1
|
Li R, Zhang L, Zheng S, Liu W, Long L, Tang C. Enhanced removal of organic micropollutants using 2D metal-organic framework interlayered nanofiltration membrane. WATER RESEARCH 2025; 283:123852. [PMID: 40412040 DOI: 10.1016/j.watres.2025.123852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/03/2025] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
Organic micropollutants (OMPs) present considerable threats to both human health and the environment. Traditional thin film composite (TFC) nanofiltration (NF) polyamide membranes, despite their high water permeance and salt rejection capabilities, often fail to effectively remove OMPs. This study addresses this limitation by incorporating two-dimensional (2D) zinc(II) tetrakis(4-carboxy-phenyl)porphyrin (Zn-TCPP) metal-organic framework (MOF) nanosheets as interlayers in TFC membranes (TFNi), using a polyethylene glycol (PEG) assisted exfoliation technique to mitigate issues of nanosheet restacking and aggregation. The uniformly distributed MOF interlayers significantly improved pure water permeance from 10.6 to 32.1 L m⁻² h⁻¹ bar⁻¹ while maintaining a high rejection of 97.0% towards Na₂SO₄. Moreover, the optimized membrane showed significant improvements in OMP removal, attributed to the increased negative charge and greater hydrophilicity of the polyamide rejection layer. These findings highlight the potential of 2D MOF nanosheets as interlayers in developing high-performance membranes for effective OMP removal and water reuse.
Collapse
Affiliation(s)
- Ruiying Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
2
|
Liu C, Li L, Xu Y, Zhang J, He X, Li L, Li L. Nitrogen-Rich Angstrom Channels within Covalent Triazine Framework Membrane Enable Efficient Acid Recovery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27106-27115. [PMID: 40265690 DOI: 10.1021/acsami.5c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Membranes tailored for selective H+ transfer are highly demanded in various fields such as acid recovery and proton exchange membranes. Emerging framework materials featuring permanent micropores present more competitive selectivity than traditional polymeric membranes. However, it remains challenging to construct angstrom channels for more precise ion separations. Herein, we demonstrate the modulation of the nitrogen-rich angstrom channels within a covalent triazine framework (CTF) membrane by a mix-monomer copolymerization strategy, in which one monomer provides defect-free angstrom channels and another offers plentiful nitrogen sites. The abundant nitrogen sites with strong affinity for H+ facilitate fast H+ diffusion, and their high protonation level in acid solution imparts positive charge, enabling efficient Fe2+ retention via Donnan exclusion. The optimized CTF membrane achieves a H+ dialysis coefficient of 1.5 × 10-3 m/h and a separation factor of 11,242 for H+/Fe2+ mixtures. The ion selectivity outperforms most reported membranes benefiting from its highly confined channels. Additionally, the robust stability of the triazine groups guarantees consecutive operation in aggressive acidic solutions. This work presents an effective approach for modulating proton transport efficiency through membranes and its potential applications in acid recovery.
Collapse
Affiliation(s)
- Cuijing Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Lei Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yu Xu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Jinhui Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Xihong He
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Linbo Li
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Khan SN, Zhao M, Fennell PS, Anthony EJ. Construction of Highly Mesoporous Metal-Organic Frameworks via Green Metallic Solvents Assisted Route for Chemical CO 2 Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502624. [PMID: 40211671 DOI: 10.1002/smll.202502624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Indexed: 05/27/2025]
Abstract
An easy and versatile method of constructing hierarchically micro- and mesoporous metal-organic frameworks (MOFs) using newly synthesized green metallic solvents (GMS) is proposed. This method can generally be applied to several different series of MOFs. For the first time synthesized, GMS are eco-friendly, easily synthesizable, and play multiple roles of pore expanders, structure directing agents, and bring an additional ligand into the MOF structure. Hierarchically assembled MOF materials via MGS-assisted route showed highly improved structural properties and are exceptionally adjustable regarding all important structural parameters. Compared to its pristine MOF, hierarchically constructed relineMg@UiO-66 showed almost 2.5 times higher surface area, 3 times increased total pore volume, and large mesopores (17-31 nm). In addition to 84.65 mg g-1 CO2 adsorption capacity of relineMg@UiO-66, which is almost 243% increase over its pristine UiO-66 (34.89 mg g-1), relineMg@UiO-66 displays long-term cyclic performance with 94.8% capacity retention over ten consecutive cycles. Moreover, relineMg@UiO-66 exhibits outstanding heterogeneous catalytic activity (yield≈97%) in a CO2 cycloaddition reaction with different epoxides. Density functional theory (DFT) calculations reveal that the judicious tuning of Zr-O coordination environment with GMS optimized secondary building unit (SBU) of Zr6(µ3-O)4(µ3-OH)4-(CO2)12 cluster with OH-symmetry in MOF's frameworks assembly for enhanced adsorption and heterogeneous catalysis.
Collapse
Affiliation(s)
- Saleem Nawaz Khan
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
- Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, P. R. China
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Edward J Anthony
- Energy and Power Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
4
|
Wang J, Wang Y, Yu Y, Huang K, Xu Z. Defect-Rich MOFs (MIL-88A) for High-Performance PEO-Based Composite Solid Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25370-25378. [PMID: 40233347 DOI: 10.1021/acsami.5c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Metal-organic frameworks (MOFs) with active sites have been proposed as advanced fillers for fabricating PEO-based composite solid electrolytes. However, there is a great need for the design and synthesis of MOFs with more active sites to further increase the ionic conductivity of solid electrolytes. Herein, rich defect sites are constructed via acid etching to scale up the active sites of MOFs (MIL-88A). The etched MIL-88A (EMIL-88A) materials have more pores and exposed unsaturated metal coordination sites, which can facilitate the dissociation of lithium salt through the metal-anion interaction and lead to an outstanding Li+ transference number of 0.63. The Fe-O bond formed between metal active sites and PEO can inhibit the crystallization of PEO and provide a fast Li+ migration pathway, resulting in a high ion conductivity of 4.2 × 10-4 S cm-1 (60 °C). As a result, assembled Li-Li symmetric batteries show good stability for over 300 h at 0.1 mA cm-2. The assembled LiFePO4 full batteries deliver a high reversible capacity of 113.2 mAh g-1 after 250 cycles at 60 °C and 0.5 C. This defect engineering of MOFs offers a promising strategy for PEO-based composite solid electrolytes.
Collapse
Affiliation(s)
- Junjie Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaqing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ying Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
He M, Shi S, Liu Z, Wu Y, Wang L. Design, synthesis, and applications of defective metal-organic frameworks in water treatment. Chem Commun (Camb) 2025; 61:5072-5083. [PMID: 40091877 DOI: 10.1039/d4cc06812b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Metal-organic frameworks (MOFs) have recently garnered significant attention for their potential in water treatment technologies, owing to their unique spatial structures and chemically tunable properties. Defects within MOFs are regarded as excellent tools for enhancing certain material properties. Intentional design and synthesis of defects in MOFs can boost the number of active sites, optimize the framework, increase material conductivity, and fine-tune both structural porosity and chemical properties, thereby elevating their performance in water treatment applications, for instance, catalysis, adsorption, and membrane separation. This review sequentially presents the classification of defective MOFs (encompassing point defects, line defects, planar defects, and mesoscale volume defects), fabrication strategies (including de novo synthesis and post-synthesis treatment), characterization techniques (spanning common spatially resolved measurement techniques and chemical analysis approaches), and their performance in water treatment applications (including catalysis, adsorption, and membrane separation). This review also examines the mechanisms behind the enhanced water treatment performance of defective MOFs and explores the prospective barriers and prospects for their application in water treatment.
Collapse
Affiliation(s)
- Miaolu He
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, China.
| | - Suo Shi
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, China.
| | - Ze Liu
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, China.
| | - Yina Wu
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, China.
| | - Lei Wang
- School of Environment and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an 710055, China.
| |
Collapse
|
6
|
Dong Y, Violet C, Sun C, Li X, Sun Y, Zheng Q, Tang C, Elimelech M. Ceramic-carbon Janus membrane for robust solar-thermal desalination. Nat Commun 2025; 16:2659. [PMID: 40102428 PMCID: PMC11920389 DOI: 10.1038/s41467-025-57888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
The desalination performance of conventional distillation membranes is limited by insufficient stability and energy efficiency, impeding their application in sustainable water production. Herein, we report a ceramic-carbon Janus membrane with solar-thermal functionality for enhanced desalination performance, energy efficiency, and stability for hypersaline water treatment. The feed and permeate sides of this Janus membrane are designed with different properties such as wettability, conductivity, and solar-thermal conversion to enhance performance. We demonstrate that this membrane exhibits higher solar-thermal efficiency (66.8-68.8%) and water flux (3.3-5.1 L m-2 h-1) than most existing polymeric solar-thermal distillation membranes. Simulation results ascribe enhanced performance to an increased membrane surface temperature, which mitigates temperature polarization and attenuation, thus enhancing the desalination driving force. The nano-carbon membrane surface accelerates water evaporation by inducing a transition from free water to intermediate water with decreased hydrogen bonding and a lower evaporation energy barrier. Water vapor molecules transport through the membrane pores by a combined mechanism of Knudsen diffusion and viscous flow. Even for seawater and hypersaline water, the membrane exhibits stable water flux and salt rejection due to its scaling-resistant surface and stable interfacial temperature. This work provides a strategy for rationally designing next-generation Janus membranes for sustainable water purification.
