1
|
Kim H, Yoo H, Kim H, Park JM, Lee BH, Choi TL. Low-Temperature Direct Arylation Polymerization for the Sustainable Synthesis of a Library of Low-Defect Donor-Acceptor Conjugated Polymers via Pd/Ag Dual-Catalysis. J Am Chem Soc 2025; 147:11886-11895. [PMID: 40163371 DOI: 10.1021/jacs.4c16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Donor-acceptor alternating conjugated polymers (D-A CPs) are one of the best materials for high-performance organic electronic devices, owing to their low bandgap and high charge carrier mobility. However, most of the D-A CPs are synthesized by less sustainable polymerization methods. To address this issue, direct arylation polymerization (DArP), eliminating the need for transmetalating agents, was developed over the past two decades. Nevertheless, C-H activation during DArP still requires significantly harsh reaction conditions, limiting the precision and applicability of CPs. In this report, we demonstrate a versatile and sustainable Pd/Ag dual-catalytic DArP conducted at low or even room temperatures, thereby yielding low-defect D-A CPs. Initially, electron-deficient acceptor substrates with various electronic properties and pKa underwent successful concerted-metalation-deprotonation (CMD) via Ag catalysis with mild conditions and highly chemoselective Pd-catalyzed C-C coupling. This synergistic dual-catalysis allowed for the library synthesis of D-A and A-A CPs from acceptor C-H monomers and aryl halide monomers at low temperatures (25-70 °C) in sustainable solvents such as p-cymene. Interestingly, the D-A CPs obtained via Pd/Ag DArP displayed higher structural regularity and crystallinity, eventually outperforming those prepared by conventional synthetic methods in device performances of ambipolar organic field-effect transistors (μe up to 0.80 cm2 V-1 s-1) and complementary metal-oxide semiconductor inverters (gain up to 102).
Collapse
Affiliation(s)
- Hwangseok Kim
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Hyeonjin Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hongsik Kim
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Jun-Mo Park
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Byoung Hoon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
2
|
Zhang Y, Zhang W, Chen Z, Wang L, Yu G. Recent developments in polymer semiconductors with excellent electron transport performances. Chem Soc Rev 2025; 54:2483-2519. [PMID: 39906917 DOI: 10.1039/d4cs00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Benefiting from molecular design and device innovation, electronic devices based on polymer semiconductors have achieved significant developments and gradual commercialization over the past few decades. Most of high-performance polymer semiconductors that have been prepared exhibit p-type performances, and records of their carrier mobilities are constantly being broken through. Although ambipolar and n-type polymers are necessary for constructing p-n heterojunctions and logic circuits, only a few materials show outstanding device performances, which leads to their developments lagging far behind that of p-type analogues. As a consequence, it is extremely significant to summarize polymer semiconductors with excellent electron transport performances. This review focuses on the design considerations and bonding modes between monomers of polymer semiconductors with high electron mobilities. To enhance electron transport performances of polymer semiconductors, the structural modification strategies are described in detail. Subsequently, the electron transport, thermoelectric, mixed ionic-electronic conduction, intrinsically stretchable, photodetection, and spin transport performances of high-electron mobility polymers are discussed from the perspective of molecular engineering. In the end, the challenges and prospects in this research field are presented, which provide valuable guidance for the design of polymer semiconductors with excellent electron transport performances and the exploration of more advanced applications in the future.
Collapse
Affiliation(s)
- Yunchao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhihui Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Li S, He Z, Hao Z, Fei Z, Zhong H. Giant molecule acceptors prepared by metal-free catalyzed reactions towards efficient organic solar cells. Chem Commun (Camb) 2024; 61:290-293. [PMID: 39629515 DOI: 10.1039/d4cc04790g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Due to their defined structure and large molecular size, giant molecular acceptors (GMAs) have achieved significant progress in device efficiency and stability for organic solar cells. Unlike the classical synthesis of GMAs by Stille coupling, which still suffers from high cost and lack of environmental sustainability, this work develops three GMAs via metal-free catalyzed reactions. By introducing varying quantities of malononitrile groups into the linker, the optoelectric properties of GMAs can be significantly regulated. A GMA containing only one malononitrile in the central linker unit exhibits a favorable absorption range, energy levels, and molecular packing, consequently achieving high efficiency and stability. Therefore this work provides a feasible approach to developing low-cost and scalable GMAs.
