1
|
Zheng J, Peters BBC, Mallick RK, Andersson PG. Stereocontrolled Hydrogenation of Conjugated Enones to Alcohols via Dual Iridium-Catalysis. Angew Chem Int Ed Engl 2025; 64:e202415171. [PMID: 39320171 DOI: 10.1002/anie.202415171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The concept of dual catalysis is an emerging area holding high potential in terms of preparative efficiency, yet faces severe challenges in compatibility of reaction conditions and interference of catalysts. The transition-metal catalyzed stereoselective hydrogenation of olefins and ketones typically proceeds under different reaction conditions and/or uses a different reductant. As a result, these two types of hydrogenations can normally not be performed in the same pot. Herein, the stereocontrolled hydrogenation of enones to saturated alcohols is described, enabled by orthogonal dual iridium catalysis, using molecular hydrogen for both reductions. In this one-pot procedure, N,P-iridium catalysts (hydrogenation active towards olefins) and NHC,P-iridium catalysts (hydrogenation active towards ketones) operated independently of one another allowing the construction of two contiguous stereogenic centers up to 99 % ee, 99/1 d.r. Ultimately, by simple selection of the chirality of either ligands, the enone could be efficiently reduced to all four stereoisomers of the saturated alcohol in equally high stereopurity. This degree of stereocontrol for the synthesis of different stereoisomers by dual transition-metal catalyzed hydrogenation was previously not attained. The generality in substituted enones (alkyl, aryl, heteroaryl) demonstrate the wide applicability of this concept.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- The Marine Biomedical Research Institute, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Rajendra K Mallick
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
2
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Singh S, Hernández-Lobato JM. Data-Driven Insights into the Transition-Metal-Catalyzed Asymmetric Hydrogenation of Olefins. J Org Chem 2024; 89:12467-12478. [PMID: 39149801 PMCID: PMC11382158 DOI: 10.1021/acs.joc.4c01396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The transition-metal-catalyzed asymmetric hydrogenation of olefins is one of the key transformations with great utility in various industrial applications. The field has been dominated by the use of noble metal catalysts, such as iridium and rhodium. The reactions with the earth-abundant cobalt metal have increased only in recent years. In this work, we analyze the large amount of literature data available on iridium- and rhodium-catalyzed asymmetric hydrogenation. The limited data on reactions using Co catalysts are then examined in the context of Ir and Rh to obtain a better understanding of the reactivity pattern. A detailed data-driven study of the types of olefins, ligands, and reaction conditions such as solvent, temperature, and pressure is carried out. Our analysis provides an understanding of the literature trends and demonstrates that only a few olefin-ligand combinations or reaction conditions are frequently used. The knowledge of this bias in the literature data toward a certain group of substrates or reaction conditions can be useful for practitioners to design new reaction data sets that are suitable to obtain meaningful predictions from machine-learning models.
Collapse
Affiliation(s)
- Sukriti Singh
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, U.K
| | | |
Collapse
|
4
|
Liu Q, Qin C, Wan J, Mai BK, Sui XZ, Kobayashi H, Zahedian H, Liu P, Hoveyda AH. Synthesis of Z- gem-Cl,CF 3-Substituted Alkenes by Stereoselective Cross-Metathesis and the Role of Disubstituted Mo Alkylidenes. J Am Chem Soc 2024; 146:22485-22497. [PMID: 39078367 PMCID: PMC11330298 DOI: 10.1021/jacs.4c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Stereochemically defined organofluorine compounds are central to drug discovery and development. Here, we present a catalytic cross-metathesis method for the synthesis of Z-trisubstituted olefins that contain a Cl- and a CF3-bound carbon terminus. Notably, the process is stereoselective, which is in contrast to the existing stereoretentive strategies that also involve a trisubstituted olefin as starting material. Reactions are catalyzed by a Mo monoaryloxide pyrrolide alkylidene, involve a trisubstituted alkene and gem-Cl,CF3-substituted alkene, and are fully Z-selective. Catalytic cross-coupling can be used to convert the C-Cl bond of the trisubstituted olefin to C-B, C-D, and different C-C bonds. We elucidate the role of Cl,CF3-disubstituted Mo alkylidenes. Experimental and computational (DFT) data show that in some instances a disubstituted alkylidene is formed and then transformed to a more active complex. In other cases, the Cl,CF3-disubstituted alkylidene is a direct participant in a catalytic cycle. The studies described shed new light on the chemistry of high oxidation-state disubstituted alkylidenes-scarcely investigated entities likely to be pivotal to approaches for stereocontrolled synthesis of tetrasubstituted alkenes through olefin metathesis.
