1
|
Zhang H, Tian L, Ma Y, Xu J, Bai T, Wang Q, Liu X, Guo L. Not only the top: Type I topoisomerases function in multiple tissues and organs development in plants. J Adv Res 2024:S2090-1232(24)00588-5. [PMID: 39662729 DOI: 10.1016/j.jare.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/24/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND DNA topoisomerases (TOPs) are essential components in a diverse range of biological processes including DNA replication, transcription and genome integrity. Although the functions and mechanisms of TOPs, particularly type I TOP (TOP1s), have been extensively studied in bacteria, yeast and animals, researches on these proteins in plants have only recently commenced. AIM OF REVIEW In this review, the function and mechanism studies of TOP1s in plants and the structural biology of plant TOP1 are presented, providing readers with a comprehensive understanding of the current research status of this essential enzyme.The future research directions for exploring the working mechanism of plant TOP1s are also discussed. KEY SCIENTIFIC CONCEPTS OF REVIEW Over the past decade, it has been discovered TOP1s play a vital role in multiphasic processes of plant development, such as maintaining meristem activity, gametogenesis, flowering time, gravitropic response and so on. Plant TOP1s affects gene transcription by modulating chromatin status, including chromatin accessibility, DNA/RNA structure, and nucleosome positioning. However, the function and mechanism of this vital enzyme is poorly summarized although it has been systematically summarized in other species. This review summarized the research progresses of plant TOP1s according to the diverse functions and working mechanism in different tissues.
Collapse
Affiliation(s)
- Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lirong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Tianyu Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Qian Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, 050024, Shijiazhuang, China.
| |
Collapse
|
2
|
Foster MP, Benedek MJ, Billings TD, Montgomery JS. Dynamics in Cre-loxP site-specific recombination. Curr Opin Struct Biol 2024; 88:102878. [PMID: 39029281 PMCID: PMC11616326 DOI: 10.1016/j.sbi.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024]
Abstract
Cre recombinase is a phage-derived enzyme that has found utility for precise manipulation of DNA sequences. Cre recognizes and recombines pairs of loxP sequences characterized by an inverted repeat and asymmetric spacer. Cre cleaves and religates its DNA targets such that error-prone repair pathways are not required to generate intact DNA products. Major obstacles to broader applications are lack of knowledge of how Cre recognizes its targets, and how its activity is controlled. The picture emerging from high resolution methods is that the dynamic properties of both the enzyme and its DNA target are important determinants of its activity in both sequence recognition and DNA cleavage. Improved understanding of the role of dynamics in the key steps along the pathway of Cre-loxP recombination should significantly advance our ability to both redirect Cre to new sequences and to control its DNA cleavage activity in the test tube and in cells.
Collapse
Affiliation(s)
- Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA.
| | - Matthew J Benedek
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Tyler D Billings
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
4
|
Srivastava V, Naik B, Godara P, Das D, Mattaparthi VSK, Prusty D. Identification of FDA-approved drugs with triple targeting mode of action for the treatment of monkeypox: a high throughput virtual screening study. Mol Divers 2024; 28:1093-1107. [PMID: 37079243 PMCID: PMC10116100 DOI: 10.1007/s11030-023-10636-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
According to the Center for Disease Control and Prevention, as of August 23, 94 countries had confirmed 42,954 Monkeypox Virus cases. As specific monkeypox drugs are not yet developed, the treatment depends on repurposed FDA-approved drugs. According to a recent study, the Monkeypox outbreak is caused by a strain with a unique mutation, raising the likelihood that the virus will develop resistance to current drugs by acquiring mutations in the targets of currently used drugs. The probability of multiple mutations in two or more drug targets at a time is always low than mutation in a single drug target. Therefore, we identified 15 triple-targeting FDA-approved drugs that can inhibit three viral targets, including topoisomerase1, p37, and thymidylate kinase, using high throughput virtual screening approach. Further, the molecular dynamics simulation analysis of the top hits such as Naldemedine and Saquinavir with their respective targets reveals the formation of stable conformational changes of the ligand-protein complexes inside the dynamic biological environment. We suggest further research on these triple-targeting molecules to develop an effective therapy for the currently spreading Monkeypox.
