima in polar and non-polar solvents were determined. Then, the possibility of using the considered derivatives for fluorescence bioimaging was checked. Compounds A-1 and A-2 were successfully used as fluorescent dyes of fixed cells of mammalian origin. In addition, biological activity tests against bacteria and fungi were carried out. Our results showed that A-1 and A-2 showed the most excellent antimicrobial activity among the newly synthesized compounds, especially against Gram-positive bacteria.
Collapse
Affiliation(s)
- Agata Szlapa-Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9 St., 40-007 Katowice, Poland
| | - Slawomir Kula
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9 St., 40-007 Katowice, Poland
| | - Łukasz Kaźmierski
- Urology and Andrology, Department of Tissue Engineering, Collegium Medicum, Nicolaus Copernicus University, M. Curie Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| | - Anna Biernasiuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Przemysław Krawczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Kurpińskiego 5, 85-950 Bydgoszcz, Poland
| |
Collapse
|
17
|
Rakotoarison LM, Tebo AG, Böken D, Board S, El Hajji L, Gautier A. Improving Split Reporters of Protein-Protein Interactions through Orthology-Based Protein Engineering. ACS Chem Biol 2024; 19:428-441. [PMID: 38289242 DOI: 10.1021/acschembio.3c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Protein-protein interactions (PPIs) can be detected through selective complementation of split fluorescent reporters made of two complementary fragments that reassemble into a functional fluorescent reporter when in close proximity. We previously introduced splitFAST, a chemogenetic PPI reporter with rapid and reversible complementation. Here, we present the engineering of splitFAST2, an improved reporter displaying higher brightness, lower self-complementation, and higher dynamic range for optimal monitoring of PPI using an original protein engineering strategy that exploits proteins with orthology relationships. Our study allowed the identification of a system with improved properties and enabled a better understanding of the molecular features controlling the complementation properties. Because of the rapidity and reversibility of its complementation, its low self-complementation, high dynamic range, and improved brightness, splitFAST2 is well suited to study PPI with high spatial and temporal resolution, opening great prospects to decipher the role of PPI in various biological contexts.
Collapse
Affiliation(s)
- Louise-Marie Rakotoarison
- Laboratoire de Biomolécules, UMR 7203, Sorbonne Université - CNRS - École Normale Supérieure, 75005 Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Alison G Tebo
- Laboratoire de Biomolécules, UMR 7203, Sorbonne Université - CNRS - École Normale Supérieure, 75005 Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Dorothea Böken
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Stephanie Board
- Laboratoire de Biomolécules, UMR 7203, Sorbonne Université - CNRS - École Normale Supérieure, 75005 Paris, France
| | - Lina El Hajji
- Laboratoire de Biomolécules, UMR 7203, Sorbonne Université - CNRS - École Normale Supérieure, 75005 Paris, France
| | - Arnaud Gautier
- Laboratoire de Biomolécules, UMR 7203, Sorbonne Université - CNRS - École Normale Supérieure, 75005 Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
18
|
Broch F, El Hajji L, Pietrancosta N, Gautier A. Engineering of Tunable Allosteric-like Fluorogenic Protein Sensors. ACS Sens 2023; 8:3933-3942. [PMID: 37830919 DOI: 10.1021/acssensors.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optical protein sensors that enable detection of relevant biomolecules of interest play central roles in biological research. Coupling fluorescent reporters with protein sensing units has enabled the development of a wide range of biosensors that recognize analytes with high selectivity. In these sensors, analyte recognition induces a conformational change in the protein sensing unit that can modulate the optical signal of the fluorescent reporter. Here, we explore various designs for the creation of tunable allosteric-like fluorogenic protein sensors through incorporation of sensing protein units within the chemogenetic fluorescence-activating and absorption-shifting tag (FAST) that selectively binds and stabilizes the fluorescent state of 4-hydroxybenzylidene rhodanine (HBR) analogs. Conformational coupling allowed us to design analyte-responsive optical protein sensors through allosteric-like modulation of fluorogen binding.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, 75005 Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
19
|
