1
|
Eggel A, Jardetzky TS. Structural and Functional Insights Into IgE Receptor Interactions and Disruptive Inhibition. Immunol Rev 2025; 331:e70031. [PMID: 40305523 DOI: 10.1111/imr.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
Immunoglobulin E (IgE) plays a critical role in host defense against parasites and venoms but is also best known for its central involvement in allergic reactions. Through interactions with its high- and low-affinity receptors, FcεRI and CD23, respectively, IgE sensitizes mast cells and basophils, drives antigen presentation, regulates antibody production, and overall amplifies type 2 immunity. The unique conformational flexibility of IgE, particularly within its Cε2-Cε4 domains of the Fc-region, has emerged as a key determinant of receptor specificity and function. Structural studies have revealed that IgE adopts distinct open and closed conformations that selectively enable FcεRI or CD23 binding. These insights have reshaped our understanding of receptor engagement and laid the foundation for therapeutic targeting approaches of IgE:receptor interactions to treat allergies. Initial anti-IgE biologics, such as omalizumab, were developed to neutralize free IgE in circulation and prevent receptor binding. While clinically successful, this approach has limitations, such as the inefficient targeting of receptor-bound IgE and the requirement for prolonged and frequent injections to achieve therapeutic benefit. Recent advances have led to the development of a new class of anti-IgE molecules termed "disruptive" IgE inhibitors that actively disassemble preformed IgE:FcεRI complexes. By exploiting conformational dynamics, creating steric interference, or allosteric mechanisms, these molecules, in addition to their neutralizing capacity, enable rapid active desensitization of allergic effector cells. In this review, we highlight how an improved structural and mechanistic understanding of IgE and its receptors has guided the design of such next-generation anti-IgE molecules. Such multifunctional biologics might offer faster onset, broader activity, and potential use in acute allergic situations, setting the stage for a new era in IgE-targeted therapy.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Theodore S Jardetzky
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
Broerman AJ, Pollmann C, Lichtenstein MA, Jackson MD, Tessmer MH, Ryu WH, Abedi MH, Sahtoe DD, Allen A, Kang A, De La Cruz J, Brackenbrough E, Sankaran B, Bera AK, Zuckerman DM, Stoll S, Praetorius F, Piehler J, Baker D. Design of facilitated dissociation enables control over cytokine signaling duration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623900. [PMID: 39605600 PMCID: PMC11601400 DOI: 10.1101/2024.11.15.623900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Protein design has focused primarily on the design of ground states, ensuring they are sufficiently low energy to be highly populated1. Designing the kinetics and dynamics of a system requires, in addition, the design of excited states that are traversed in transitions from one low-lying state to another2,3. This is a challenging task as such states must be sufficiently strained to be poorly populated, but not so strained that they are not populated at all, and because protein design methods have generally focused on creating near-ideal structures4-7. Here we describe a general approach for designing systems which use an induced-fit power stroke8 to generate a structurally frustrated9 and strained excited state, allosterically driving protein complex dissociation. X-ray crystallography, double electron-electron resonance spectroscopy, and kinetic binding measurements demonstrate that incorporating excited states enables design of effector-induced increases in dissociation rates as high as 6000-fold. We highlight the power of this approach by designing cytokine mimics which can be dissociated within seconds from their receptors.
Collapse
Affiliation(s)
- Adam J. Broerman
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Christoph Pollmann
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Mauriz A. Lichtenstein
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Mark D. Jackson
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Maxx H. Tessmer
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Won Hee Ryu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Mohamad H. Abedi
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Danny D. Sahtoe
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Aza Allen
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Joshmyn De La Cruz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Evans Brackenbrough
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Asim K. Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Daniel M. Zuckerman
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Florian Praetorius
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Current address: Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Eggel A, Pennington LF, Jardetzky TS. Therapeutic monoclonal antibodies in allergy: Targeting IgE, cytokine, and alarmin pathways. Immunol Rev 2024; 328:387-411. [PMID: 39158477 PMCID: PMC11659931 DOI: 10.1111/imr.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The etiology of allergy is closely linked to type 2 inflammatory responses ultimately leading to the production of allergen-specific immunoglobulin E (IgE), a key driver of many allergic conditions. At a high level, initial allergen exposure disrupts epithelial integrity, triggering local inflammation via alarmins including IL-25, IL-33, and TSLP, which activate type 2 innate lymphoid cells as well as other immune cells to secrete type 2 cytokines IL-4, IL-5 and IL-13, promoting Th2 cell development and eosinophil recruitment. Th2 cell dependent B cell activation promotes the production of allergen-specific IgE, which stably binds to basophils and mast cells. Rapid degranulation of these cells upon allergen re-exposure leads to allergic symptoms. Recent advances in our understanding of the molecular and cellular mechanisms underlying allergic pathophysiology have significantly shaped the development of therapeutic intervention strategies. In this review, we highlight key therapeutic targets within the allergic cascade with a particular focus on past, current and future treatment approaches using monoclonal antibodies. Specific targeting of alarmins, type 2 cytokines and IgE has shown varying degrees of clinical benefit in different allergic indications including asthma, chronic spontaneous urticaria, atopic dermatitis, chronic rhinosinusitis with nasal polyps, food allergies and eosinophilic esophagitis. While multiple therapeutic antibodies have been approved for clinical use, scientists are still working on ways to improve on current treatment approaches. Here, we provide context to understand therapeutic targeting strategies and their limitations, discussing both knowledge gaps and promising future directions to enhancing clinical efficacy in allergic disease management.