Collapse
Affiliation(s)
- Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Camille Violet
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Chunyi Sun
- School of Water Conservancy and Environment, Jinan University, Jinan, China
| | - Xianhui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
| | - Yuxuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong Province, China.
| | - Chuyang Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
7
|
Lyu Q, Lin LC. Exploring the Potential of Metal-Organic Frameworks as Reverse Osmosis Membranes for Water Desalination. Chem Asian J 2025:e202401544. [PMID: 40024887 DOI: 10.1002/asia.202401544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Water desalination via reverse osmosis (RO) to produce fresh water represents an ideal solution to address water shortage. Membranes of large water permeability and high salt rejection are desired, and these properties are subject to the design of the membrane structure. The structural tunability of metal-organic frameworks (MOFs) therefore provides tremendous opportunities, but their potential has not yet been systematically explored. In this study, molecular dynamics simulations are conducted to investigate MOFs with a focus on a subclass of water stable Zirconium-based MOFs as RO membranes in water desalination. The results show that MOF membranes can indeed achieve a perfect salt rejection while allowing notably high permeability as compared to commercial polymeric membranes. Moreover, the structure-performance relationship is explored, and the critical role of channel homogeneity is identified. Overall, the outcomes of this study demonstrate the great promise of MOFs and provide guidelines on the selection and design of MOFs for effective and efficient water desalination.
Collapse
Affiliation(s)
- Qiang Lyu
- Department of Materials Physics, China University of Petroleum (East China), No. 66, West Changjiang Road, Qingdao, Shandong, 266580, China
| | - Li-Chiang Lin
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Xu LH, Zhang Q, Li SH, Chen FX, Zhao ZP. Untwisting Strategy of MOF Nanosheets in Ultrathin Film Membrane for High Molecular Separation Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410067. [PMID: 39887893 DOI: 10.1002/smll.202410067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Oriented 2D metal-organic framework (MOF) membranes hold considerable promise for industrial separation processes. Nevertheless, the lattice misalignment caused by the twisted stacking of 2D nanosheets reduces the in-plane pore size and exerts a significant impact on the membrane separation performance. Precisely regulating the stacking pattern of oriented 2D MOF membranes remains a significant challenge. Here, a scalable scrape-coating technique supplemented by a vapor untwisting strategy is proposed to directly construct non-twisted and ultrathin Zr-BTB membranes (Zr-BTB-M) on polyvinylidene fluoride (PVDF) substrates. The Zr-BTB nanosheets are induced to undergo lattice reorganization during the coating process, resulting in highly overlapped lattices and the largest in-plane pore channels. The exceptional butyl acetate selective adsorption capacity of non-twisted Zr-BTB, combined with its provision of highly ordered vertical penetrating pathways, significantly enhances molecular transport. After facile polydimethylsiloxane (PDMS) coating, the pervaporation separation index of the PDMS/Zr-BTB-M/PVDF membrane is found to be 9.74 times higher than that of conventional PDMS/PVDF membranes, paving the way for innovative, high-efficiency, energy-saving membrane separation technologies.
Collapse
Affiliation(s)
- Li-Hao Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Shen-Hui Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| | - Zhi-Ping Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, PR China
| |
Collapse
|
9
|
Sun Y. UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. MEMBRANES 2025; 15:8. [PMID: 39852249 PMCID: PMC11767111 DOI: 10.3390/membranes15010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025]
Abstract
Metal-organic frameworks (MOFs) have been recognized as promising materials for membrane-based separation technologies due to their exceptional porosity, structural tunability, and chemical stability. This review presents a comprehensive discussion of the advancements in structure engineering and design strategies that have been employed to optimize UiO-66 membranes for enhanced separation performance. Various synthesis methods for UiO-66 membranes are explored, with a focus on modulated approaches that incorporate different modulators to fine-tune nucleation rates and crystallization processes. The influence of preferred orientation, membrane thickness, pore size, pore surface chemistry, and hierarchical structures on the separation performance is concluded. By providing a consolidated overview of current research efforts and future directions in UiO-66 membrane development, this review aims to inspire further advancements in the field of separation technologies.
Collapse
Affiliation(s)
- Yanwei Sun
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
10
|
Li L, Chen K, Zhang J, Zhang J. Design of MOF-Based Solar Evaporators With Hierarchical Microporous/Nanobridged/Nanogranular Structures for Rapid Interfacial Solar Evaporation and Fresh Water Collection. CHEMSUSCHEM 2024; 17:e202401224. [PMID: 38997230 DOI: 10.1002/cssc.202401224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Interfacial solar evaporation (ISE) holds considerable promise to solve fresh water shortage, but it is challenging to achieve high evaporation rate (Reva) and fresh water yield in close system. Here, we report design and preparation of MOF-based solar evaporators with hierarchical microporous/nanobridged/nanogranular structures for rapid ISE and fresh water collection in close system. The evaporators are fabricated by growing silicone nanofilaments with variable length as nanobridges on a microporous silicone sponge followed by grafting with polydopamine nanoparticles and Cu-MOF nanocrystals. Integration of the unique structure and excellent photothermal composites endows the evaporators with high Reva of 3.5-20 wt % brines (3.60-2.90 kg m-2 h-1 in open system and 2.38-1.44 kg m-2 h-1 in close system) under simulated 1 sun, high Reva under natural sunlight, excellent salt resistance and high fresh water yield, which surpass most state-of-the-art evaporators. Moreover, when combined with a superhydrophilic cover, the evaporators show much higher average Reva of real seawater, remarkable fresh water yield and excellent long-term stability over one month continuous ISE under natural sunlight. The findings here will promote the development of advanced evaporators via microstructure engineering and their real-world ISE applications.
Collapse
Affiliation(s)
- Lingxiao Li
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Chen
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Jiaren Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Junping Zhang
- Research Center of Resource Chemistry and Energy Materials, and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Wu S, Peng LE, Yang Z, Sarkar P, Barboiu M, Tang CY, Fane AG. Next-Generation Desalination Membranes Empowered by Novel Materials: Where Are We Now? NANO-MICRO LETTERS 2024; 17:91. [PMID: 39702561 DOI: 10.1007/s40820-024-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Membrane desalination is an economical and energy-efficient method to meet the current worldwide water scarcity. However, state-of-the-art reverse osmosis membranes are gradually being replaced by novel membrane materials as a result of ongoing technological advancements. These novel materials possess intrinsic pore structures or can be assembled to form lamellar membrane channels for selective transport of water or solutes (e.g., NaCl). Still, in real applications, the results fall below the theoretical predictions, and a few properties, including large-scale fabrication, mechanical strength, and chemical stability, also have an impact on the overall effectiveness of those materials. In view of this, we develop a new evaluation framework in the form of radar charts with five dimensions (i.e., water permeance, water/NaCl selectivity, membrane cost, scale of development, and stability) to assess the advantages, disadvantages, and potential of state-of-the-art and newly developed desalination membranes. In this framework, the reported thin film nanocomposite membranes and membranes developed from novel materials were compared with the state-of-the-art thin film composite membranes. This review will demonstrate the current advancements in novel membrane materials and bridge the gap between different desalination membranes. In this review, we also point out the prospects and challenges of next-generation membranes for desalination applications. We believe that this comprehensive framework may be used as a future reference for designing next-generation desalination membranes and will encourage further research and development in the field of membrane technology, leading to new insights and advancements.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Mihail Barboiu
- Institut Européen des Membrane, University of Montpellier, ENSCM, CNRS UMR5635, Place Eugène Bataillon, CC 047, 34095, Montpellier, France
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Anthony G Fane
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
Song S, Liu Q, Swathilakshmi S, Chi HY, Zhou Z, Goswami R, Chernyshov D, Agrawal KV. High-performance H 2/CO 2 separation from 4-nm-thick oriented Zn 2(benzimidazole) 4 films. SCIENCE ADVANCES 2024; 10:eads6315. [PMID: 39671495 PMCID: PMC11641003 DOI: 10.1126/sciadv.ads6315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
High-performance membrane-based H2/CO2 separation offers a promising way to reduce the energy costs of precombustion capture. Current membranes, often made from two-dimensional laminates like metal-organic frameworks, have limitations due to complex fabrication methods requiring high temperatures, organic solvents, and long synthesis time. These processes often result in poor H2/CO2 selectivity under pressurized conditions due to defective transport pathways. Here, we introduce a simple, eco-friendly synthesis of ultrathin, intergrown Zn2(benzimidazole)4 films, as thin as 4 nm. These films are prepared at room temperature using water as the solvent, with a synthesis time of just 10 minutes. By using ultradilute precursor solutions, nucleation is delayed, promoting rapid in-plane growth on a smooth graphene substrate and eliminating defects. These membranes exhibit excellent H2 permselectivity under pressurized conditions. The combination of rapid, green synthesis and high-performance separation makes these membranes highly attractive for precombustion applications.