Anderson DM, Logan MG, Patty SS, Kendall AJ, Borland CZ, Pfeifer CS, Kreth J, Merritt JL. Microbiome imaging goes à la carte: Incorporating click chemistry into the fluorescence-activating and absorption-shifting tag (FAST) imaging platform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560575. [PMID: 37873282 PMCID: PMC10592883 DOI: 10.1101/2023.10.02.560575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The human microbiome is predominantly composed of facultative and obligate anaerobic bacteria that live in hypoxic/anoxic polymicrobial biofilm communities. Given the oxidative sensitivity of large fractions of the human microbiota, green fluorescent protein (GFP) and related genetically-encoded fluorophores only offer limited utility for live cell imaging due the oxygen requirement for chromophore maturation. Consequently, new fluorescent imaging modalities are needed to study polymicrobial interactions and microbiome-host interactions within anaerobic environments. The fluorescence-activating and absorption shifting tag (FAST) is a rapidly developing genetically-encoded fluorescent imaging technology that exhibits tremendous potential to address this need. In the FAST system, fluorescence only occurs when the FAST protein is complexed with one of a suite of cognate small molecule fluorogens. To expand the utility of FAST imaging, we sought to develop a modular platform (Click-FAST) to democratize fluorogen engineering for personalized use cases. Using Click-FAST, investigators can quickly and affordably sample a vast chemical space of compounds, potentially imparting a broad range of desired functionalities to the parental fluorogen. In this work, we demonstrate the utility of the Click-FAST platform using a novel fluorogen, PLBlaze-alkyne, which incorporates the widely available small molecule ethylvanillin as the hydroxybenzylidine head group. Different azido reagents were clicked onto PLBlaze-alkyne and shown to impart useful characteristics to the fluorogen, such as selective bacterial labeling in mixed populations as well as fluorescent signal enhancement. Conjugation of an 80 Å PEG molecule to PLBlaze-alkyne illustrates the broad size range of functional fluorogen chimeras that can be employed. This PEGylated fluorogen also functions as an exquisitely selective membrane permeability marker capable of outperforming propidium iodide as a fluorescent marker of cell viability.
Collapse
Affiliation(s)
- David M Anderson
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Matthew G Logan
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Sara S Patty
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Alexander J Kendall
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Christina Z Borland
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Jens Kreth
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Justin L Merritt
- Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
20
|
Wang W, Shen J. Fluorogenic chemically induced dimerization. Nat Methods 2023; 20:1454-1455. [PMID: 37640937 PMCID: PMC10993724 DOI: 10.1038/s41592-023-01989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A new chemically induced dimerization (CID) pair exhibits fluorescence upon dimerization for the first time. Moreover, the CID pair is small in size and offers easily reversible dimerization that can be repeated multiple times.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Jiaqi Shen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Bottone S, Joliot O, Cakil ZV, El Hajji L, Rakotoarison LM, Boncompain G, Perez F, Gautier A. A fluorogenic chemically induced dimerization technology for controlling, imaging and sensing protein proximity. Nat Methods 2023; 20:1553-1562. [PMID: 37640938 DOI: 10.1038/s41592-023-01988-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Molecular tools enabling the control and observation of the proximity of proteins are essential for studying the functional role of physical distance between two proteins. Here we present CATCHFIRE (chemically assisted tethering of chimera by fluorogenic-induced recognition), a chemically induced proximity technology with intrinsic fluorescence imaging and sensing capabilities. CATCHFIRE relies on genetic fusion to small dimerizing domains that interact upon addition of fluorogenic inducers of proximity that fluoresce upon formation of the ternary assembly, allowing real-time monitoring of the chemically induced proximity. CATCHFIRE is rapid and fully reversible and allows the control and tracking of protein localization, protein trafficking, organelle transport and cellular processes, opening new avenues for studying or controlling biological processes with high spatiotemporal resolution. Its fluorogenic nature allows the design of a new class of biosensors for the study of processes such as signal transduction and apoptosis.