Collapse
Affiliation(s)
- Qinghe Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Can Qin
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Jing Wan
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Xin Zhi Sui
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Haruki Kobayashi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Hossein Zahedian
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| |
Collapse
|
5
|
Zhao S, Peters BBC, Zhang H, Xue R, Yang Y, Wu L, Huang T, He L, Andersson PG, Zhou T. Asymmetric and Chemoselective Iridium Catalyzed Hydrogenation of Conjugated Unsaturated Oxime Ethers. Chemistry 2024; 30:e202401333. [PMID: 38779790 DOI: 10.1002/chem.202401333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Research on the chemoselective metal-catalyzed hydrogenation of conjugated π-systems has mostly been focussed on enones. Herein, we communicate the understudied asymmetric hydrogenation of enimines catalyzed by N,P-iridium complexes and chemoselective toward the alkene. A number of enoxime ethers underwent hydrogenation smoothly to yield the desired products in high yield and stereopurity (up to 99 % yield, up to 99 % ee). No hydrogenation of the C=N π-bond was observed under the applied reaction conditions (20 bar H2, rt, DCM). It was demonstrated that the chiral oxime ether could be hydrolyzed into the ketone with complete preservation of the installed stereogenity at the α-carbon. At last, a binding mode of the substrate to the active iridium catalyst and the consequence for the stereoselective outcome was proposed.
Collapse
Affiliation(s)
- Shaohu Zhao
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
| | - Haili Zhang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Ruize Xue
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Yixin Yang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Liuying Wu
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Tianrui Huang
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
| | - Lei He
- Tianfu Yongxing Laboratory, Chengdu, Sichuan, 610000, China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, & Institute for Carbon Neutrality, Southwest Petroleum University, Chengdu, Sichuan, 610500, China
- Tianfu Yongxing Laboratory, Chengdu, Sichuan, 610000, China
| |
Collapse
|
6
|
Faiges J, Biosca M, Pericàs MA, Besora M, Pàmies O, Diéguez M. Unlocking the Asymmetric Hydrogenation of Tetrasubstituted Acyclic Enones. Angew Chem Int Ed Engl 2024; 63:e202315872. [PMID: 38093613 DOI: 10.1002/anie.202315872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Indexed: 12/30/2023]
Abstract
Asymmetric hydrogenation (AH) of tetrasubstituted olefins generating two stereocenters is still an open topic. There are only a few reports on the AH of tetrasubstituted olefins with conjugated functional groups, while this process can create useful intermediates for the subsequent elaboration of relevant end products. Most of the tetrasubstituted olefins successfully submitted to AH belong to a small number of functional classes; remarkably, the AH of tetrasubstituted acyclic enones still represents an unsolved challenge. Herein, we disclose a class of air-stable Ir-P,N catalysts, prepared in three steps from commercially available amino alcohols, that can hydrogenate, in minutes, a wide range of electronically and sterically diverse acyclic tetrasubstituted enones (including exocyclic ones) with high yields and high enantioselectivities. The factors responsible for the excellent selectivities were elucidated by combining deuterogenation experiments and theoretical calculations. The calculations indicated that the reduction follows an IrI /IrIII mechanism, in which enantioselectivity is controlled in the first migratory insertion of the hydride to the most electrophilic olefinic Cβ and the formation of the hydrogenated product via reductive elimination takes place prior to the coordination of dihydrogen and the subsequent oxidative addition. The potential of the new catalytic systems is demonstrated by the derivatization of hydrogenation products.