Collapse
Affiliation(s)
- Shuqing Song
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Qi Liu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - S. Swathilakshmi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Zongyao Zhou
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Ranadip Goswami
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| | - Dmitry Chernyshov
- Swiss-Norwegian Beam Lines at European Synchrotron Radiation Facility, Grenoble 38043, France
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion CH-1950, Switzerland
| |
Collapse
|
13
|
Li S, Guan Y, Li Y, Tuo Y, Luo Y, Si L, Hua Y, Chai F. The fabrication of phosphotungstate@UIO-Au/reduced graphene oxidation for electrochemical ultrasensitive detection of alpha-fetoprotein. Int J Biol Macromol 2024; 283:137683. [PMID: 39549811 DOI: 10.1016/j.ijbiomac.2024.137683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
As an early multi-purpose tumor marker of hepatocellular carcinoma, alpha-fetoprotein (AFP) plays a vital role in early diagnosis and treatment. To achieve the early and accurate determination of AFP, the POMOF was fabricated by embedding H3PW12O40 (PW12) into UIO-66-NH2, further immobilized on reduced GO (rGO) and fabricated an innovative POMOF nanocomposite (PW@UIO-Au/rGO) as an electrochemical immunosensor (ECI-sensor). The PW@UIO-Au/rGO achieved 17-fold signal enhancement owing to their synergistic effect, enabling PW@UIO-Au/rGO exhibit high oxidase-like catalytic activity, facilitating their sensing performance. Under optimal experimental conditions, the proposed PW@UIO-Au/rGO ECI-sensor presented excellent sensing performance over a wide range from 0.01 ng mL-1 to 500 ng mL-1 with ultra-low detection of 4.0 pg mL-1. Notably, sensing results in real serum samples were verified by the clinical enzyme-linked immunosorbent assay (ELISA) and electrochemiluminescence immunoassay (ECL) methods with excellent accuracy and consistency, indicating the excellent environmental tolerance of the proposed ECI-sensor. This work provided a promising strategy for designing feasible ultra-sensitive probe for sensing AFP in clinical test.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yawen Guan
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yunjie Li
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuzhuo Tuo
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150081, China.
| | - Liang Si
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingjie Hua
- School of Chemistry, Chemical Engineering of Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Haikou 571158, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
14
|
Sun H, Wang N, Xu Y, Wang F, Lu J, Wang H, An QF. Aromatic-aliphatic hydrocarbon separation with oriented monolayer polyhedral membrane. Science 2024; 386:1037-1042. [PMID: 39607917 DOI: 10.1126/science.adq5577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Aromatic-aliphatic hydrocarbon separation is a challenging but important industrial process. Pervaporation membrane technology has the potential for separating these mixtures. We developed an oriented monolayer polyhedral (OMP) membrane that consists of a monolayer of ordered polyhedral particles and is anchored by hyperbranched polymers. It contains a high density of straight, selective nanochannels, enabling the preferential transport of aromatic molecules. Compared with traditional mixed-matrix membranes with random orientations, the OMP membrane improves the pervaporation separation index for aromatic-aliphatic hydrocarbon mixtures with C6 and C7 compounds, surpassing the performance of existing membranes by 3 to 10 times. This high performance demonstrates the potential of OMP membranes for hydrocarbon molecular separation and their application in the value-added separation of naphtha feedstocks.
Collapse
Affiliation(s)
- Hao Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Naixin Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Yinghui Xu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Fengkai Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| | - Jun Lu
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Victoria, Australia
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
15
|
Zhai M, Moghadam F, Gosiamemang T, Heng JYY, Li K. Facile orientation control of MOF-303 hollow fiber membranes by a dual-source seeding method. Nat Commun 2024; 15:10264. [PMID: 39592589 PMCID: PMC11599905 DOI: 10.1038/s41467-024-54730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/20/2024] [Indexed: 11/28/2024] Open
Abstract
Metal‒organic frameworks (MOFs) are nanoporous crystalline materials with enormous potential for further development into a new class of high-performance membranes. However, the preparation of defect-free and water-stable MOF membranes with high permselectivity and good structural integrity remains a challenge. Herein, we demonstrate a dual-source seeding (DS) approach to produce high-performance, water-stable MOF-303 membranes with hollow fiber (HF) geometry and preferentially tailored crystallographic orientation. By controlling the nucleation site density during secondary growth, MOF-303 membranes with a preferred crystallographic orientation (CPO) on the (011) plane were fabricated. The MOF-303 membrane with CPO on (011) provides straight one-dimensional permeation channels with a superior water flux of 18 kg m-2 h-1 in pervaporative water/ethanol separation, which is higher than that of most of the reported zeolite membranes and 1-2 orders of magnitude greater than that of previously reported MOF membranes. The straight water permeation channels also offer a promising water permeance of 15 L m-2 h-1 bar-1 and a molecular weight cut-off (MWCO ≈ 269) for dye nanofiltration. These results provide a concept for developing ultrapermeable MOF membranes with good selectivity and structural integrity for pervaporation and nanofiltration.
Collapse
Affiliation(s)
- Mengjiao Zhai
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Farhad Moghadam
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Kang Li
- Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
16
|
Gebreslassie G, Desta HG, Dong Y, Zheng X, Zhao M, Lin B. Advanced membrane-based high-value metal recovery from wastewater. WATER RESEARCH 2024; 265:122122. [PMID: 39128331 DOI: 10.1016/j.watres.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Considering the circular economy and environmental protection, sustainable recovery of high-value metals from wastewater has become a prominent concern. Unlike conventional methods featuring extensive chemicals or energy consumption, membrane separation technology plays a crucial role in facilitating the sustainable and efficient recovery of valuable metals from wastewater due to its attractive features. In this review, we first briefly summarize the sustainable supply chain and significance of sustainable recovery of aqueous high-value metals. Then, we review the most recent advances and application potential in promising state-of-the-art membrane-based technologies for recovery of high-value metals (silver, gold, rhenium, platinum, ruthenium, palladium, iridium, osmium, and rhodium) from wastewater effluents. In particular, pressure-based membranes, liquid membranes, membrane distillation, forward osmosis, electrodialysis and membrane-based hybrid technologies and their mechanism of high-value metal recovery is thoroughly discussed. Then, engineering application and economic sustainability are also discussed for membrane-based high-value metal recovery. The review finally concludes with a critical and insightful overview of the techno-economic viability and future research direction of membrane technologies for efficient high-value metal recovery from wastewater.