Collapse
Affiliation(s)
- Sara Bottone
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | - Zeyneb Vildan Cakil
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Louise-Marie Rakotoarison
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France
| | | | | | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
22
|
Chai F, Cheng D, Nasu Y, Terai T, Campbell RE. Maximizing the performance of protein-based fluorescent biosensors. Biochem Soc Trans 2023; 51:1585-1595. [PMID: 37431791 PMCID: PMC10586770 DOI: 10.1042/bst20221413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Fluorescent protein (FP)-based biosensors are genetically encoded tools that enable the imaging of biological processes in the context of cells, tissues, or live animals. Though widely used in biological research, practically all existing biosensors are far from ideal in terms of their performance, properties, and applicability for multiplexed imaging. These limitations have inspired researchers to explore an increasing number of innovative and creative ways to improve and maximize biosensor performance. Such strategies include new molecular biology methods to develop promising biosensor prototypes, high throughput microfluidics-based directed evolution screening strategies, and improved ways to perform multiplexed imaging. Yet another approach is to effectively replace components of biosensors with self-labeling proteins, such as HaloTag, that enable the biocompatible incorporation of synthetic fluorophores or other ligands in cells or tissues. This mini-review will summarize and highlight recent innovations and strategies for enhancing the performance of FP-based biosensors for multiplexed imaging to advance the frontiers of research.
Collapse
Affiliation(s)
- Fu Chai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Dazhou Cheng
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Nasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Robert E. Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
23
|
Hocq R, Bottone S, Gautier A, Pflügl S. A fluorescent reporter system for anaerobic thermophiles. Front Bioeng Biotechnol 2023; 11:1226889. [PMID: 37476481 PMCID: PMC10355840 DOI: 10.3389/fbioe.2023.1226889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Owing to their inherent capacity to make invisible biological processes visible and quantifiable, fluorescent reporter systems have numerous applications in biotechnology. For classical fluorescent protein systems (i.e., GFP and derivatives), chromophore maturation is O2-dependent, restricting their applications to aerobic organisms. In this work, we pioneered the use of the oxygen-independent system FAST (Fluorescence Activating and absorption Shifting tag) in the thermophilic anaerobe Thermoanaerobacter kivui. We developed a modular cloning system that was used to easily clone a library of FAST expression cassettes in an E. coli-Thermoanaerobacter shuttle plasmid. FAST-mediated fluorescence was then assessed in vivo in T. kivui, and we observed bright green and red fluorescence for cells grown at 55°C. Next, we took advantage of this functional reporter system to characterize a set of homologous and heterologous promoters by quantifying gene expression, expanding the T. kivui genetic toolbox. Low fluorescence at 66°C (Topt for T. kivui) was subsequently investigated at the single-cell level using flow cytometry and attributed to plasmid instability at higher temperatures. Adaptive laboratory evolution circumvented this issue and drastically enhanced fluorescence at 66°C. Whole plasmid sequencing revealed the evolved strain carried functional plasmids truncated at the Gram-positive origin of replication, that could however not be linked to the increased fluorescence displayed by the evolved strain. Collectively, our work demonstrates the applicability of the FAST fluorescent reporter systems to T. kivui, paving the way for further applications in thermophilic anaerobes.
Collapse
Affiliation(s)
- Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| | - Sara Bottone
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Arnaud Gautier
- Laboratoire des Biomolécules (LBM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, École Normale Supérieure, Université PSL, Paris, France
- Institut Universitaire de France, Paris, France
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Vienna, Austria
| |
Collapse
|
24
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
25
|
Kompa J, Bruins J, Glogger M, Wilhelm J, Frei MS, Tarnawski M, D’Este E, Heilemann M, Hiblot J, Johnsson K. Exchangeable HaloTag Ligands for Super-Resolution Fluorescence Microscopy. J Am Chem Soc 2023; 145:3075-3083. [PMID: 36716211 PMCID: PMC9912333 DOI: 10.1021/jacs.2c11969] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The specific and covalent labeling of the protein HaloTag with fluorescent probes in living cells makes it a powerful tool for bioimaging. However, the irreversible attachment of the probe to HaloTag precludes imaging applications that require transient binding of the probe and comes with the risk of irreversible photobleaching. Here, we introduce exchangeable ligands for fluorescence labeling of HaloTag (xHTLs) that reversibly bind to HaloTag and that can be coupled to rhodamines of different colors. In stimulated emission depletion (STED) microscopy, probe exchange of xHTLs allows imaging with reduced photobleaching as compared to covalent HaloTag labeling. Transient binding of fluorogenic xHTLs to HaloTag fusion proteins enables points accumulation for imaging in nanoscale topography (PAINT) and MINFLUX microscopy. We furthermore introduce pairs of xHTLs and HaloTag mutants for dual-color PAINT and STED microscopy. xHTLs thus open up new possibilities in imaging across microscopy platforms for a widely used labeling approach.