Collapse
Affiliation(s)
- Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Dorothy Das
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
5
|
Zeng H, Zhang S, Nie H, Li J, Yang J, Zhuang Y, Huang Y, Zeng M. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorg Chem 2024; 147:107412. [PMID: 38696845 DOI: 10.1016/j.bioorg.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Jiunlong Yang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yingjie Huang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Miao Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| |
Collapse
|
6
|
Afzal O, Ahsan MJ. An Efficient Synthesis of 1-(1,3-Dioxoisoindolin-2-yl)-3-aryl Urea Analogs as Anticancer and Antioxidant Agents: An Insight into Experimental and In Silico Studies. Molecules 2023; 29:67. [PMID: 38202650 PMCID: PMC10779787 DOI: 10.3390/molecules29010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The present investigation reports the efficient multistep synthesis of 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) in good yields. All the 1-(1,3-dioxoisoindolin-2-yl)-3-aryl urea analogs (7a-f) were characterized by spectroscopic techniques. Five among the six compounds were tested against 56 cancer cell lines at 10 µM as per the standard protocol. 1-(4-Bromophenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7c) exhibited moderate but significant anticancer activity against EKVX, CAKI-1, UACC-62, MCF7, LOX IMVI, and ACHN with percentage growth inhibitions (PGIs) of 75.46, 78.52, 80.81, 83.48, 84.52, and 89.61, respectively. Compound 7c was found to exhibit better anticancer activity than thalidomide against non-small cell lung, CNS, melanoma, renal, prostate, and breast cancer cell lines. It was also found to exhibit superior anticancer activity against melanoma cancer compared to imatinib. Among the tested compounds, the 4-bromosubstitution (7c) on the phenyl ring demonstrated good anticancer activity. Docking scores ranging from -6.363 to -7.565 kcal/mol were observed in the docking studies against the molecular target EGFR. The ligand 7c displayed an efficient binding against the EGFR with a docking score of -7.558 kcal/mol and displayed an H-bond interaction with Lys745 and the carbonyl functional group. Compound 7c demonstrated a moderate inhibition of EGFR with an IC50 of 42.91 ± 0.80 nM, in comparison to erlotinib (IC50 = 26.85 ± 0.72 nM), the standard drug. The antioxidant potential was also calculated for the compounds (7a-f), which exhibited good to low activity. 1-(2-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7f) and 1-(4-Methoxyphenyl)-3-(1,3-dioxoisoindolin-2-yl)urea (7d) demonstrated significant antioxidant activity with IC50 values of 15.99 ± 0.10 and 16.05 ± 0.15 µM, respectively. The 2- and 4-methoxysubstitutions on the N-phenyl ring showed good antioxidant activity among the series of compounds (7a-f). An in silico ADMET prediction studies showed the compounds' adherence to Lipinski's rule of five: they were free from toxicities, including mutagenicity, cytotoxicity, and immunotoxicity, but not for hepatotoxicity. The toxicity prediction demonstrated LD50 values between 1000 and 5000 mg/Kg, putting the compounds either in class IV or class V toxicity classes. Our findings might create opportunities for more advancements in cancer therapeutics.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jahangirabad Institute of Technology (JIT), Jahangirabad Fort, Jahangirabad 225203, Uttar Pradesh, India;
| |
Collapse
|
7
|
Zeng H, Xie H, Ma Q, Zhuang Y, Luo B, Liao M, Nie H, He J, Tang Z, Zhang S. Identification of N-(3-(methyl(3-(orotic amido)propyl)amino)propyl) oleanolamide as a novel topoisomerase I catalytic inhibitor by rational design, molecular dynamics simulation, and biological evaluation. Bioorg Chem 2023; 139:106734. [PMID: 37473480 DOI: 10.1016/j.bioorg.2023.106734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