Collapse
Affiliation(s)
- Gebrehiwot Gebreslassie
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Halefom G Desta
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingchao Dong
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China.
| | - Bin Lin
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
17
|
Lin Z, Liu G, Sheng B, Zhao Y, Xu D, Wu Z, Zhou J, Zhang M, Chen G, Wang J, Lv J, Lin H, Xu D. Capture and removal of nanoplastics using ZIF-derived defective nanoframework: Structure-performance correlation, theoretical calculation and application. NANO TODAY 2024; 58:102418. [DOI: 10.1016/j.nantod.2024.102418] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|
18
|
Cheng P, Liu Y, Wei X, Fan K, Xia S. Distinct Efficacies of Interlayers in Tailoring Polyamide Nanofiltration Membrane Performance for Organic Micropollutant Removal: Dependent on Substrate Characteristics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14022-14033. [PMID: 39052879 DOI: 10.1021/acs.est.4c04648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xinxin Wei
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
19
|
Luo F, Liang X, Chen W, Ravi SK, Wang S, Gao X, Zhang Z, Fang Y. Symbiotic defect-reinforced bimetallic MOF-derived fiber components for solar-assisted atmospheric water collection. WATER RESEARCH 2024; 259:121872. [PMID: 38852390 DOI: 10.1016/j.watres.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Conversion of atmospheric water to sustainable and clean freshwater resources through MOF-based adsorbent has great potential for the renewable environmental industry. However, its daily water production is hampered by susceptibility to agglomeration, slow water evaporation efficiency, and limited water-harvesting capacity. Herein, a solar-assisted bimetallic MOF (BMOF)-derived fiber component that surmounts these limitations and exhibits both optimized water-collect capacity and short adsorption-desorption period is proposed. The proposed strategy involves utilizing bottom-up interface-induced assembly between carboxylated multi-walled carbon nanotube and hygroscopic BMOF on a multi-ply glass fiber support. The designed BMOF (MIL-100(Fe,Al)-3) skeleton constructed using bimetallic-node defect engineering exhibits a high specific surface area (1,535.28 m2/g) and pore volume (0.76 cm3/g), thereby surpassing the parent MOFs and other reported MOFs in capturing moisture. Benefiting from the hierarchical structure of fiber rods and the solar-driven self-heating interface of photothermal layer, the customized BMOF crystals realize efficient loading and optimized water adsorption-desorption kinetics. As a result, the resultant fiber components achieve six adsorption-desorption cycles per day and an impressive water collection of 1.45 g/g/day under medium-high humidity outdoor conditions. Therefore, this work will provide new ideas for optimizing the daily yield of atmospheric water harvesting techniques.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xianghui Liang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Weicheng Chen
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Shuangfeng Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xuenong Gao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhengguo Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yutang Fang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
20
|
Wang B, Wang Z, Chen M, Du Y, Li N, Chai Y, Wang L, Zhang Y, Liu Z, Guo C, Jiang X, Guo X, Tian Z, Yang J, Zhu C, Li W, Ou L. Immobilized Urease Vector System Based on the Dynamic Defect Regeneration Strategy for Efficient Urea Removal. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39051622 DOI: 10.1021/acsami.4c08323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zimeng Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengya Chen
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunzheng Du
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Nan Li
- Changping Laboratory, Beijing 102200, China
| | - Yamin Chai
- General Hospital Tianjin Medical University, Tianjin 300052, China
| | - Lichun Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanjia Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhuang Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ziying Tian
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingxuan Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chunling Zhu
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
21
|
Jung Y, Yoon SJ, Lee Y, Do T, Kim KT, Jung KW, Choi JW. Grapefruit-Inspired Polymeric Capsule with Hierarchical Microstructure: Advanced Nanomaterial Carrier Platform for Energy Storage, Drug Delivery, Catalysis, and Environmental Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400828. [PMID: 38693068 DOI: 10.1002/smll.202400828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Efficient support materials are crucial for maximizing the efficacy of nanomaterials in various applications such as energy storage, drug delivery, catalysis, and environmental remediation. However, traditional supports often hinder nanomaterial performance due to their high weight ratio and limited manageability, leading to issues like tube blocking and secondary pollution. To address this, a novel grapefruit-inspired polymeric capsule (GPC) as a promising carrier platform is introduced. The millimeter-scale GPC features a hydrophilic shell and an internal hierarchical microstructure with 80% void volume, providing ample space for encapsulating diverse nanomaterials including metals, polymers, metal-organic frameworks, and silica. Through liquid-phase bottom-up methods, it is successfully loaded Fe2O3, SiO2, polyacrylic acid, and Prussian blue nanomaterials onto the GPC, achieving high mass ratio (1776, 488, 898, and 634 wt.%, respectively). The GPC shell prevents nanomaterial leakage and the influx of suspended solids, while its internal framework enhances structural stability and mass transfer rates. With long-term storage stability, high carrying capacity, and versatile applicability, the GPC significantly enhances the field applicability of nanomaterials.
Collapse
Affiliation(s)
- Youngkyun Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Su-Jin Yoon
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yun Lee
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Taegu Do
- Construction Materials Center, Korea Testing and Research Institute (KTR), Gyeonggi-do, 13810, Republic of Korea
| | - Keun-Tae Kim
- The College of Information Science, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
22
|
Wu D, Zhao Z, Lin B, Song Y, Qi J, Jiang J, Yuan Z, Cheng B, Zhao M, Tian Y, Wang Z, Wu M, Bian K, Liu KH, Xu LM, Zeng XC, Wang EG, Jiang Y. Probing structural superlubricity of two-dimensional water transport with atomic resolution. Science 2024; 384:1254-1259. [PMID: 38870285 DOI: 10.1126/science.ado1544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Low-dimensional water transport can be drastically enhanced under atomic-scale confinement. However, its microscopic origin is still under debate. In this work, we directly imaged the atomic structure and transport of two-dimensional water islands on graphene and hexagonal boron nitride surfaces using qPlus-based atomic force microscopy. The lattice of the water island was incommensurate with the graphene surface but commensurate with the boron nitride surface owing to different surface electrostatics. The area-normalized static friction on the graphene diminished as the island area was increased by a power of ~-0.58, suggesting superlubricity behavior. By contrast, the friction on the boron nitride appeared insensitive to the area. Molecular dynamic simulations further showed that the friction coefficient of the water islands on the graphene could reduce to <0.01.
Collapse
Affiliation(s)
- Da Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhengpu Zhao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bo Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Yizhi Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Jiajie Qi
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jian Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zifeng Yuan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Bowei Cheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Mengze Zhao
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ye Tian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Zhichang Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Muhong Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang 110036, China
| | - Ke Bian
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Kai-Hui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Li-Mei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong 999077, China
| | - En-Ge Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Institute of Physics, CAS and School of Physics, Liaoning University, Shenyang 110036, China
- Tsientang Institute for Advanced Study, Zhejiang 310024, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- New Cornerstone Science Laboratory, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Chen Q, Tang Y, Ding YM, Jiang HY, Zhang ZB, Li WX, Liu ML, Sun SP. Synergistic Construction of Sub-Nanometer Channel Membranes through MOF-Polymer Composites: Strategies and Nanofiltration Applications. Polymers (Basel) 2024; 16:1653. [PMID: 38932003 PMCID: PMC11207757 DOI: 10.3390/polym16121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The selective separation of small molecules at the sub-nanometer scale has broad application prospects in the field, such as energy, catalysis, and separation. Conventional polymeric membrane materials (e.g., nanofiltration membranes) for sub-nanometer scale separations face challenges, such as inhomogeneous channel sizes and unstable pore structures. Combining polymers with metal-organic frameworks (MOFs), which possess uniform and intrinsic pore structures, may overcome this limitation. This combination has resulted in three distinct types of membranes: MOF polycrystalline membranes, mixed-matrix membranes (MMMs), and thin-film nanocomposite (TFN) membranes. However, their effectiveness is hindered by the limited regulation of the surface properties and growth of MOFs and their poor interfacial compatibility. The main issues in preparing MOF polycrystalline membranes are the uncontrollable growth of MOFs and the poor adhesion between MOFs and the substrate. Here, polymers could serve as a simple and precise tool for regulating the growth and surface functionalities of MOFs while enhancing their adhesion to the substrate. For MOF mixed-matrix membranes, the primary challenge is the poor interfacial compatibility between polymers and MOFs. Strategies for the mutual modification of MOFs and polymers to enhance their interfacial compatibility are introduced. For TFN membranes, the challenges include the difficulty in controlling the growth of the polymer selective layer and the performance limitations caused by the "trade-off" effect. MOFs can modulate the formation process of the polymer selective layer and establish transport channels within the polymer matrix to overcome the "trade-off" effect limitations. This review focuses on the mechanisms of synergistic construction of polymer-MOF membranes and their structure-nanofiltration performance relationships, which have not been sufficiently addressed in the past.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
| | - Ying Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yang-Min Ding
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hong-Ya Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zi-Bo Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wei-Xing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membranes, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Nanjing Membrane Materials Industrial Technology Research Institute Co., Ltd., Nanjing 211816, China
- NJTECH University Suzhou Future Membrane Technology Innovation Center, Suzhou 215100, China
| |
Collapse
|
24
|
Yang T, Liang Y, Liu G, Wang Z, Tong Y, Li W. Glycine-Modified Co-MOF Pervaporation Membrane to Enhance Water Transporting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12035-12044. [PMID: 38814169 DOI: 10.1021/acs.langmuir.4c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Cobalt-based metal-organic frameworks (Co-MOFs) with a two-dimensional layered morphology have received increasing attention for pervaporation due to their stability and hydrophilic properties. Using amino glycine (Gly) as a cross-linking agent, the Co-MOF ultrathin two-dimensional membrane doped with organic filler sodium alginate (SA) with the "brick-mixed-sand" structure was proposed. Polyacrylonitrile (PAN) was selected as the support layer of the hybrid membrane. The introduction of Gly efficiently solved the nanomaterial stacking problem and controllably adjusted the interlayer spacing between the nanosheets, which demonstrated good performance for ethanol dehydration. The results of this experimental research showed that the total flux of alcohol/water (9:1) separation by Gly-Co-MOF-SA/PAN hybrid membranes reached 1902 g m-2 h-1, which was 67% higher than that of the pure SA membranes. The "brick-mixed-sand" lamellar dense morphology of Gly-Co-MOF not only enhances membrane hydrophilicity but also provides effective channels for the rapid transport of water, which is expected to be used for the dehydration of organic solvents.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guijuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ziye Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- NJTU Membrane Application Institute Co., Ltd, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
25
|
Liu G, Mo B, Guo Y, Chu Z, Ren XM, Guan K, Miao R, Wang Z, Zhang Y, Ji W, Liu G, Matsuyama H, Jin W. Confined-Coordination Induced Intergrowth of Metal-Organic Frameworks into Precise Molecular Sieving Membranes. Angew Chem Int Ed Engl 2024; 63:e202405676. [PMID: 38606914 DOI: 10.1002/anie.202405676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024]
Abstract
Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.
