1
|
Tian X, Lee S, Tuckermann J, Meyer A. Bilateral asymmetry in craniofacial structures and kinematics of feeding attacks in the scale-eating cichlid fish, Perissodus microlepis. Zool Res 2025; 46:370-378. [PMID: 40091531 PMCID: PMC12000126 DOI: 10.24272/j.issn.2095-8137.2024.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025] Open
Abstract
Cichlid fishes are a textbook example for adaptive radiations, since they diversified into several hundred highly specialized species in each of three great East African lakes. Even scale-eating, an extremely specialized feeding mode, evolved independently multiple times in these radiations and in Lake Tanganyika alone, six endemic scale-eating species occupy this extremely specialized ecological niche. Perissodus microlepis went a step further, by evolving bilaterally asymmetrical heads with an intra-specific polymorphism where left- and right-headed morphs predominantly scrape scales from the opposite sides of their prey. While the bilateral asymmetry of scale-eating cichlids has been known, exactly which craniofacial features explain the laterality of the heads remained unclear. Here we aimed, by utilizing micro-computed tomography (μCT), to resolve this issue of how bilateral symmetry in the skeletal structure is broken in scale-eating Perissodus. Our 3D geometric morphometrics analysis clearly separated and identified the two groups of either left- or right-headed fish. In addition, we observed consistent asymmetric volume changes in the premaxilla, maxilla, and mandible of the craniofacial structures, where left-headed fish have larger jaw elements on the right side, and vice versa. The bimodality implies that the effect sizes of environmental factors might be minor while genetics might be responsible to a larger extent for the asymmetry observed in their head morphology. High-speed video analyses of attacks by asymmetrical morphotypes revealed that they utilize their asymmetrical mouth protrusion, as well as lateralized behavior, to re-orientate the gape towards the preferred side of their prey fish to more efficiently scrape scales.
Collapse
Affiliation(s)
- Xiaomeng Tian
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm 89081, Germany
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong 510301, China. E-mail:
| |
Collapse
|
2
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. Genome Biol 2025; 26:14. [PMID: 39844208 PMCID: PMC11753138 DOI: 10.1186/s13059-025-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. We set out to bridge this gap and to understand the interactions between TEs and their cichlid hosts. RESULTS Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed strong conservation of TE silencing factors in cichlids, and an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that targets TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. CONCLUSIONS Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present Address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L K Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
3
|
Dodge TO, Kim BY, Baczenas JJ, Banerjee SM, Gunn TR, Donny AE, Given LA, Rice AR, Haase Cox SK, Weinstein ML, Cross R, Moran BM, Haber K, Haghani NB, Machin Kairuz JA, Gellert HR, Du K, Aguillon SM, Tudor MS, Gutiérrez-Rodríguez C, Rios-Cardenas O, Morris MR, Schartl M, Powell DL, Schumer M. Structural genomic variation and behavioral interactions underpin a balanced sexual mimicry polymorphism. Curr Biol 2024; 34:4662-4676.e9. [PMID: 39326413 DOI: 10.1016/j.cub.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
How phenotypic diversity originates and persists within populations are classic puzzles in evolutionary biology. While balanced polymorphisms segregate within many species, it remains rare for both the genetic basis and the selective forces to be known, leading to an incomplete understanding of many classes of traits under balancing selection. Here, we uncover the genetic architecture of a balanced sexual mimicry polymorphism and identify behavioral mechanisms that may be involved in its maintenance in the swordtail fish Xiphophorus birchmanni. We find that ∼40% of X. birchmanni males develop a "false gravid spot," a melanic pigmentation pattern that mimics the "pregnancy spot" associated with sexual maturity in female live-bearing fish. Using genome-wide association mapping, we detect a single intergenic region associated with variation in the false gravid spot phenotype, which is upstream of kitlga, a melanophore patterning gene. By performing long-read sequencing within and across populations, we identify complex structural rearrangements between alternate alleles at this locus. The false gravid spot haplotype drives increased allele-specific expression of kitlga, which provides a mechanistic explanation for the increased melanophore abundance that causes the spot. By studying social interactions in the laboratory and in nature, we find that males with the false gravid spot experience less aggression; however, they also receive increased attention from other males and are disdained by females. These behavioral interactions may contribute to the maintenance of this phenotypic polymorphism in natural populations. We speculate that structural variants affecting gene regulation may be an underappreciated driver of balanced polymorphisms across diverse species.