DNA topoisomerase I (TOP1) catalytic inhibitors are a promising class of antitumor agents. Oleanolic acid derivatives are potential TOP1 catalytic inhibitors. However, their inhibitory activity still needs to be enhanced, and the stability and hotspot residue sites of their interaction with TOP1 remain to be elucidated. Herein, a novel oleanolic acid derivative, OA4 (N-(3-(methyl(3-(orotic amido)propyl)amino)propyl)oleanolamide), was identified by rational design. Subsequently, molecular dynamics simulations were performed to explore the stability and conformational dynamics of the TOP1-OA4 complex. The molecular mechanics/generalized Born surface area method calculated the binding free energy and predicted Arg488, Ile535, and His632 to be hotspot residues. Biological experiments verified that OA4 is a nonintercalative TOP1 catalytic inhibitor. OA4 exhibits better proliferation inhibitory activity against tumor cells than normal cells. Furthermore, OA4 can induce apoptosis and effectively suppress the proliferation and migration of cancer cells. This work provides new insights for the development of novel TOP1 catalytic inhibitors.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Huasong Xie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Qiaonan Ma
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Baoping Luo
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Mei Liao
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zhanyong Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| |
Collapse
|
8
|
Rossi V, Govoni M, Di Stefano G. Lactate Can Modulate the Antineoplastic Effects of Doxorubicin and Relieve the Drug's Oxidative Damage on Cardiomyocytes. Cancers (Basel) 2023; 15:3728. [PMID: 37509389 PMCID: PMC10378253 DOI: 10.3390/cancers15143728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Doxorubicin (DOXO) is currently administered as the first-choice therapy for a variety of malignancies. Cancer cells exhibit enhanced glycolysis and lactate production. This metabolite affects gene expression and can play a role in chemoresistance. AIM OF THIS STUDY We investigated whether the enhanced lactate levels that characterize neoplastic tissues can modify the response of cancer cells to DOXO. METHODS After exposing cancer cells to increased lactate levels, we examined whether this metabolite could interfere with the principal mechanisms responsible for the DOXO antineoplastic effect. RESULTS Increased lactate levels did not affect DOXO-induced topoisomerase poisoning but offered protection against the oxidative damage caused by the drug. This protection was related to changes in gene expression caused by the combined action of DOXO and lactate. Oxidative damage significantly contributed to the heavy cardiotoxicity following DOXO treatment. In cultured cardiomyocytes, we confirmed that DOXO-induced DNA damage and oxidative stress can be significantly mitigated by exposing the cells to increased lactate levels. CONCLUSIONS In addition to contributing to elucidating the effects of the combined action of DOXO and lactate, our results suggest a possible method to reduce the heavy drug cardiotoxicity, a major side effect leading to therapy discontinuation.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Iuliano V, Talotta C, Della Sala P, De Rosa M, Soriente A, Neri P, Gaeta C. Hexahexyloxycalix[6]arene, a Conformationally Adaptive Host for the Complexation of Linear and Branched Alkylammonium Guests. Molecules 2023; 28:4749. [PMID: 37375304 DOI: 10.3390/molecules28124749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Hexahexyloxycalix[6]arene 2b leads to the endo-cavity complexation of linear and branched alkylammonium guests showing a conformational adaptive behavior in CDCl3 solution. Linear n-pentylammonium guest 6a+ induces the cone conformation of 2b at the expense of the 1,2,3-alternate, which is the most abundant conformer of 2b in the absence of a guest. In a different way, branched alkylammonium guests, such as tert-butylammonium 6b+ and isopropylammonium 6c+, select the 1,2,3-alternate as the favored 2b conformation (6b+/6c+⊂2b1,2,3-alt), but other complexes in which 2b adopts different conformations, namely, 6b+/6c+⊂2bcone, 6b+/6c+⊂2bpaco, and 6b+/6c+⊂2b1,2-alt, have also been revealed. Binding constant values determined via NMR experiments indicated that the 1,2,3-alternate was the best-fitting 2b conformation for the complexation of branched alkylammonium guests, followed by cone > paco > 1,2-alt. Our NCI and NBO calculations suggest that the H-bonding interactions (+N-H···O) between the ammonium group of the guest and the oxygen atoms of calixarene 2b are the main determinants of the stability order of the four complexes. These interactions are weakened by increasing the guest steric encumbrance, thus leading to a lower binding affinity. Two stabilizing H-bonds are possible with the 1,2,3-alt- and cone-2b conformations, whereas only one H-bond is possible with the other paco- and 1,2-alt-2b stereoisomers.