Collapse
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Binyu Mo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, Kobe, 657-8501, Japan
| | - Renjie Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhenggang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yaxin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wenqi Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, Kobe, 657-8501, Japan
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
26
|
Tian L, Song X, Liu Y, Zhang C, Shi L, Chen Q, Deng Y, Cui W, Shan S, Hu T. Defect-engineering improves the activity of Metal-Organic frameworks for catalyzing hydroboration of Alkynes: A combination of experimental investigation and Density functional theory calculations. J Colloid Interface Sci 2024; 662:263-275. [PMID: 38354554 DOI: 10.1016/j.jcis.2024.02.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Defect-engineered metal-organic frameworks (DEMOFs) are emerging advanced materials. The construction of DEMOFs is of great significance; however, DEMOF-based catalysis remains unexplored. (E)-vinylboronates, an important building block for asymmetric synthesis, can be synthesized via the hydroboration of alkynes. However, the lack of high-performance catalysts considerably hinders their synthesis. Herein, a series of DEHKUST-1 (HKUST = Hong Kong University of Science and Technology) (Da-f) catalysts with missing occupation of linkers at Cu nodes were designed by partially replacing benzene-1,3,5-tricarboxylate (H3BTC) with defective connectors of pyridine-3,5-dicarboxylate (PYDC) to efficiently promote the hydroboration of alkynes. Results showed that the Dd containing 0.8 doping ratio of PYDC exhibited remarkable catalytic activity than the defect-free HKUST-1. This originated from the improved accessibility for reactants towards the Lewis acid active Cu sites of DEHKUST-1 due to the presence of plenty of rooms next to the Cu sites and enhanced coordination ability in such 'defective' HKUST-1. Dd had high selectivity (>99 %) and yield (>96 %) for (E)-vinylboronates and extensive functional group compatibility for terminal alkynes. Density functional theory (DFT) calculations were performed to elucidate the mechanism of hydroboration. Compared with that of defect-free HKUST-1, the low energy barrier of DEHKUST-1 can be attributed to the lower coordination number of Cu sites and enhanced accessibility of Cu active sites towards reagents.
Collapse
Affiliation(s)
- Long Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiaonan Song
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Churu Zhang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Qinglin Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yanyan Deng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Weigang Cui
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
27
|
Salih WT, Xiao Z, Dong X. Research Enhancing Acidic Mine Wastewater Purification: Innovations in Red Mud-Loess. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2050. [PMID: 38730857 PMCID: PMC11084642 DOI: 10.3390/ma17092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
This study investigates the adsorption of cadmium (Cd) by red mud-loess mixed materials and assesses the influence of quartz sand content on permeability. Shear tests are conducted using various pore solutions to analyze shear strength parameters. The research validates solidification methods for cadmium-contaminated soils and utilizes SEM-EDS, FTIR, and XRD analysis to elucidate remediation mechanisms. The findings suggest that the quartz sand content crucially affects the permeability of fine-grained red mud-loess mixtures. The optimal proportion of quartz sand is over 80%, significantly enhancing permeability, reaching a coefficient of 6.7 × 10-4 cm/s. Insufficient quartz sand content of less than 80% fails to meet the barrier permeability standards, leading to a reduced service life of the engineered barrier. Adsorption tests were conducted using various pore solutions, including distilled water, acidic solutions, and solutions containing Cd, to evaluate the adsorption capacity and shear characteristics of the red mud-loess mixture. Additionally, the study examines the behavior of Cd-loaded red mud-loess mixtures in various pore solutions, revealing strain-hardening trends and alterations in cohesiveness and internal friction angle with increasing Cd concentrations. The analysis of cement-red mud-loess-solidified soil demonstrates enhancements in soil structure and strength over time, attributed to the formation of crystalline structures and mineral formations induced by the curing agent. These findings provide valuable insights into the remediation of cadmium-contaminated soils.
Collapse
Affiliation(s)
| | | | - Xiaoqiang Dong
- College of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (W.T.S.); (Z.X.)
| |
Collapse
|
28
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
29
|
Liu S, Sheng M, Quan B, Yang Y, Ji Q, Hu X, Lu X, Qu J. In situ MIL-101 growth on cotton cloth to fabricate multifunctional phase change composites driven by solar and magneto-thermal for all-day desalination. J Colloid Interface Sci 2024; 659:905-913. [PMID: 38219309 DOI: 10.1016/j.jcis.2024.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
It is certainly one of the most feasible ways to extract fresh water from seawater in the face of the current depletion of fresh water resources. Although solar energy as a heat source for desalination is the cleanest and most abundant way, its intermittent and seasonal also poses an obstacle to its practical application. In order to solve the above-mentioned issues, we prepared a series of phase change composites (PCCs) with excellent light-absorbing and magnetic properties by growing MIL-101(Fe) in situ on cotton fabric. All-day desalination through the synergistic action of phase change material (PCM) and magnetic particles. The evaporation rate of PCC can reach 2.76 kg m-2h-1 with an evaporation efficiency of 90.19 % under one sunlight condition. The evaporation rate of sea water under the synergistic effect of magnetic particles and PCM reached 4.53 kg m-2h-1 in the absence of sunlight. This paper provides a new approach to all-day desalination without contact heating.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Mengjie Sheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Bingqing Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yabi Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Qinghong Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xinpeng Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Xiang Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China.
| | - Jinping Qu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science & Technology, Ministry of Education, Wuhan 430074, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science & Technology, Wuhan 430074, China; Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China; Key Laboratory of Polymer Processing Engineering, South China University of Technology, Ministry of Education, Guangzhou 510641, China; National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
30
|
Chen X, Boffa V, Ma X, Magnacca G, Calza P, Wang D, Meng F, Nielsen AH, Deganello F, Li K, Yue Y. Zeolite Imidazolate Frameworks-8@SiO 2-ZrO 2 Crystal-Amorphous Hybrid Core-Shell Structure as a Building Block for Water Purification Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11835-11848. [PMID: 38382008 PMCID: PMC10921995 DOI: 10.1021/acsami.3c19559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising materials for water purification membranes, owing to their uniform microporous structures and chemical functionalities. Here, we report a simple procedure for depositing MOF-based nanofiltration membranes on commercial TiO2 ceramic tubular supports, completely avoiding the use of dispersants or binders. Zeolite imidazolate frameworks-8 (ZIF-8) nanocrystals were synthesized in methanol at room temperature and subsequently coated with an amorphous SiO2-ZrO2 gel to generate a dispersion of ZIF-8@SiO2-ZrO2 core-shell nanoparticles. The amorphous SiO2-ZrO2 gel served as a binding agent for the ZIF-8 nanocrystals, thus forming a defect-free continuous membrane layer. After repeating the coating twice, the active layer had a thickness of 0.96 μm, presenting a rejection rate >90% for the total organic carbon in an aquaculture effluent and in a wastewater treatment plant, while reducing the concentration of trimethoprim, here used as a target pollutant. Moreover, the oxide gel provided the MOF-based active layer with good adhesion to the support and enhanced its hydrophilicity, resulting in a membrane with excellent mechanical stability and resistance to fouling during the crossflow filtration of the real wastewater samples. These results implied the high potential of the MOF-based nanocomposite membrane for effective treatment of actual wastewater streams.