Collapse
Affiliation(s)
- Tristram O Dodge
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México.
| | - Bernard Y Kim
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - John J Baczenas
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Shreya M Banerjee
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, 475 Storer Mall, Davis, CA 95616, USA
| | - Theresa R Gunn
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Alex E Donny
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Lyle A Given
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Andreas R Rice
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Sophia K Haase Cox
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - M Luke Weinstein
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Ryan Cross
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Benjamin M Moran
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | - Kate Haber
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Berkeley High School, 1980 Allston Way, Berkeley, CA 94704, USA
| | - Nadia B Haghani
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México
| | | | - Hannah R Gellert
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA
| | - Stepfanie M Aguillon
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | - M Scarlett Tudor
- Cooperative Extension and Aquaculture Research Institute, University of Maine, 33 Salmon Farm Road, Franklin, ME 04634, USA
| | - Carla Gutiérrez-Rodríguez
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Oscar Rios-Cardenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz 91073, México
| | - Molly R Morris
- Department of Biological Sciences, Ohio University, 7 Depot St., Athens, OH 45701, USA
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, 601 University Drive, San Marcos, TX 78666, USA; Developmental Biochemistry, Biocenter, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Daniel L Powell
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Department of Biology, Louisiana State University, 202 Life Science Building, Baton Rouge, LA 70803, USA
| | - Molly Schumer
- Department of Biology, Stanford University, 327 Campus Drive, Stanford, CA 94305, USA; Centro de Investigaciones Científicas de las Huastecas "Aguazarca" A.C., 16 de Septiembre, 392 Barrio Aguazarca, Calnali, Hidalgo 43240, México; Howard Hughes Medical Institute, 327 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Benham PM, Cicero C, Escalona M, Beraut E, Fairbairn C, Marimuthu MPA, Nguyen O, Sahasrabudhe R, King BL, Thomas WK, Kovach AI, Nachman MW, Bowie RCK. Remarkably High Repeat Content in the Genomes of Sparrows: The Importance of Genome Assembly Completeness for Transposable Element Discovery. Genome Biol Evol 2024; 16:evae067. [PMID: 38566597 PMCID: PMC11088854 DOI: 10.1093/gbe/evae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Transposable elements (TE) play critical roles in shaping genome evolution. Highly repetitive TE sequences are also a major source of assembly gaps making it difficult to fully understand the impact of these elements on host genomes. The increased capacity of long-read sequencing technologies to span highly repetitive regions promises to provide new insights into patterns of TE activity across diverse taxa. Here we report the generation of highly contiguous reference genomes using PacBio long-read and Omni-C technologies for three species of Passerellidae sparrow. We compared these assemblies to three chromosome-level sparrow assemblies and nine other sparrow assemblies generated using a variety of short- and long-read technologies. All long-read based assemblies were longer (range: 1.12 to 1.41 Gb) than short-read assemblies (0.91 to 1.08 Gb) and assembly length was strongly correlated with the amount of repeat content. Repeat content for Bell's sparrow (31.2% of genome) was the highest level ever reported within the order Passeriformes, which comprises over half of avian diversity. The highest levels of repeat content (79.2% to 93.7%) were found on the W chromosome relative to other regions of the genome. Finally, we show that proliferation of different TE classes varied even among species with similar levels of repeat content. These patterns support a dynamic model of TE expansion and contraction even in a clade where TEs were once thought to be fairly depauperate and static. Our work highlights how the resolution of difficult-to-assemble regions of the genome with new sequencing technologies promises to transform our understanding of avian genome evolution.