Collapse
Affiliation(s)
- Alexander Eggel
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
| | | | - Theodore S. Jardetzky
- Department of Structural BiologyStanford University School of MedicineStanfordCaliforniaUSA
| |
Collapse
|
4
|
Chen Z, Wang X, Chen X, Huang J, Wang C, Wang J, Wang Z. Accelerating therapeutic protein design with computational approaches toward the clinical stage. Comput Struct Biotechnol J 2023; 21:2909-2926. [PMID: 38213894 PMCID: PMC10781723 DOI: 10.1016/j.csbj.2023.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 01/13/2024] Open
Abstract
Therapeutic protein, represented by antibodies, is of increasing interest in human medicine. However, clinical translation of therapeutic protein is still largely hindered by different aspects of developability, including affinity and selectivity, stability and aggregation prevention, solubility and viscosity reduction, and deimmunization. Conventional optimization of the developability with widely used methods, like display technologies and library screening approaches, is a time and cost-intensive endeavor, and the efficiency in finding suitable solutions is still not enough to meet clinical needs. In recent years, the accelerated advancement of computational methodologies has ushered in a transformative era in the field of therapeutic protein design. Owing to their remarkable capabilities in feature extraction and modeling, the integration of cutting-edge computational strategies with conventional techniques presents a promising avenue to accelerate the progression of therapeutic protein design and optimization toward clinical implementation. Here, we compared the differences between therapeutic protein and small molecules in developability and provided an overview of the computational approaches applicable to the design or optimization of therapeutic protein in several developability issues.
Collapse
Affiliation(s)
- Zhidong Chen
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Juyang Huang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenglin Wang
- Shenzhen Qiyu Biotechnology Co., Ltd, Shenzhen 518107, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
5
|
McDonnell JM, Dhaliwal B, Sutton BJ, Gould HJ. IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annu Rev Immunol 2023; 41:255-275. [PMID: 36737596 DOI: 10.1146/annurev-immunol-061020-053712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The evolution of IgE in mammals added an extra layer of immune protection at body surfaces to provide a rapid and local response against antigens from the environment. The IgE immune response employs potent expulsive and inflammatory forces against local antigen provocation, at the risk of damaging host tissues and causing allergic disease. Two well-known IgE receptors, the high-affinity FcεRI and low-affinity CD23, mediate the activities of IgE. Unlike other known antibody receptors, CD23 also regulates IgE expression, maintaining IgE homeostasis. This mechanism evolved by adapting the function of the complement receptor CD21. Recent insights into the dynamic character of IgE structure, its resultant capacity for allosteric modulation, and the potential for ligand-induced dissociation have revealed previously unappreciated mechanisms for regulation of IgE and IgE complexes. We describe recent research, highlighting structural studies of the IgE network of proteins to analyze the uniquely versatile activities of IgE and anti-IgE biologics.
Collapse
Affiliation(s)
- J M McDonnell
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | | | - B J Sutton
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| | - H J Gould
- Randall Centre for Cell and Molecular Biophysics and School of Basic and Medical Biosciences, King's College London, London, UK; , ,
| |
Collapse
|
6
|
Romero-Moreno JA, Serrano-Posada H, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. Development of a human antibody fragment cross-neutralizing scorpion toxins. Mol Immunol 2023; 155:165-174. [PMID: 36812764 DOI: 10.1016/j.molimm.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Previously, it was demonstrated that from the single chain fragment variable (scFv) 3F it is possible to generate variants capable of neutralizing the Cn2 and Css2 toxins, as well as their respective venoms (Centruroides noxius and Centruroides suffusus). Despite this success, it has not been easy to modify the recognition of this family of scFvs toward other dangerous scorpion toxins. The analysis of toxin-scFv interactions and in vitro maturation strategies allowed us to propose a new maturation pathway for scFv 3F to broaden recognition toward other Mexican scorpion toxins. From maturation processes against toxins CeII9 from C. elegans and Ct1a from C. tecomanus, the scFv RAS27 was developed. This scFv showed an increased affinity and cross-reactivity for at least 9 different toxins while maintaining recognition for its original target, the Cn2 toxin. In addition, it was confirmed that it can neutralize at least three different toxins. These results constitute an important advance since it was possible to improve the cross-reactivity and neutralizing capacity of the scFv 3F family of antibodies.