Collapse
Affiliation(s)
- Xinxin Chen
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Vittorio Boffa
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Xianzheng Ma
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | | | - Paola Calza
- Dipartimento
di Chimica, Università di Torino, Torino 10125, Italy
| | - Deyong Wang
- Department
of Materials and Production, Aalborg University, Aalborg 9220, Denmark
| | - Fanpeng Meng
- Shandong
Guiyuan Advanced Ceramic Co., Ltd (Sicer), Zibo 255086, China
| | | | - Francesca Deganello
- Istituto
per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche, Palermo 90146, Italy
| | - Kang Li
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Yuanzheng Yue
- Department
of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
31
|
Chen C, Shen L, Lin H, Zhao D, Li B, Chen B. Hydrogen-bonded organic frameworks for membrane separation. Chem Soc Rev 2024; 53:2738-2760. [PMID: 38333989 DOI: 10.1039/d3cs00866e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a new class of crystalline porous materials that are formed through the interconnection of organic or metal-organic building units via intermolecular hydrogen bonds. The remarkable flexibility and reversibility of hydrogen bonds, coupled with the customizable nature of organic units, endow HOFs with mild synthesis conditions, high crystallinity, solvent processability, and facile self-healing and regeneration properties. Consequently, these features have garnered significant attention across various fields, particularly in the realm of membrane separation. Herein, we present an overview of the recent advances in HOF-based membranes, including their advanced fabrication strategies and fascinating applications in membrane separation. To attain the desired HOF-based membranes, careful consideration is dedicated to crucial factors such as pore size, stability, hydrophilicity/hydrophobicity, and surface charge of the HOFs. Additionally, diverse preparation methods for HOF-based membranes, including blending, in situ growth, solution-processing, and electrophoretic deposition, have been analyzed. Furthermore, applications of HOF-based membranes in gas separation, water treatment, fuel cells, and other emerging application areas are presented. Finally, the challenges and prospects of HOF-based membranes are critically pointed out.
Collapse
Affiliation(s)
- Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Dieling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, China.
| |
Collapse
|
32
|
Fei L, Shen L, Chen C, Xu J, Wang B, Li B, Lin H. Assembling 99% MOFs into Bioinspired Rigid-Flexible Coupled Membrane with Significant Permeability: The Impacts of Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306528. [PMID: 37922525 DOI: 10.1002/smll.202306528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Assembling metal-organic frameworks (MOFs) into high-performance macroscopic membranes is crucial but still challenging. MOF-containing hybrid membranes can effectively integrate the advantages of flexible guest materials and MOFs. Nevertheless, the inherent limitations in fully harnessing the distinct characteristics of MOFs persist due to the substantial guest material content necessitated in membrane fabrication. Herein, inspired by the rigid and flexible structures in biological systems, rigid MIP-202(Zr) and defective MIP-202(Zr) (D-MIP-202(Zr)) modified flexible graphene oxide (GO) sheets are synthesized in situ and then assembled into a rigid-flexible coupled MOF-based membrane. The defects in D-MIP-202(Zr) are introduced by using acetic acid as the modulation agent. The obtained GO@MIP-202(Zr) membrane possesses a hierarchical porous structure with a 99 wt% MOF proportion, which is higher than the GO@D-MIP-202(Zr) (75 wt%) membrane with a compact bulge-structured surface. The water permeability of the GO@MIP-202(Zr) membrane attains remarkedly 5762.92 L h-1 m-2 bar-1 , which is 960 and 2.6 times higher than that of the GO membrane and GO@D-MIP-202(Zr) membrane. Additionally, benefiting from the superhydrophilicity and underwater superoleophobicity, the resultant membrane not only demonstrates high rejection for oil-water emulsions but also exhibits exceptional recyclability and anti-fouling ability. These findings provide valuable insights into the assembly of MOFs into high-performance membranes.
Collapse
Affiliation(s)
- Lingya Fei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiujing Xu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Boya Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
33
|
Kumar A, Chang DW. Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. Polymers (Basel) 2024; 16:271. [PMID: 38257070 PMCID: PMC10819000 DOI: 10.3390/polym16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Conventional polymers, endowed with specific functionalities, are extensively utilized for filtering and extracting a diverse set of chemicals, notably metals, from solutions. The main structure of a polymer is an integral part for designing an efficient separating system. However, its chemical functionality further contributes to the selectivity, fabrication process, and resulting product morphology. One example would be a membrane that can be employed to selectively remove a targeted metal ion or chemical from a solution, leaving behind the useful components of the solution. Such membranes or products are highly sought after for purifying polluted water contaminated with toxic and heavy metals. An efficient water-purifying membrane must fulfill several requirements, including a specific morphology attained by the material with a specific chemical functionality and facile fabrication for integration into a purifying module Therefore, the selection of an appropriate polymer and its functionalization become crucial and determining steps. This review highlights the attempts made in functionalizing various polymers (including natural ones) or copolymers with chemical groups decisive for membranes to act as water purifiers. Among these recently developed membrane systems, some of the materials incorporating other macromolecules, e.g., MOFs, COFs, and graphene, have displayed their competence for water treatment. Furthermore, it also summarizes the self-assembly and resulting morphology of the membrane materials as critical for driving the purification mechanism. This comprehensive overview aims to provide readers with a concise and conclusive understanding of these materials for water purification, as well as elucidating further perspectives and challenges.
Collapse
Affiliation(s)
| | - Dong Wook Chang
- Department of Industrial Chemistry, ECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
34
|
Yao A, Du J, Sun Q, Liu L, Song Z, He W, Liu J. Flexible Covalent Organic Network with Ordered Honeycomb Nanoarchitecture for Molecular Separations. ACS NANO 2023; 17:22916-22927. [PMID: 37962059 DOI: 10.1021/acsnano.3c08028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Membranes with precisely defined nanostructure are desirable for energy-efficient molecular separations. The emergence of membranes with honeycomb lattice or topological nanopores is of fundamental importance. The tailor-made nanostructure and morphology may have huge potential to resolve the longstanding bottlenecks in membrane science and technology. Herein, inspired by honeycomb architecture, we demonstrate an effective and scalable route based on interfacial polymerization (IP) to generate flexible and ordered covalent organic network (CON) membranes for liquid-phase molecular separations. The aperture size of a CON membrane can be reasonably designed through the strong covalent bond between molecular building blocks. The fabricated CON membrane formed by IP showed an obviously size-dependent sieving of molecules, yielding a stepwise conversion from low rejection to the expected high rejection. Moreover, the CON membrane was also found to have the sieving capability for tetracycline and ciprofloxacin, ascribed to the effect of size exclusion by an ordered single-nanoscale channel (<1 nm). This approach provides a viable strategy for creating target-sized channels from molecular-level design and demonstrates their potential for accurate molecular separations.
Collapse
Affiliation(s)
- Ayan Yao
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Jingcheng Du
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Qian Sun
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Linghao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Ziye Song
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Wen He
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| | - Jiangtao Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230052, Anhui, China
| |
Collapse
|
35
|
Yang X, Wen Y, Li Y, Yan L, Tang CY, Ma J, Darling SB, Shao L. Engineering In Situ Catalytic Cleaning Membrane Via Prebiotic-Chemistry-Inspired Mineralization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306626. [PMID: 37788420 DOI: 10.1002/adma.202306626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023]
Abstract
Pressure-driven membrane separation promises a sustainable energy-water nexus but is hindered by ubiquitous fouling. Natural systems evolved from prebiotic chemistry offer a glimpse of creative solutions. Herein, a prebiotic-chemistry-inspired aminomalononitrile (AMN)/Mn2+ -mediated mineralization method is reported for universally engineering a superhydrophilic hierarchical MnO2 nanocoating to endow hydrophobic polymeric membranes with exceptional catalytic cleaning ability. Green hydrogen peroxide catalytically triggered in-situ cleaning of the mineralized membrane and enabled operando flux recovery to reach 99.8%. The mineralized membrane exhibited a 9-fold higher recovery compared to the unmineralized membrane, which is attributed to active catalytic antifouling coupled with passive hydration antifouling. Electron density differences derived from the precursor interaction during mediated mineralization unveiled an electron-rich bell-like structure with an inner electron-deficient Mn core. This work paves the way to construct multifunctional engineered materials for energy-efficient water treatment as well as for diverse promising applications in catalysis, solar steam generation, biomedicine, and beyond.