Collapse
Affiliation(s)
- Phred M Benham
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Colin Fairbairn
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Mohan P A Marimuthu
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California-Davis, Davis, CA 95616, USA
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
| | - W Kelley Thomas
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Adrienne I Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, Smith AM, Joyce DA, Butter F, Haase AD, Durbin R, Santos ME, Miska EA. Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587621. [PMID: 38617250 PMCID: PMC11014572 DOI: 10.1101/2024.04.01.587621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
East African cichlid fishes have diversified in an explosive fashion, but the (epi)genetic basis of the phenotypic diversity of these fishes remains largely unknown. Although transposable elements (TEs) have been associated with phenotypic variation in cichlids, little is known about their transcriptional activity and epigenetic silencing. Here, we describe dynamic patterns of TE expression in African cichlid gonads and during early development. Orthology inference revealed an expansion of piwil1 genes in Lake Malawi cichlids, likely driven by PiggyBac TEs. The expanded piwil1 copies have signatures of positive selection and retain amino acid residues essential for catalytic activity. Furthermore, the gonads of African cichlids express a Piwi-interacting RNA (piRNA) pathway that target TEs. We define the genomic sites of piRNA production in African cichlids and find divergence in closely related species, in line with fast evolution of piRNA-producing loci. Our findings suggest dynamic co-evolution of TEs and host silencing pathways in the African cichlid radiations. We propose that this co-evolution has contributed to cichlid genomic diversity.
Collapse
Affiliation(s)
- Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Moritz Blumer
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- These authors contributed equally
| | - Pío Sierra
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Jonathan L. Price
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Aleksandr Friman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Biophysics Graduate Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Alexandra Dallaire
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Comparative Fungal Biology, Royal Botanic Gardens Kew, Jodrell Laboratory, Richmond TW9 3DS, UK
| | - Grégoire Vernaz
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Present address: Zoological Institute, Department of Environmental Sciences, University of Basel, Vesalgasse 1, Basel, 4051, Switzerland
| | - Audrey L. K. Putman
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Alan M. Smith
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Domino A. Joyce
- School of Natural Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Falk Butter
- Institute of Molecular Biology (IMB), Quantitative Proteomics, Ackermannweg 4, Mainz, 55128, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institute, Südufer, Greifswald, 17493, Germany
| | - Astrid D. Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - M. Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Eric A. Miska
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| |
Collapse
|
6
|
Clark B, Kuwalekar M, Fischer B, Woltering J, Biran J, Juntti S, Kratochwil CF, Santos ME, Almeida MV. Genome editing in East African cichlids and tilapias: state-of-the-art and future directions. Open Biol 2023; 13:230257. [PMID: 38018094 PMCID: PMC10685126 DOI: 10.1098/rsob.230257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
African cichlid fishes of the Cichlidae family are a group of teleosts important for aquaculture and research. A thriving research community is particularly interested in the cichlid radiations of the East African Great Lakes. One key goal is to pinpoint genetic variation underlying phenotypic diversification, but the lack of genetic tools has precluded thorough dissection of the genetic basis of relevant traits in cichlids. Genome editing technologies are well established in teleost models like zebrafish and medaka. However, this is not the case for emerging model organisms, such as East African cichlids, where these technologies remain inaccessible to most laboratories, due in part to limited exchange of knowledge and expertise. The Cichlid Science 2022 meeting (Cambridge, UK) hosted for the first time a Genome Editing Workshop, where the community discussed recent advances in genome editing, with an emphasis on CRISPR/Cas9 technologies. Based on the workshop findings and discussions, in this review we define the state-of-the-art of cichlid genome editing, share resources and protocols, and propose new possible avenues to further expand the cichlid genome editing toolkit.