Collapse
Affiliation(s)
- Siyuan Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhilong He
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhe Hao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhuping Fei
- Institute of Molecular Plus, Department of Chemistry, Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Hongliang Zhong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Niu X, Zhang Q, Dang Y, Hu W, Sun Y. MolPackL: Quantification and Interpretation of Intermolecular Interactions Driven by Molecular Packing. J Am Chem Soc 2024; 146:24075-24084. [PMID: 39141522 DOI: 10.1021/jacs.4c08132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In organic optoelectronic devices, the properties of the aggregated organic materials depend not only on individual molecules or monomers but also significantly on their packing modes. Different from their inorganic counterparts linked by explicit covalent bonds, organic solids exhibit intricate and numerous intermolecular interactions (IMIs). Due to the intrinsic complexity and disorder of IMIs, identifying and understanding them is a formidable challenge in experimental, theoretical, and data-driven approaches. In this work, we constructed an innovative algorithm framework, Molecular Packing Learning (MolPackL), which can accurately quantify elusive IMIs using contact density histograms (CDHs) and efficiently extract intermolecular features for further property prediction of organic solids. It performs satisfactorily in training predictive models of IMI-related properties in molecular crystals. Particularly, the band gap predictive model based on MolPackL achieved the best-reported performance, with an MAE of 0.20 eV and an impressive R2 of 0.92. Class activation mapping (CAM) visually demonstrates MolPackL's accurate identification of effective interaction sites as the molecular packing changes. What is more, the elemental importance analysis verified that the superior score benefits from MolPackL's ability to comprehensively consider multiple influencing factors of IMIs. In summary, MolPackL provides a new framework for quantitative assessment and understanding of the effect of IMIs. The development of MolPackL marks a significant advancement in establishing predictive models of molecular aggregates, deepening the comprehension of IMIs on the material properties. Given the superior performance, we believe that MolPackL will also become a powerful tool in the design of high-performance organic optoelectronic materials.
Collapse
Affiliation(s)
- Xinxin Niu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Qian Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, Fuzhou 350207, P.R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
5
|
Xiong H, Lin Q, Lu Y, Zheng D, Li Y, Wang S, Xie W, Li C, Zhang X, Lin Y, Wang ZX, Shi Q, Marks TJ, Huang H. General room-temperature Suzuki-Miyaura polymerization for organic electronics. NATURE MATERIALS 2024; 23:695-702. [PMID: 38287128 DOI: 10.1038/s41563-023-01794-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
π-Conjugated polymers (CPs) have broad applications in high-performance optoelectronics, energy storage, sensors and biomedicine. However, developing green and efficient methods to precisely synthesize alternating CP structures on a large scale remains challenging and critical for their industrialization. Here a room-temperature, scalable and homogeneous Suzuki-Miyaura-type polymerization reaction is developed with broad generality validated for 24 CPs including donor-donor, donor-acceptor and acceptor-acceptor connectivities, yielding device-quality polymers with high molecular masses. Furthermore, the polymerization protocol significantly reduces homocoupling structural defects, yielding more structurally regular and higher-performance electronic materials and optoelectronic devices than conventional thermally activated polymerizations. Experimental and theoretical studies reveal that a borate transmetalation process plays a key role in suppressing protodeboronation, which is critical for large-scale structural regularity. Thus, these results provide a general polymerization tool for the scalable production of device-quality CPs with alternating structural regularity.
Collapse
Affiliation(s)
- Haigen Xiong
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Song Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenbin Xie
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL, USA.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
- CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
6
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Guo S, Li Y, Li QH, Zheng K. Electrochemical desulfurative formation of C-N bonds through selective activation of inert C(sp 3)-S bonds. Chem Commun (Camb) 2024; 60:2501-2504. [PMID: 38343365 DOI: 10.1039/d4cc00142g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In this study, we introduce an efficient, metal-free electrocatalytic desulfurative protocol for forming C-N bonds by selectively activating inert C(sp3)-S bonds of alkyl thioethers. This method offers a straightforward and environmentally friendly approach for modification of heterocyclic compounds from readily accessible thioethers. Preliminary mechanistic investigations suggest that the reaction proceeds via a carbocation intermediate. Furthermore, successful synthesis on a 10-gram scale was achieved in a continuous flow electrochemical reactor.
Collapse
Affiliation(s)
- Shaopeng Guo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| | - Qing-Han Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, PR China.
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.
| |
Collapse
|
8
|
Xiang H, Wang J, Guo Z, Chen Y, Jiang B, Ye S, Yi W. Functional Polythioamides Derived from Thiocarbonyl Fluoride. Angew Chem Int Ed Engl 2023; 62:e202313779. [PMID: 37749059 DOI: 10.1002/anie.202313779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Polythioamide is a unique type of sulfur-containing polymer with advanced functionalities. Nonetheless, the elemental sulfur commonly used in their synthesis tends to react readily with unsaturated functional groups, thereby limiting the scope of eligible substrates. Inspired by the highly efficient sulfur-fluoride exchange (SuFEx) polymerization through discrete hubs, we present herein a pioneering and versatile approach to the synthesis of polythioamides from diboronic acids, secondary diamines, and thiocarbonyl fluoride as the central connective hub. Well-defined structures, including previously inaccessible unsaturated substrates, were realized. These newly devised polythioamides can efficiently and selectively bind to metal ions and were applied in precious-metal recovery. Further development resulted in PdII -crosslinked single-chain nanoparticles serving as recyclable homogeneous catalysts, thus demonstrating the vast potential of these unprecedented polythioamides. We anticipate that thiocarbonyl fluoride could emerge as a potent hub for facilitating the intricate synthesis of sulfur-containing polymers.