Collapse
Affiliation(s)
- Xiaobin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yajie Wen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yangxue Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Linlin Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Chuyang Y Tang
- Department of Civil Engineering, the University of Hong Kong, Pokfulam, 999077, Hong Kong
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Seth B Darling
- Chemical Sciences and Engineering Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, 60439, USA
- Advanced Materials for Energy-Water Systems Energy Frontier Research Center (AMEWS EFRC), Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
36
|
Hsu CH, Yu HY, Lee HJ, Wu PH, Huang SJ, Lee JS, Yu TY, Li YP, Kang DY. Fast Water Transport in UTSA-280 via a Knock-Off Mechanism. Angew Chem Int Ed Engl 2023; 62:e202309874. [PMID: 37574451 DOI: 10.1002/anie.202309874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023]
Abstract
Water and other small molecules frequently coordinate within metal-organic frameworks (MOFs). These coordinated molecules may actively engage in mass transfer, moving together with the transport molecules, but this phenomenon has yet to be examined. In this study, we explore a unique water transfer mechanism in UTSA-280, where an incoming water molecule can displace a coordinated molecule for mass transfer. We refer to this process as the "knock-off" mechanism. Despite UTSA-280 possessing one-dimensional channels, the knock-off transport enables water movement along the other two axes, effectively simulating a pseudo-three-dimensional mass transfer. Even with a relatively narrow pore width, the knock-off mechanism enables a high water flux in the UTSA-280 membrane. The knock-off mechanism also renders UTSA-280 superior water/ethanol diffusion selectivity for pervaporation. To validate this unique mechanism, we conducted 1 H and 2 H solid-state NMR on UTSA-280 after the adsorption of deuterated water. We also derived potential energy diagrams from the density functional theory to gain atomic-level insight into the knock-off and the direct-hopping mechanisms. The simulation findings reveal that the energy barrier of the knock-off mechanism is marginally lower than the direct-hopping pathway, implying its potential role in enhancing water diffusion in UTSA-280.
Collapse
Affiliation(s)
- Cheng-Hsun Hsu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Hsin-Yu Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ho Jun Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Pei-Hao Wu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Jong Huang
- Instrumentation Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Jong Suk Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro 35, Mapo-gu, Seoul, 04107, Republic of Korea
- Institute of Emergent Materials, Sogang University, 35, Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Pei Li
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Dun-Yen Kang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei, 10617, Taiwan
- Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
37
|
Jin J, Wan S, Lee S, Oh C, Jang GY, Zhang K, Lu Z, Park JH. Tailoring the Nanoporosity and Photoactivity of Metal-Organic Frameworks With Rigid Dye Modulators for Toluene Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302776. [PMID: 37254455 DOI: 10.1002/smll.202302776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 06/01/2023]
Abstract
Facile synthesis of hierarchically porous metal-organic frameworks (MOFs) with adjustable porosity and high crystallinity attracts great attention yet remains challenging. Herein, a micromolar amount of dye-based modulator (Rhodamine B (RhB)) is employed to easily and controllably tailor the pore size of a Ti-based metal-organic framework (MIL-125-NH2 ). The RhB used in this method is easily removed by washing or photodegradation, avoiding secondary posttreatment. It is demonstrated that the carboxyl functional group and the steric effects of RhB are indispensable for enlarging the pore size of the MIL-125-NH2 . The resulting hierarchically porous MIL-125-NH2 (RH-MIL-125-NH2 ) exhibits optimized adsorption and photocatalytic activity because the newly formed mesopore with defects concurrently facilitates mass transport of guest molecules (toluene) and photogenerated charge separation. This work offers a meaningful basis for the construction of hierarchically porous MOFs and demonstrates the superiority of the hierarchical pore structure for adsorption and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jie Jin
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Shipeng Wan
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - SunJe Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Cheoulwoo Oh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Gyu Yong Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Kan Zhang
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| | - Ziyang Lu
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jong Hyeok Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-749, Republic of Korea
| |
Collapse
|
38
|
Cheng P, Zhu T, Wang X, Fan K, Liu Y, Wang XM, Xia S. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12879-12889. [PMID: 37582261 DOI: 10.1021/acs.est.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Tongren Zhu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
39
|
Poschmann MPM, Lillerud KP, Stock N. Acidic Properties of Known and New COOH-Functionalized M(IV) Metal-Organic Frameworks. Chemistry 2023; 29:e202301760. [PMID: 37272919 DOI: 10.1002/chem.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the μ2 -OH, μ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.
Collapse
Affiliation(s)
| | | | - Norbert Stock
- Department of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Straße 2, 24118, Kiel, Germany
| |
Collapse
|
40
|
Wang X, Wang M, Chen M, Zhang Y. A Mini Review of Ceramic-Based MOF Membranes for Water Treatment. MEMBRANES 2023; 13:751. [PMID: 37755173 PMCID: PMC10537879 DOI: 10.3390/membranes13090751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
Ceramic membranes have been increasingly employed in water treatment owing to their merits such as high-stability, anti-oxidation, long lifespan and environmental friendliness. The application of ceramic membranes mainly focuses on microfiltration and ultrafiltration processes, and some precise separation can be achieved by introducing novel porous materials with superior selectivity. Recently, metal-organic frameworks (MOFs) have developed a wide spectrum of applications in the fields of the environment, energy, water treatment and gas separation due to the diversity and tunable advantages of metal clusters and organic ligands. Although the issue of water stability in MOF materials inhibits the development of MOF membranes in water treatment, researchers still overcome many obstacles to advance the application of MOF membranes in water treatment processes. To the best of our knowledge, there is still a lack of a reviews on the development process and prospects of ceramic-based MOF membranes for water treatment. Therefore, in this review, we mainly summarize the fabrication method for ceramic-based MOF membranes and their application in water treatment, such as water/salt separation, pollutant separation, heavy metal separation, etc. Following this, based on the high structural, thermal and chemical stability of ceramic substrates, and the high controllability of MOF materials, the superiority and insufficient use of ceramic-based MOF membranes in the field of water treatment are critically discussed.
Collapse
Affiliation(s)
- Xueling Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.W.)
| | - Man Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.W.)
| | - Mingliang Chen
- Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; (X.W.)
| |
Collapse
|
41
|
Zhu T, Dong J, Liu H, Wang Y. Controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes for ultrafast alcohol recovery. MATERIALS HORIZONS 2023; 10:3024-3033. [PMID: 37194492 DOI: 10.1039/d3mh00250k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The lack of efficient separation membranes limits the development of bio-alcohol purification via a pervaporation process. In this work, novel controllable hydrogen-bonded poly(dimethylsiloxane) (PDMS) membranes are prepared from self-synthesized supramolecular elastomers for alcohol recovery. Different from the conventional covalently-bonded PDMS membranes, the hydrogen-bonding content and therefore the crosslinking degree in the as-synthesized PDMS membranes can be exactly regulated, by the suitable molecular design of the supramolecular elastomers. The effects of hydrogen-bonding content on the flexibility of the polymer chains and the separation performance of the resultant supramolecular membranes are investigated in detail. In comparison with the state-of-the-art polymeric membranes, the novel controllable hydrogen-bonded supramolecular PDMS membrane exhibits ultrahigh fluxes for ethanol (4.1 kg m-2 h-1) and n-butanol (7.7 kg m-2 h-1) recovery from 5 wt% alcohol aqueous solutions at 80 °C, with comparable separation factors. The designed supramolecular elastomer is therefore believed to provide valuable insights into the design of next-generation separation membrane materials for molecular separations.
Collapse
Affiliation(s)
- Tengyang Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Jiayu Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Huan Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| | - Yan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430074, P. R. China.
- Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
42
|
Lu J, Wang H. Unlocked sieving potential. NATURE MATERIALS 2023:10.1038/s41563-023-01551-y. [PMID: 37169974 DOI: 10.1038/s41563-023-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Jun Lu
- Department of Chemical and Biological Engineering, Monash Centre for Membrane Innovation, Monash University, Clayton, Victoria, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash Centre for Membrane Innovation, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
43
|
Liu G, Guo Y, Chen C, Lu Y, Chen G, Liu G, Han Y, Jin W, Xu N. Eliminating lattice defects in metal-organic framework molecular-sieving membranes. NATURE MATERIALS 2023:10.1038/s41563-023-01541-0. [PMID: 37169972 DOI: 10.1038/s41563-023-01541-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Metal-organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.