Collapse
Affiliation(s)
- Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Muktai Kuwalekar
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Joost Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Baden-Württemberg 78457, Germany
| | - Jakob Biran
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Scott Juntti
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Claudius F. Kratochwil
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Uusimaa 00014, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Uusimaa 00014, Finland
| | | | - Miguel Vasconcelos Almeida
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
8
|
ffrench-Constant RH. Transposable elements and xenobiotic resistance. FRONTIERS IN INSECT SCIENCE 2023; 3:1178212. [PMID: 38469483 PMCID: PMC10926513 DOI: 10.3389/finsc.2023.1178212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/24/2023] [Indexed: 03/13/2024]
Abstract
Transposable elements or TEs are well known drivers of adaptive change in plants and animals but their role in insecticide resistance remains poorly documented. This review examines the potential role of transposons in resistance and identifies key areas where our understanding remains unclear. Despite well-known model systems such as upregulation of Drosophila Cyp6g1, many putative examples lack functional validation. The potential types of transposon-associated changes that could lead to resistance are reviewed, including changes in up-regulation, message stability, loss of function and alternative splicing. Where potential mechanisms appear absent from the resistance literature examples are drawn from other areas of biology. Finally, ways are suggested in which transgenic expression could be used to validate the biological significance of TE insertion. In the absence of such functional expression studies many examples of the association of TEs and resistance genes therefore remain as correlations.
Collapse
|
9
|
Zheng Y, Chen C, Wang M, Moawad AS, Wang X, Song C. SINE Insertion in the Pig Carbonic Anhydrase 5B (CA5B) Gene Is Associated with Changes in Gene Expression and Phenotypic Variation. Animals (Basel) 2023; 13:1942. [PMID: 37370452 DOI: 10.3390/ani13121942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Transposons are genetic elements that are present in mammalian genomes and occupy a large proportion of the pig genome, with retrotransposons being the most abundant. In a previous study, it was found that a SINE retrotransposon was inserted in the 1st intron of the CA5B gene in pigs, and the present study aimed to investigate the SINE insertion polymorphism in this gene in different pig breeds. Polymerase chain reaction (PCR) was used to confirm the polymorphism in 11 pig breeds and wild boars), and it was found that there was moderate polymorphism information content in 9 of the breeds. Further investigation in cell experiments revealed that the 330 bp SINE insertion in the RIP-CA5B site promoted expression activity in the weak promoter region of this site. Additionally, an enhancer verification vector experiment showed that the 330 bp SINE sequence acted as an enhancer on the core promoter region upstream of the CA5B gene region. The expression of CA5B in adipose tissue (back fat and leaf fat) in individuals with the (SINE+/+) genotype was significantly higher than those with (SINE+/-) and (SINE-/-) genotypes. The association analysis revealed that the (SINE+/+) genotype was significantly associated with a higher back fat thickness than the (SINE-/-) genotype. Moreover, it was observed that the insertion of SINE at the RIP-CA5B site carried ATTT repeats, and three types of (ATTT) repeats were identified among different individuals/breeds (i.e., (ATTT)4, (ATTT)6 and (ATTT)9). Overall, the study provides insights into the genetic basis of adipose tissue development in pigs and highlights the role of a SINE insertion in the CA5B gene in this process.