Collapse
Affiliation(s)
- Veronica Iuliano
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Paolo Della Sala
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Annunziata Soriente
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| | - Carmine Gaeta
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
| |
Collapse
|
10
|
Tsyganov MM, Ibragimova MK. MALAT1 Long Non-coding RNA and Its Role in Breast Carcinogenesis. Acta Naturae 2023; 15:32-41. [PMID: 37538803 PMCID: PMC10395780 DOI: 10.32607/actanaturae.11905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/02/2023] [Indexed: 08/05/2023] Open
Abstract
Our genome consists not only of protein-coding DNA, but also of the non-coding part that plays a very important role in the regulation of all cellular processes. A part of the non-coding genome comes with non-coding RNAs (ncRNAs), and disruption of the functional activity of these RNAs may be associated with oncogenesis in various cancer types. There exist two types of ncRNAs: small and long non-coding RNAs, which are classified according to their transcript length. Long non-coding metastasis-associated lung adenocarcinoma transcript 1, MALAT1 RNA (NEAT2), is a long non-coding RNA of particular interest. The aforementioned transcript takes part in the regulation of numerous cellular processes and pathogenesis of different malignant tumors, including breast tumors. This review focuses on experimental and clinical studies into the role of MALAT1 in carcinogenesis and the progression of breast cancer.
Collapse
Affiliation(s)
- M. M. Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050 Russian Federation
- Siberian State Medical University, Tomsk, 634050 Russian Federation
| | - M. K. Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050 Russian Federation
- Siberian State Medical University, Tomsk, 634050 Russian Federation
- National Research Tomsk State University, Tomsk, 634050 Russian Federation
| |
Collapse
|
11
|
Moreira F, Arenas M, Videira A, Pereira F. Evolution of TOP1 and TOP1MT Topoisomerases in Chordata. J Mol Evol 2023; 91:192-203. [PMID: 36651963 PMCID: PMC10081982 DOI: 10.1007/s00239-022-10091-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023]
Abstract
Type IB topoisomerases relax the torsional stress associated with DNA metabolism in the nucleus and mitochondria and constitute important molecular targets of anticancer drugs. Vertebrates stand out among eukaryotes by having two Type IB topoisomerases acting specifically in the nucleus (TOP1) and mitochondria (TOP1MT). Despite their major importance, the origin and evolution of these paralogues remain unknown. Here, we examine the molecular evolutionary processes acting on both TOP1 and TOP1MT in Chordata, taking advantage of the increasing number of available genome sequences. We found that both TOP1 and TOP1MT evolved under strong purifying selection, as expected considering their essential biological functions. Critical active sites, including those associated with resistance to anticancer agents, were found particularly conserved. However, TOP1MT presented a higher rate of molecular evolution than TOP1, possibly related with its specialized activity on the mitochondrial genome and a less critical role in cells. We could place the duplication event that originated the TOP1 and TOP1MT paralogues early in the radiation of vertebrates, most likely associated with the first round of vertebrate tetraploidization (1R). Moreover, our data suggest that cyclostomes present a specialized mitochondrial Type IB topoisomerase. Interestingly, we identified two missense mutations replacing amino acids in the Linker region of TOP1MT in Neanderthals, which appears as a rare event when comparing the genome of both species. In conclusion, TOP1 and TOP1MT differ in their rates of evolution, and their evolutionary histories allowed us to better understand the evolution of chordates.