Collapse
Affiliation(s)
- Guozhen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yong Lu
- Department of Mathematics, Nanjing University, Nanjing, China
| | - Guining Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China.
| | - Nanping Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
- Suzhou Laboratory, Suzhou, China
| |
Collapse
|
44
|
Gao Z, Li B, Li Z, Yu T, Wang S, Fang Q, Qiu S, Xue M. Free-Standing Metal-Organic Framework Membranes Made by Solvent-Free Space-Confined Conversion for Efficient H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19241-19249. [PMID: 37029737 DOI: 10.1021/acsami.3c02208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for the advanced membrane materials based on their diverse structures, modifiable pore environment, precise pore sizes, etc. Nevertheless, the use of supports and large amounts of solvents in traditional solvothermal synthesis of MOF membranes is considered inefficient, costly, and environmentally problematic, coupled with challenges in their scalable manufacturing. In this work, we report a solvent-free space-confined conversion (SFSC) approach for the fabrication of a series of free-standing MOF (ZIF-8, Zn(EtIm)2, and Zn2(BIm)4) membranes. This approach excludes the employment of solvents and supports that require tedious pretreatment and, thus, makes the process more environment-friendly and highly efficient. The free-standing membranes feature a robust and unique architecture, which comprise dense surface layers and highly porous interlayer with large amounts of irregular-shaped micron-scale pore cavities, inducing satisfactory H2/CO2 selectivities and exceptional H2 permeances. The ZIF-8 membrane affords a considerable H2 permeance of 2653.7 GPU with a competitive H2/CO2 selectivity of 17.1, and the Zn(EtIm)2 membrane exhibits a high H2/CO2 selectivity of 22.1 with an excellent H2 permeance (6268.7 GPU). The SFSC approach potentially provides a new pathway for preparing free-standing MOF membranes under solvent-free conditions, rendering it feasible for scale-up production of membrane materials for gas separation.
Collapse
Affiliation(s)
- Zhuangzhuang Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Baoju Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ming Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| |
Collapse
|
45
|
Yuan M, Wang J, Li Y, Zhao M, Li YQ, Li W, Qu Y. Metal-organic frameworks for high performance desalination through thickness control and structural fine-tuning. WATER RESEARCH 2023; 230:119576. [PMID: 36638738 DOI: 10.1016/j.watres.2023.119576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional nanoporous membranes hold great promise for the design of state-of-the-art desalination architectures to alleviate the increasing global water scarcity. Herein, by employing molecular dynamics simulations, we demonstrate the great potential of two recently reported metal-organic frameworks (MOF) membranes, namely NiIT and NiAT, as efficient desalination membranes that reach super high water flux and high salt rejection. The desalination performance of the MOF membrane is highly tunable through controlling the membrane thickness from one layer to five layers. Double layer NiIT membrane exhibits excellent salt rejection of 100% for NaCl, and meanwhile achieving high water permeability of ∼45 L/cm2/MPa/day. While for the convertible double-layer NiAT, it effectively rejects ∼96% ions with an improved water permeation of over 70 L/cm2/MPa/day. Quantitative analysis of water distribution reveals a denser water solvation shell around NiAT membrane than NiIT and a higher water velocity through the nanopore of NiAT than that of NiIT, contributing to the enhanced water permeability. Through calculating free energy for water/ions translocating through two membranes, a clear energy barrier is observed for ions to penetrate through the sub-nanosized pores in both membranes, leading to the high salt rejection. The present study suggests that these two MOF membranes can serve as a promising semipermeable membrane for energy-efficient desalination which is highly prospective in industrial applications.
Collapse
Affiliation(s)
- Meili Yuan
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Jingyuan Wang
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Mingwen Zhao
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Yong-Qiang Li
- School of Physics, Shandong University, Jinan 250100, Shandong, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan 250100, Shandong, China.
| | - Yuanyuan Qu
- School of Physics, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
46
|
Sun Y, Yan J, Gao Y, Ji T, Chen S, Wang C, Lu P, Li Y, Liu Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-Organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew Chem Int Ed Engl 2023; 62:e202216697. [PMID: 36790362 DOI: 10.1002/anie.202216697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/16/2023]
Abstract
Concurrent regulation of crystallographic orientation and thickness of zirconium metal-organic framework (Zr-MOF) membranes is challenging but promising for their performance enhancement. In this study, we pioneered the fabrication of uniform triangular-shaped, 40 nm thick UiO-66 nanosheet (NS) seeds by employing an anisotropic etching strategy. Through innovating confined counter-diffusion-assisted epitaxial growth, highly (111)-oriented 165 nm-thick UiO-66 membrane was prepared. The significant reduction in thickness and diffusion barrier in the framework endowed the membrane with unprecedented CO2 permeance (2070 GPU) as well as high CO2 /N2 selectivity (35.4), which surpassed the performance limits of state-of-the-art polycrystalline MOF membranes. In addition, highly (111)-oriented 180 nm-thick NH2 -UiO-66 membrane showing superb H2 /CO2 separation performance with H2 permeance of 1230 GPU and H2 /CO2 selectivity of 41.3, was prepared with the above synthetic procedure.
Collapse
Affiliation(s)
- Yanwei Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Jiahui Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Yunlei Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Taotao Ji
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Sixing Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Chen Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China
| | - Yi Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 116024, Dalian, China.,School of Materials Science and Chemical Engineering, Ningbo University, 315211, Ningbo, China.,Dalian Key Laboratory of Membrane Materials and Membrane Processes, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
47
|
Li B, Shen L, Zhao Y, Yu W, Lin H, Chen C, Li Y, Zeng Q. Quantification of interfacial interaction related with adhesive membrane fouling by genetic algorithm back propagation (GABP) neural network. J Colloid Interface Sci 2023; 640:110-120. [PMID: 36842417 DOI: 10.1016/j.jcis.2023.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Since adhesive membrane fouling is critically determined by the interfacial interaction between a foulant and a rough membrane surface, efficient quantification of the interfacial interaction is critically important for adhesive membrane fouling mitigation. As a current available method, the advanced extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory involves complicated rigorous thermodynamic equations and massive amounts of computation, restricting its application. To solve this problem, artificial intelligence (AI) visualization technology was used to analyze the existing literature, and the genetic algorithm back propagation (GABP) artificial neural network (ANN) was employed to simplify thermodynamic calculation. The results showed that GABP ANN with 5 neurons could obtain reliable prediction performance in seconds, versus several hours or even days time-consuming by the advanced XDLVO theory. Moreover, the regression coefficient (R) of GABP reached 0.9999, and the error between the prediction results and the simulation results was less than 0.01%, indicating feasibility of the GABP ANN technique for quantification of interfacial interaction related with adhesive membrane fouling. This work provided a novel strategy to efficiently optimize the thermodynamic prediction of adhesive membrane fouling, beneficial for better understanding and control of adhesive membrane fouling.
Collapse
Affiliation(s)
- Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Ying Zhao
- Teachers' Colleges, Beijing Union University, 5 Waiguanxiejie Street, Chaoyang District, Beijing 100011, China.
| | - Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Yingbo Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
48
|
Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Qu K, Huang K, Xu J, Dai L, Wang Y, Cao H, Xia Y, Wu Y, Xu W, Yao Z, Guo X, Lian C, Xu Z. High‐Efficiency CO
2
/N
2
Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal–Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202213333. [DOI: 10.1002/anie.202213333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Qu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Kang Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Jipeng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Yixing Wang
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yongsheng Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering Nanjing Tech University No. 30 Puzhu South Road Nanjing 211816 China
| | - Yulin Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Weiyi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhizhen Yao
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology No.130 Meilong Road Shanghai 200237 China
| |
Collapse
|
50
|
Zhang Q, Yang H, Zhou T, Chen X, Li W, Pang H. Metal-Organic Frameworks and Their Composites for Environmental Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204141. [PMID: 36106360 PMCID: PMC9661848 DOI: 10.1002/advs.202204141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Indexed: 06/04/2023]
Abstract
From the point of view of the ecological environment, contaminants such as heavy metal ions or toxic gases have caused harmful impacts on the environment and human health, and overcoming these adverse effects remains a serious and important task. Very recent, highly crystalline porous metal-organic frameworks (MOFs), with tailorable chemistry and excellent chemical stability, have shown promising properties in the field of removing various hazardous pollutants. This review concentrates on the recent progress of MOFs and MOF-based materials and their exploit in environmental applications, mainly including water treatment and gas storage and separation. Finally, challenges and trends of MOFs and MOF-based materials for future developments are discussed and explored.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Hui Yang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Ting Zhou
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Xudong Chen
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Wenting Li
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225009China
| |
Collapse
|