Collapse
Affiliation(s)
- Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory, Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Mengli Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ali Shoaib Moawad
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
10
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
11
|
Nacif CL, Kratochwil CF, Kautt AF, Nater A, Machado-Schiaffino G, Meyer A, Henning F. Molecular parallelism in the evolution of a master sex-determining role for the anti-Mullerian hormone receptor 2 gene (amhr2) in Midas cichlids. Mol Ecol 2023; 32:1398-1410. [PMID: 35403749 DOI: 10.1111/mec.16466] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 12/01/2022]
Abstract
The evolution of sex chromosomes and their differentiation from autosomes is a major event during genome evolution that happened many times in several lineages. The repeated evolution and lability of sex-determination mechanisms in fishes makes this a well-suited system to test for general patterns in evolution. According to current theory, differentiation is triggered by the suppression of recombination following the evolution of a new master sex-determining gene. However, the molecular mechanisms that establish recombination suppression are known from few examples, owing to the intrinsic difficulties of assembling sex-determining regions (SDRs). The development of forward-genetics and long-read sequencing have generated a wealth of data questioning central aspects of the current theory. Here, we demonstrate that sex in Midas cichlids is determined by an XY system, and identify and assemble the SDR by combining forward-genetics, long-read sequencing and optical mapping. We show how long-reads aid in the detection of artefacts in genotype-phenotype mapping that arise from incomplete genome assemblies. The male-specific region is restricted to a 100-kb segment on chromosome 4 that harbours transposable elements and a Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master sex-determining functions repeatedly. Our data suggest that amhr2Y originated by an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another chromosome. Duplication of anti-Mullerian genes is a common route to establishing new sex determiners, highlighting the role of molecular parallelism in the evolution of sex determination.
Collapse
Affiliation(s)
- Camila L Nacif
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil
| | | | - Andreas F Kautt
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Nater
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Frederico Henning
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Cidade Universitária, Rio de Janeiro, Brazil.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Marconi A, Yang CZ, McKay S, Santos ME. Morphological and temporal variation in early embryogenesis contributes to species divergence in Malawi cichlid fishes. Evol Dev 2023; 25:170-193. [PMID: 36748313 PMCID: PMC10909517 DOI: 10.1111/ede.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
The cichlid fishes comprise the largest extant vertebrate family and are the quintessential example of rapid "explosive" adaptive radiations and phenotypic diversification. Despite low genetic divergence, East African cichlids harbor a spectacular intra- and interspecific morphological diversity, including the hyper-variable, neural crest (NC)-derived traits such as coloration and craniofacial skeleton. Although the genetic and developmental basis of these phenotypes has been investigated, understanding of when, and specifically how early, in ontogeny species-specific differences emerge, remains limited. Since adult traits often originate during embryonic development, the processes of embryogenesis could serve as a potential source of species-specific variation. Consequently, we designed a staging system by which we compare the features of embryogenesis between three Malawi cichlid species-Astatotilapia calliptera, Tropheops sp. 'mauve' and Rhamphochromis sp. "chilingali"-representing a wide spectrum of variation in pigmentation and craniofacial morphologies. Our results showed fundamental differences in multiple aspects of embryogenesis that could underlie interspecific divergence in adult adaptive traits. First, we identified variation in the somite number and signatures of temporal variation, or heterochrony, in the rates of somite formation. The heterochrony was also evident within and between species throughout ontogeny, up to the juvenile stages. Finally, the identified interspecific differences in the development of pigmentation and craniofacial cartilages, present at the earliest stages of their overt formation, provide compelling evidence that the species-specific trajectories begin divergence during early embryogenesis, potentially during somitogenesis and NC development. Altogether, our results expand our understanding of fundamental cichlid biology and provide new insights into the developmental origins of vertebrate morphological diversity.
Collapse
Affiliation(s)
| | | | - Samuel McKay
- Department of ZoologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Makova KD, Weissensteiner MH. Noncanonical DNA structures are drivers of genome evolution. Trends Genet 2023; 39:109-124. [PMID: 36604282 PMCID: PMC9877202 DOI: 10.1016/j.tig.2022.11.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023]
Abstract
In addition to the canonical right-handed double helix, other DNA structures, termed 'non-B DNA', can form in the genomes across the tree of life. Non-B DNA regulates multiple cellular processes, including replication and transcription, yet its presence is associated with elevated mutagenicity and genome instability. These discordant cellular roles fuel the enormous potential of non-B DNA to drive genomic and phenotypic evolution. Here we discuss recent studies establishing non-B DNA structures as novel functional elements subject to natural selection, affecting evolution of transposable elements (TEs), and specifying centromeres. By highlighting the contributions of non-B DNA to repeated evolution and adaptation to changing environments, we conclude that evolutionary analyses should include a perspective of not only DNA sequence, but also its structure.