Collapse
Affiliation(s)
- Filipa Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos S/N 4450-208, Matosinhos, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Arnaldo Videira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Filipe Pereira
- IDENTIFICA Genetic Testing, Rua Simão Bolívar 259 3º Dir Tras, 4470-214, Maia, Portugal.
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
12
|
Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics 2022; 14:pharmaceutics14081707. [PMID: 36015333 PMCID: PMC9413092 DOI: 10.3390/pharmaceutics14081707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022] Open
Abstract
DNA topoisomerases are essential enzymes that stabilize DNA supercoiling and resolve entanglements. Topoisomerase inhibitors have been widely used as anti-cancer drugs for the past 20 years. Due to their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecin and its derivatives are promising anti-cancer drugs. To increase accumulation of TOP1 inhibitors in cancer cells through the targeting of tumors, TOP1 inhibitor antibody–drug conjugates (TOP1-ADC) have been developed and marketed. Some TOP1-ADCs have shown enhanced therapeutic efficacy compared to prototypical anti-cancer ADCs, such as T-DM1. Here, we review various types of camptothecin-based TOP1 inhibitors and recent developments in TOP1-ADCs. We then propose key points for the design and construction of TOP1-ADCs. Finally, we discuss promising combinatorial strategies, including newly developed approaches to maximizing the therapeutic potential of TOP1-ADCs.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Kwang Suk Lim
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Brody J. Blackburn
- Department of Medical Pharmacology, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
13
|
Sun Y, Nitiss JL, Pommier Y. SUMO: A Swiss Army Knife for Eukaryotic Topoisomerases. Front Mol Biosci 2022; 9:871161. [PMID: 35463961 PMCID: PMC9019546 DOI: 10.3389/fmolb.2022.871161] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 01/03/2023] Open
Abstract
Topoisomerases play crucial roles in DNA metabolism that include replication, transcription, recombination, and chromatin structure by manipulating DNA structures arising in double-stranded DNA. These proteins play key enzymatic roles in a variety of cellular processes and are also likely to play structural roles. Topoisomerases allow topological transformations by introducing transient breaks in DNA by a transesterification reaction between a tyrosine residue of the enzyme and DNA. The cleavage reaction leads to a unique enzyme intermediate that allows cutting DNA while minimizing the potential for damage-induced genetic changes. Nonetheless, topoisomerase-mediated cleavage has the potential for inducing genome instability if the enzyme-mediated DNA resealing is impaired. Regulation of topoisomerase functions is accomplished by post-translational modifications including phosphorylation, polyADP-ribosylation, ubiquitylation, and SUMOylation. These modifications modulate enzyme activity and likely play key roles in determining sites of enzyme action and enzyme stability. Topoisomerase-mediated DNA cleavage and rejoining are affected by a variety of conditions including the action of small molecules, topoisomerase mutations, and DNA structural forms which permit the conversion of the short-lived cleavage intermediate to persistent topoisomerase DNA-protein crosslink (TOP-DPC). Recognition and processing of TOP-DPCs utilizes many of the same post-translational modifications that regulate enzyme activity. This review focuses on SUMOylation of topoisomerases, which has been demonstrated to be a key modification of both type I and type II topoisomerases. Special emphasis is placed on recent studies that indicate how SUMOylation regulates topoisomerase function in unperturbed cells and the unique roles that SUMOylation plays in repairing damage arising from topoisomerase malfunction.
Collapse
Affiliation(s)
- Yilun Sun
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - John L. Nitiss
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois, Rockford, IL, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|