Collapse
Affiliation(s)
- Julian Kompa
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Jorick Bruins
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Marius Glogger
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Jonas Wilhelm
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Michelle S. Frei
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Miroslaw Tarnawski
- Protein
Expression and Characterization Facility, Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Elisa D’Este
- Optical
Microscopy Facility, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe-University
Frankfurt, Max-von-Laue
Str. 7, Frankfurt 60438, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany,Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland,
| |
Collapse
|
26
|
Van Thillo T, Van Deuren V, Dedecker P. Smart genetically-encoded biosensors for the chemical monitoring of living systems. Chem Commun (Camb) 2023; 59:520-534. [PMID: 36519509 DOI: 10.1039/d2cc05363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Genetically-encoded biosensors provide the all-optical and non-invasive visualization of dynamic biochemical events within living systems, which has allowed the discovery of profound new insights. Twenty-five years of biosensor development has steadily improved their performance and has provided us with an ever increasing biosensor repertoire. In this feature article, we present recent advances made in biosensor development and provide a perspective on the future direction of the field.
Collapse
Affiliation(s)
- Toon Van Thillo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Vincent Van Deuren
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium.
| |
Collapse
|
27
|
Review of FRET biosensing and its application in biomolecular detection. Am J Transl Res 2023; 15:694-709. [PMID: 36915763 PMCID: PMC10006758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Life science research is advancing rapidly in the 21st century. Many innovative technologies and methodologies are being applied in various fields of the life sciences to reveal how macromolecules interact with each other. The technology of using fluorescent molecules in biomedical research has contributed immensely to progress in this field. Fluorescence-based optical biosensors, which show high specificity, exhibit huge potential for clinical diagnosis and treatment of many of the life-changing diseases. Fluorescence resonance energy transfer (FRET), is a technique that has been widely employed in biosensing ever since its discovery. It is a classic fluorescence technique, and an important biosensing research tool extensively utilized in the fields of toxicology, pharmacology, and biomedicine; many biosensor designs are based on FRET. Radiometric imaging of biological molecules, biomolecular interactions, and cellular processes are extensively performed using FRET biosensors. This review focuses on the selection of FRET donors and acceptors used for biosensing, and presents an overview of different FRET technologies. Furthermore, it highlights the progress in the application for FRET in nucleic acid and protein biosensing, and provides a viewpoint for future developmental trends using FRET technology.
Collapse
|
28
|
Glogger M, Wang D, Kompa J, Balakrishnan A, Hiblot J, Barth HD, Johnsson K, Heilemann M. Synergizing Exchangeable Fluorophore Labels for Multitarget STED Microscopy. ACS NANO 2022; 16:17991-17997. [PMID: 36223885 PMCID: PMC9706782 DOI: 10.1021/acsnano.2c07212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Investigating the interplay of cellular proteins with optical microscopy requires multitarget labeling. Spectral multiplexing using high-affinity or covalent labels is limited in the number of fluorophores that can be discriminated in a single imaging experiment. Advanced microscopy methods such as STED microscopy additionally demand balanced excitation, depletion, and emission wavelengths for all fluorophores, further reducing multiplexing capabilities. Noncovalent, weak-affinity labels bypass this "spectral barrier" through label exchange and sequential imaging of different targets. Here, we combine exchangeable HaloTag ligands, weak-affinity DNA hybridization, and hydrophophic and protein-peptide interactions to increase labeling flexibility and demonstrate six-target STED microscopy in single cells. We further show that exchangeable labels reduce photobleaching as well as facilitate long acquisition times and multicolor live-cell and high-fidelity 3D STED microscopy. The synergy of different types of exchangeable labels increases the multiplexing capabilities in fluorescence microscopy, and by that, the information content of microscopy images.