Collapse
Affiliation(s)
- José Alberto Romero-Moreno
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Hugo Serrano-Posada
- Investigador por México, CONACyT-Laboratorio de Biología Sintética, Estructural y Molecular, Laboratorio de Agrobiotecnología, Tecnoparque CLQ, Universidad de Colima, Carretera Los Limones-Loma de Juárez, Colima 28627, Mexico
| | - Timoteo Olamendi-Portugal
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Lourival D Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico
| | - Baltazar Becerril
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| | - Lidia Riaño-Umbarila
- Investigadora por México, CONACyT-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca 62250, Mexico.
| |
Collapse
|
7
|
Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: State-of-the-art review of therapies and theratypes. J Allergy Clin Immunol 2022; 150:1279-1288. [PMID: 36328808 DOI: 10.1016/j.jaci.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Through its disease-modifying potential, immunotherapy is the keystone to curing allergic diseases. Allergen immunotherapy, applied for more than a century, is currently supported by novel modalities such as mAb-based therapies or small molecules targeting the key nodes of the allergic inflammation network. In this review, a summary of the most significant advances in immunotherapy is presented, addressing not only novel approaches to stratifying patients but also major controlled clinical trials and real-world evidence that strengthen the role of immunotherapy in the treatment of allergies.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
8
|
Atanasio A, Orengo JM, Sleeman MA, Stahl N. Biologics as novel therapeutics for the treatment of allergy: Challenges and opportunities. FRONTIERS IN ALLERGY 2022; 3:1019255. [DOI: 10.3389/falgy.2022.1019255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Over the last 4 decades there has been a significant global increase in the incidence and prevalence of IgE-mediated allergy. Although much progress has been made in the management of allergy via patient education, pharmacotherapy and immunomodulatory treatment regimens, significant unmet need remains. Advancements in our knowledge base surrounding the type 2 immune response, production of IgE and maintenance of immunological memory has led the field to explore targeted intervention of allergic pathways using monoclonal antibodies (mAbs). Intervention at various stages of the allergic cascade offers the opportunity to prevent initiation and/or maintenance of the type 2 immune response and effectively provide therapeutic benefit to patients. Furthermore, a better understanding of the protective mechanisms involved in allergen specific immunotherapy (AIT) has led us to appreciate the interplay of immunoglobulins in the allergic response, specifically the benefit in shifting the IgG:IgE ratio in favor of functionally relevant blocking IgG. Thus, treatments that lower IgE or boost IgG with the ability to outcompete IgE binding to allergen also present a favorable approach in the treatment of allergy. In this short review we discuss and highlight recent advances in the use of biologics to treat severe allergy, highlighting the key challenges but also the significant opportunities and advances to date.
Collapse
|
9
|
Chen Q, Menon R, Calder LJ, Tolar P, Rosenthal PB. Cryomicroscopy reveals the structural basis for a flexible hinge motion in the immunoglobulin M pentamer. Nat Commun 2022; 13:6314. [PMID: 36274064 PMCID: PMC9588798 DOI: 10.1038/s41467-022-34090-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Immunoglobulin M (IgM) is the most ancient of the five isotypes of immunoglobulin (Ig) molecules and serves as the first line of defence against pathogens. Here, we use cryo-EM to image the structure of the human full-length IgM pentamer, revealing antigen binding domains flexibly attached to the asymmetric and rigid core formed by the Cμ4 and Cμ3 constant regions and the J-chain. A hinge is located at the Cμ3/Cμ2 domain interface, allowing Fabs and Cμ2 to pivot as a unit both in-plane and out-of-plane. This motion is different from that observed in IgG and IgA, where the two Fab arms are able to swing independently. A biased orientation of one pair of Fab arms results from asymmetry in the constant domain (Cμ3) at the IgM subunit interacting most extensively with the J-chain. This may influence the multi-valent binding to surface-associated antigens and complement pathway activation. By comparison, the structure of the Fc fragment in the IgM monomer is similar to that of the pentamer, but is more dynamic in the Cμ4 domain.
Collapse
Affiliation(s)
- Qu Chen
- grid.451388.30000 0004 1795 1830Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Rajesh Menon
- grid.451388.30000 0004 1795 1830Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Lesley J. Calder
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK. .,Institute of Immunity and Transplantation, University College London, Rowland Hill Street, London, NW3 2PP, UK.
| | - Peter B. Rosenthal
- grid.451388.30000 0004 1795 1830Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| |
Collapse
|