Collapse
Affiliation(s)
- Kateryna D Makova
- Department of Biology, Penn State University, 310 Wartik Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
14
|
Matoulek D, Ježek B, Vohnoutová M, Symonová R. Advances in Vertebrate (Cyto)Genomics Shed New Light on Fish Compositional Genome Evolution. Genes (Basel) 2023; 14:genes14020244. [PMID: 36833171 PMCID: PMC9956151 DOI: 10.3390/genes14020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Cytogenetic and compositional studies considered fish genomes rather poor in guanine-cytosine content (GC%) because of a putative "sharp increase in genic GC% during the evolution of higher vertebrates". However, the available genomic data have not been exploited to confirm this viewpoint. In contrast, further misunderstandings in GC%, mostly of fish genomes, originated from a misapprehension of the current flood of data. Utilizing public databases, we calculated the GC% in animal genomes of three different, technically well-established fractions: DNA (entire genome), cDNA (complementary DNA), and cds (exons). Our results across chordates help set borders of GC% values that are still incorrect in literature and show: (i) fish in their immense diversity possess comparably GC-rich (or even GC-richer) genomes as higher vertebrates, and fish exons are GC-enriched among vertebrates; (ii) animal genomes generally show a GC-enrichment from the DNA, over cDNA, to the cds level (i.e., not only the higher vertebrates); (iii) fish and invertebrates show a broad(er) inter-quartile range in GC%, while avian and mammalian genomes are more constrained in their GC%. These results indicate no sharp increase in the GC% of genes during the transition to higher vertebrates, as stated and numerously repeated before. We present our results in 2D and 3D space to explore the compositional genome landscape and prepared an online platform to explore the AT/GC compositional genome evolution.
Collapse
Affiliation(s)
- Dominik Matoulek
- Department of Physics, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Bruno Ježek
- Faculty of Informatics and Management, University of Hradec Králové, Rokitanského 62, 500 02 Hradec Králové, Czech Republic
| | - Marta Vohnoutová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Radka Symonová
- Department of Computer Science, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
- Department of Bioinformatics, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
- Correspondence:
| |
Collapse
|
15
|
Santos ME, Lopes JF, Kratochwil CF. East African cichlid fishes. EvoDevo 2023; 14:1. [PMID: 36604760 PMCID: PMC9814215 DOI: 10.1186/s13227-022-00205-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cichlid fishes are a very diverse and species-rich family of teleost fishes that inhabit lakes and rivers of India, Africa, and South and Central America. Research has largely focused on East African cichlids of the Rift Lakes Tanganyika, Malawi, and Victoria that constitute the biodiversity hotspots of cichlid fishes. Here, we give an overview of the study system, research questions, and methodologies. Research on cichlid fishes spans many disciplines including ecology, evolution, physiology, genetics, development, and behavioral biology. In this review, we focus on a range of organismal traits, including coloration phenotypes, trophic adaptations, appendages like fins and scales, sensory systems, sex, brains, and behaviors. Moreover, we discuss studies on cichlid phylogenies, plasticity, and general evolutionary patterns, ranging from convergence to speciation rates and the proximate and ultimate mechanisms underlying these processes. From a methodological viewpoint, the last decade has brought great advances in cichlid fish research, particularly through the advent of affordable deep sequencing and advances in genetic manipulations. The ability to integrate across traits and research disciplines, ranging from developmental biology to ecology and evolution, makes cichlid fishes a fascinating research system.