Collapse
Affiliation(s)
- Haonan Xiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jieping Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Beihan Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sitao Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
9
|
Castillo GE, Thompson BC. Room Temperature Synthesis of a Well-Defined Conjugated Polymer Using Direct Arylation Polymerization (DArP). ACS Macro Lett 2023; 12:1339-1344. [PMID: 37722008 DOI: 10.1021/acsmacrolett.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
While a major improvement to the sustainability of conjugated polymer synthesis, traditional direct arylation polymerization (DArP) still requires high temperatures (typically >100 °C), necessitating a significant energy input requirement. Performing DArP at reduced or ambient temperatures would represent an improvement to the sustainability of the reaction. Here we describe the first report of a well-defined conjugated polymer synthesized by DArP at room temperature. Previous efforts toward room temperature DArP relied on the use of a near-stoichiometric silver reagent, an expensive coinage metal, which makes the reaction less cost-effective and sustainable. Here, room temperature polymerizations of 3,4-ethylenedioxythiophene (EDOT) and 9,9-dioctyl-2,7-diiodofluorene were optimized and provided molar mass (Mn) up to 11 kg/mol PEDOTF, and performing the reaction at the standard ambient temperature of 25 °C provided Mn up to 15 kg/mol. Model studies using other C-H monomers of varying electron density copolymerized with 9,9-dioctyl-2,7-diiodofluorene provided insight into the scope of the room temperature polymerization, suggesting that performing room temperature DArP is highly dependent on the electron richness of the C-H monomer.
Collapse
Affiliation(s)
- Grace E Castillo
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C Thompson
- Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
10
|
Zhang M, Zhang BB, Lin Q, Jiang Z, Zhang J, Li Y, Pei S, Han X, Xiong H, Liang X, Lin Y, Wei Z, Zhang F, Zhang X, Wang ZX, Shi Q, Huang H. An Efficient Direct Arylation Polycondensation via C-S Bond Cleavage. Angew Chem Int Ed Engl 2023; 62:e202306307. [PMID: 37340517 DOI: 10.1002/anie.202306307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/03/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
The direct arylation polycondensation (DArP) has become one of the most important methods to construct conjugated polymers (CPs). However, the homocoupling side-reactions of aryl halides and the low regioseletive reactivities of unfunctionalized aryls hinder the development of DArP. Here, an efficient Pd and Cu co-catalyzed DArP was developed via inert C-S bond cleavage of aryl thioethers, of which robustness was exemplified by over twenty conjugated polymers (CPs), including copolymers, homopolymers, and random polymers. The capture of oxidative addition intermediate together with experimental and theoretic results suggested the important role of palladium (Pd) and copper (Cu) co-catalysis with a bicyclic mechanism. The studies of NMR, molecular weights, trap densities, two-dimensional grazing-incidence wide-angle X-ray scattering (2D-GIWAXS), and the charge transport mobilities revealed that the homocoupling reactions were significantly suppressed with high regioselectivity of unfunctionalized aryls, suggesting this method is an excellent choice for synthesizing high performance CPs.
Collapse
Affiliation(s)
- Meng Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziling Jiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shurui Pei
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haigen Xiong
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Liang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CAS Key Laboratory of Vacuum Physic, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Wen X, Xie W, Li Y, Ma X, Liu Z, Han X, Wen K, Zhang F, Lin Y, Shi Q, Peng A, Huang H. Room Temperature Anhydrous Suzuki-Miyaura Polymerization Enabled by C-S Bond Activation. Angew Chem Int Ed Engl 2023; 62:e202309922. [PMID: 37578857 DOI: 10.1002/anie.202309922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
The Suzuki-Miyaura cross-coupling is one of the most important and powerful methods for constructing C-C bonds. However, the protodeboronation of arylboronic acids hinder the development of Suzuki-Miyaura coupling in the precise synthesis of conjugated polymers (CPs). Here, an anhydrous room temperature Suzuki-Miyaura cross-coupling reaction between (hetero)aryl boronic esters and aryl sulfides was explored, of which universality was exemplified by thirty small molecules and twelve CPs. Meanwhile, the mechanistic studies involving with capturing four coordinated borate intermediate revealed the direct transmetalation of boronic esters in the absence of H2 O suppressing the protodeboronation. Additionally, the room temperature reaction significantly reduced the homocoupling defects and enhanced the optoelectronic properties of the CPs. In all, this work provides a green protocol to synthesize alternating CPs.
Collapse
Affiliation(s)
- Xuan Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenbin Xie
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yawen Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoying Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhaoying Liu
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Dermatology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kaikai Wen
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengjiao Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuze Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qinqin Shi
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aidong Peng
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & Center of Materials Science and Optoelectronics Engineering & CAS Center for Excellence in Topological Quantum Computation & CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|