Collapse
Affiliation(s)
- Marius Glogger
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Dongni Wang
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Julian Kompa
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ashwin Balakrishnan
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Hans-Dieter Barth
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute
of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mike Heilemann
- Institute
of Physical and Theoretical Chemistry, Goethe
University Frankfurt, Max-von-Laue Str. 7, 60438 Frankfurt, Germany
| |
Collapse
|
29
|
Gautier A. Fluorescence-Activating and Absorption-Shifting Tags for Advanced Imaging and Biosensing. Acc Chem Res 2022; 55:3125-3135. [PMID: 36269101 DOI: 10.1021/acs.accounts.2c00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent labels and biosensors play central roles in biological and medical research. Targeted to specific biomolecules or cells, they allow noninvasive imaging of the machinery that govern cells and organisms in real time. Recently, chemogenetic reporters made of organic dyes specifically anchored to genetic tags have challenged the paradigm of fully genetically encoded fluorescent proteins. Combining the advantage of synthetic fluorophores with the targeting selectivity of genetically encoded tags, these chemogenetic reporters open new exciting prospects for studying cell biochemistry and biology. In this Account, we present the growing toolbox of fluorescence-activating and absorption-shifting tags (FASTs), small monomeric proteins of 14 kDa (125 amino acids residues) that can be used as markers to monitor gene expression and protein localization in live cells and organisms. Engineered by directed protein evolution from the photoactive yellow protein (PYP) from the bacterium Halorhodospira halophila, prototypical FAST binds and stabilizes the fluorescent state of live-cell compatible hydroxybenzylidene rhodanine chromophores. This class of chromophores are normally dark when free in solution or in cells because they dissipate light energy through nonradiative processes. The protein cavity of FAST allows the stabilization of the deprotonated state of the chromophore and blocks the chromophore into a planar conformation, which leads to highly fluorescent protein-chromophore assemblies. The use of such fluorogenic dyes (also called fluorogens) enables the imaging of FAST fusion proteins in cells with high contrast without the need to remove unbound ligands through separate washing steps. Fluorogens with various spectral properties exist nowadays allowing investigators to adjust the spectral properties of FAST to their experimental conditions. Molecular engineering allowed furthermore to generate membrane-impermeant fluorogens for the selective labeling of cell-surface proteins. Over the years, we generated a collection of FAST variants with expanded spectral properties or fluorogen selectivity using a concerted strategy involving molecular engineering and directed protein evolution. Moreover, protein engineering allowed us to adapt FASTs for the design of fluorescent biosensors. Circular permutation enabled the generation of FAST variants with increased conformational flexibility for the design of biosensors in which fluorogen binding is conditioned to the recognition of a given analyte. Bisection of FASTs into two complementary fragments allowed us furthermore to create split variants with reversible complementation that allow the detection and imaging of dynamic protein-protein interactions. We provide, here, a general overview of the current state of development of these different systems and their applications for advanced live cell imaging and biosensing and discuss potential future directions.
Collapse
Affiliation(s)
- Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.,Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
30
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
Affiliation(s)
- Marco Dalla Vecchia
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium.,Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | | | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Wim Vandenberg
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Peter Dedecker
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| |
Collapse
|
31
|
Lushpa VA, Baleeva NS, Goncharuk SA, Goncharuk MV, Arseniev AS, Baranov MS, Mineev KS. Spatial Structure of nanoFAST in the Apo State and in Complex with its Fluorogen HBR-DOM2. Int J Mol Sci 2022; 23:ijms231911361. [PMID: 36232662 PMCID: PMC9570328 DOI: 10.3390/ijms231911361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
NanoFAST is a fluorogen-activating protein and can be considered one of the smallest encodable fluorescent tags. Being a shortened variant of another fluorescent tag, FAST, nanoFAST works nicely only with one out of all known FAST ligands. This substantially limits the applicability of this protein. To find the reason for such a behavior, we investigated the spatial structure and dynamics of nanoFAST, both in the apo state and in the complex with its fluorogen molecule, using the solution NMR spectroscopy. We showed that the truncation of FAST did not affect the structure of the remaining part of the protein. Our data suggest that the deleted N-terminus of FAST destabilizes the C-terminal domain in the apo state. While it does not contact the fluorogen directly, it serves as a free energy reservoir that enhances the ligand binding propensity of the protein. The structure of nanoFAST/HBR-DOM2 complex reveals the atomistic details of nanoFAST interactions with the rhodanine-based ligands and explains the ligand specificity. NanoFAST selects ligands with the lowest dissociation constants, 2,5-disubstituted 4-hydroxybenzyldienerhodainines, which allow the non-canonical intermolecular CH–N hydrogen bonding and provide the optimal packing of the ligand within the hydrophobic cavity of the protein.