Collapse
Affiliation(s)
- M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | - João F Lopes
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
16
|
Johnston SE, Chen N, Josephs EB. Taking quantitative genomics into the wild. Proc Biol Sci 2022; 289:20221930. [PMID: 36541172 PMCID: PMC9768650 DOI: 10.1098/rspb.2022.1930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
We organized this special issue to highlight new work and review recent advances at the cutting edge of 'wild quantitative genomics'. In this editorial, we will present some history of wild quantitative genetic and genomic studies, before discussing the main themes in the papers published in this special issue and highlighting the future outlook of this dynamic field.
Collapse
Affiliation(s)
- Susan E. Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, Edinburgh EH9 3FL, UK
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, 14627, NY, USA
| | - Emily B. Josephs
- Department of Plant Biology and Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, 48824, MI, USA
| |
Collapse
|
17
|
Haddock J, Domyan ET. A DNA Replication Mechanism Can Explain Structural Variation at the Pigeon Recessive Red Locus. Biomolecules 2022; 12:1509. [PMID: 36291717 PMCID: PMC9599118 DOI: 10.3390/biom12101509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 08/08/2023] Open
Abstract
For species to adapt to their environment, evolution must act upon genetic variation that is present in the population. Elucidating the molecular mechanisms that give rise to this variation is thus of crucial importance for understanding how organisms evolve. In addition to variation caused by point mutations, structural variation (deletions, duplications, inversions, translocations) is also an important source of variety. Mechanisms involving recombination, transposition and retrotransposition, and replication have been proposed for generating structural variation, and each are capable of explaining certain rearrangements. In this study, we conduct a detailed analysis of two partially overlapping rearrangements (e1 and e2 allele) in domestic rock pigeon (Columba livia) which are both associated with the recessive red phenotype. We find that a replicative mechanism is best able to explain the complex architecture of the e1 allele, and is also compatible with the simpler architecture of the e2 allele as well.
Collapse
Affiliation(s)
| | - Eric T. Domyan
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
| |
Collapse
|
18
|
Kratochwil CF, Liang Y, Gerwin J, Franchini P, Meyer A. Comparative ontogenetic and transcriptomic analyses shed light on color pattern divergence in cichlid fishes. Evol Dev 2022; 24:158-170. [PMID: 35971657 DOI: 10.1111/ede.12416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/01/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Stripe patterns are a striking example for a repeatedly evolved color pattern. In the African adaptive radiations of cichlid fishes, stripes evolved several times independently. Previously, it has been suggested that regulatory evolution of a single gene, agouti-related-peptide 2 (agrp2), explains the evolutionary lability of this trait. Here, using a comparative transcriptomic approach, we performed comparisons between (adult) striped and nonstriped cichlid fishes of representatives of Lake Victoria and the two major clades of Lake Malawi (mbuna and non-mbuna lineage). We identify agrp2 to be differentially expressed across all pairwise comparisons, reaffirming its association with stripe pattern divergence. We therefore also provide evidence that agrp2 is associated with the loss of the nonstereotypic oblique stripe of Mylochromis mola. Complementary ontogenetic data give insights into the development of stripe patterns as well as vertical bar patterns that both develop postembryonically. Lastly, using the Lake Victoria species pair Haplochromis sauvagei and Pundamilia nyererei, we investigated the differences between melanic and non-melanic regions to identify additional genes that contribute to the formation of stripes. Expression differences-that most importantly also do not include agrp2-are surprisingly small. This suggests, at least in this species pair, that the stripe phenotype might be caused by a combination of more subtle transcriptomic differences or cellular changes without transcriptional correlates. In summary, our comprehensive analysis highlights the ontogenetic and adult transcriptomic differences between cichlids with different color patterns and serves as a basis for further investigation of the mechanistic underpinnings of their diversification.
Collapse
Affiliation(s)
- Claudius F Kratochwil
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Yipeng Liang
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jan Gerwin
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Paolo Franchini
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
19
|
|