Collapse
Affiliation(s)
- Vladislav A. Lushpa
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, Dolgoprudny 141701, Russia
| | - Nadezhda S. Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, Dolgoprudny 141701, Russia
| | - Marina V. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | | | - Mikhail S. Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Correspondence: (M.S.B.); (K.S.M.)
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, Dolgoprudny 141701, Russia
- Correspondence: (M.S.B.); (K.S.M.)
| |
Collapse
|
32
|
Goncharuk MV, Baleeva NS, Nolde DE, Gavrikov AS, Mishin AV, Mishin AS, Sosorev AY, Arseniev AS, Goncharuk SA, Borshchevskiy VI, Efremov RG, Mineev KS, Baranov MS. Structure-based rational design of an enhanced fluorogen-activating protein for fluorogens based on GFP chromophore. Commun Biol 2022; 5:706. [PMID: 35840781 PMCID: PMC9287381 DOI: 10.1038/s42003-022-03662-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
"Fluorescence-Activating and absorption-Shifting Tag" (FAST) is a well-studied fluorogen-activating protein with high brightness and low size, able to activate a wide range of fluorogens. This makes FAST a promising target for both protein and fluorogen optimization. Here, we describe the structure-based rational design of the enhanced FAST mutants, optimized for the N871b fluorogen. Using the spatial structure of the FAST/N871b complex, NMR relaxation analysis, and computer simulations, we identify the mobile regions in the complex and suggest mutations that could stabilize both the protein and the ligand. Two of our mutants appear brighter than the wild-type FAST, and these mutants provide up to 35% enhancement for several other fluorogens of similar structure, both in vitro and in vivo. Analysis of the mutants by NMR reveals that brighter mutants demonstrate the highest stability and lowest length of intermolecular H-bonds. Computer simulations provide the structural basis for such stabilization.
Collapse
Affiliation(s)
- Marina V Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Nadezhda S Baleeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Alexey S Gavrikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Alexey V Mishin
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Alexander S Mishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Andrey Y Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Alexander S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
| | - Sergey A Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | | | - Roman G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| | - Mikhail S Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
33
|
Mou Z, Zhao D. Gene rational design: the dawn of crop breeding. TRENDS IN PLANT SCIENCE 2022; 27:633-636. [PMID: 35382978 DOI: 10.1016/j.tplants.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Limited natural genetic diversity restricts the creation of excellent crops. Modeling-guided rational design represents a promising protein engineering technology to optimize existing genes for desired agronomic traits. Rational design coupled with other engineering approaches could also be applied in artificial gene improvement for the creation of economically valuable crops.
Collapse
Affiliation(s)
- Zongmin Mou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming 650504, China
| | - Dake Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; Biocontrol Engineering Research Center of Crop Disease and Pest, Yunnan University, Kunming 650504, China.
| |
Collapse
|
34
|
Add and Go: FRET Acceptor for Live-Cell Measurements Modulated by Externally Provided Ligand. Int J Mol Sci 2022; 23:ijms23084396. [PMID: 35457212 PMCID: PMC9026985 DOI: 10.3390/ijms23084396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
A substantial number of genetically encoded fluorescent sensors rely on the changes in FRET efficiency between fluorescent cores, measured in ratiometric mode, with acceptor photobleaching or by changes in fluorescence lifetime. We report on a modulated FRET acceptor allowing for simplified one-channel FRET measurement based on a previously reported fluorogen-activating protein, DiB1. Upon the addition of the cell-permeable chromophore, the fluorescence of the donor-fluorescent protein mNeonGreen decreases, allowing for a simplified one-channel FRET measurement. The reported chemically modulated FRET acceptor is compatible with live-cell experiments and allows for prolonged time-lapse experiments with dynamic energy transfer evaluation.
Collapse
|
35
|
McLure RJ, Radford SE, Brockwell DJ. High-throughput directed evolution: a golden era for protein science. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms 2022; 10:microorganisms10020260. [PMID: 35208715 PMCID: PMC8876096 DOI: 10.3390/microorganisms10020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria-host interactions are characterized by the delivery of bacterial virulence factors, i.e., effectors, into host cells where they counteract host immunity and exploit host responses allowing bacterial survival and spreading. These effectors are translocated into host cells by means of dedicated secretion systems such as the type 3 secretion system (T3SS). A comprehensive understanding of effector translocation in a spatio-temporal manner is of critical importance to gain insights into an effector’s mode of action. Various approaches have been developed to understand timing and order of effector translocation, quantities of translocated effectors and their subcellular localization upon translocation into host cells. Recently, the existing toolset has been expanded by newly developed state-of-the art methods to monitor bacterial effector translocation and dynamics. In this review, we elaborate on reported methods and discuss recent advances and shortcomings in this area of tracking bacterial effector translocation.
Collapse
|
37
|
El Hajji L, Benaissa H, Gautier A. Isolating and Engineering Fluorescence-Activating Proteins Using Yeast Surface Display. Methods Mol Biol 2022; 2491:593-626. [PMID: 35482206 DOI: 10.1007/978-1-0716-2285-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the workflow to isolate and engineer fluorescence-activating proteins by yeast surface display. Fluorescence-activating proteins are an emerging class of fluorescent chemogenetic reporters for monitoring gene expression and protein localization in living cells and organisms. They become fluorescent upon binding exogenously applied fluorogenic organic dyes. Efficient fluorescence-activating proteins can be selected from yeast-displayed libraries by iterative rounds of fluorescence-activated cell sorting. The overall strategy is described, as well as a strategy for characterizing the affinity and spectroscopic properties of the selected clones.
Collapse
Affiliation(s)
- Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France
| | - Hela Benaissa
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France.
- Institut Universitaire de, Paris, France.
| |
Collapse
|
38
|
Chen P, Wang R, Wang K, Han JN, Kuang S, Nie Z, Huang Y. Multifunctional stimuli-responsive chemogenetic platform for conditional multicolor cell-selective labeling. Chem Sci 2022; 13:12187-12197. [PMID: 36349109 PMCID: PMC9601257 DOI: 10.1039/d2sc03100k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Multicolor conditional labeling is a powerful tool that can simultaneously and selectively visualize multiple targets for bioimaging analysis of complex biological processes and cellular features. We herein report a multifunctional stimuli-responsive Fluorescence-Activating and absorption-Shifting Tag (srFAST) chemogenetic platform for multicolor cell-selective labeling. This platform comprises stimuli-responsive fluorogenic ligands and the organelle-localizable FAST. The physicochemical properties of the srFAST ligands can be tailored by modifying the optical-tunable hydroxyl group with diverse reactive groups, and their chemical decaging process caused by cell-specific stimuli induces a conditionally activatable fluorescent labeling upon binding with the FAST. Thus, the resulting switch-on srFASTs were designed for on-demand labeling of cells of interest by spatiotemporally precise photo-stimulation or unique cellular feature-dependent activation, including specific endogenous metabolites or enzyme profiles. Furthermore, diverse enzyme-activatable srFAST ligands with distinct colors were constructed and simultaneously exploited for multicolor cell-selective labeling, which allow discriminating and orthogonal labeling of three different cell types with the same protein tag. Our method provides a promising strategy for designing a stimuli-responsive chemogenetic labeling platform via facile molecular engineering of the synthetic ligands, which has great potential for conditional multicolor cell-selective labeling and cellular heterogeneity evaluation. Comparison of the stimuli-responsive FAST platform (srFAST) proposed in this work with the reported original FAST system (O-FAST). The srFAST could achieve not only conditional selective labeling, but also multicolor selective labeling.![]()
Collapse
Affiliation(s)
- Pengfei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Rui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Ke Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Jiao-Na Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Shi Kuang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|