Collapse
Affiliation(s)
- Jorge Faiges
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Biosca
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Miquel A Pericàs
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Maria Besora
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Oscar Pàmies
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| | - Montserrat Diéguez
- Universitat Rovira i Virgili, Departament de Química Física i Inorgànica, C/Marcel⋅lí Domingo, 1, 43007, Tarragona, Spain
| |
Collapse
|
7
|
Bansal S, Punji B. Nickel-Catalyzed Chemodivergent Coupling of Alcohols: Efficient Routes to Access α,α-Disubstituted Ketones and α-Substituted Chalcones. Chemistry 2024:e202304082. [PMID: 38231839 DOI: 10.1002/chem.202304082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Chemodivergent (de)hydrogenative coupling of primary and secondary alcohols is achieved utilizing an inexpensive nickel catalyst, (6-OH-bpy)NiCl2 . This protocol demonstrates the synthesis of branched carbonyl compounds, α,α-disubstituted ketones, and α-substituted chalcones via borrowing hydrogen strategy and acceptorless dehydrogenative coupling, respectively. A wide range of aryl-based secondary alcohols are coupled with various primary alcohols in this tandem dehydrogenation/hydrogenation reaction. The nickel catalyst, along with KOt Bu or K2 CO3 , governed the selectivity for the formation of branched saturated ketones or chalcones. A preliminary mechanistic investigation confirms the reversible dehydrogenation of alcohols to carbonyls via metal-ligand cooperation (MLC) and the involvement of radical intermediates during the reaction.
Collapse
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
8
|
Zheng J, Peters BBC, Jiang W, Suàrez LA, Ahlquist MSG, Singh T, Andersson PG. The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones. Chemistry 2023:e202303406. [PMID: 38109038 DOI: 10.1002/chem.202303406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Jiang
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lluís Artús Suàrez
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
9
|
Peng C, Luo J, Wang K, Li J, Ma Y, Li J, Yang H, Chen T, Zhang G, Ji X, Liao Y, Lin H, Ji Z. Iridium metal complex targeting oxidation resistance 1 protein attenuates spinal cord injury by inhibiting oxidative stress-associated reactive oxygen species. Redox Biol 2023; 67:102913. [PMID: 37857001 PMCID: PMC10587759 DOI: 10.1016/j.redox.2023.102913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/21/2023] Open
Abstract
Oxidative stress is a key factor leading to profound neurological deficits following spinal cord injury (SCI). In this study, we present the development and potential application of an iridium (iii) complex, (CpxbiPh) Ir (N^N) Cl, where CpxbiPh represents 1-biphenyl-2,3,4,5-tetramethyl cyclopentadienyl, and N^N denotes 2-(3-(4-nitrophenyl)-1H-1,2,4-triazol-5-yl) pyridine chelating agents, to address this challenge through a mechanism governed by the regulation of an antioxidant protein. This iridium complex, IrPHtz, can modulate the Oxidation Resistance 1 (OXR1) protein levels within spinal cord tissues, thus showcasing its antioxidative potential. By eliminating reactive oxygen species (ROS) and preventing apoptosis, the IrPHtz demonstrated neuroprotective and neural healing characteristics on injured neurons. Our molecular docking analysis unveiled the presence of π stacking within the IrPHtz-OXR1 complex, an interaction that enhanced OXR1 expression, subsequently diminishing oxidative stress, thwarting neuroinflammation, and averting neuronal apoptosis. Furthermore, in in vivo experimentation with SCI-afflicted mice, IrPHtz was efficacious in shielding spinal cord neurons, promoting their regrowth, restoring electrical signaling, and improving motor performance. Collectively, these findings underscore the potential of employing the iridium metal complex in a novel, protein-regulated antioxidant strategy, presenting a promising avenue for therapeutic intervention in SCI.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianxian Luo
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ke Wang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jianping Li
- Department of Anatomy, Shaoyang University Puai Medical College, Shaoyang, Hunan, 422099, China
| | - Yanming Ma
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Juanjuan Li
- Guangdong Key Laboratory of Urology and Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Tianjun Chen
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guowei Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
| | - Hongsheng Lin
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhisheng Ji
- Department of Orthopedics, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
10
|
Helmchen G. Mechanistic Aspects of the Crabtree-Pfaltz Hydrogenation of Olefins - An Interplay of Experimentation and Quantum Chemical Computation. Chemistry 2023; 29:e202301488. [PMID: 37363889 DOI: 10.1002/chem.202301488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 06/28/2023]
Abstract
Introduction of Crabtree's iridium-based hydrogenation catalyst in 1977 marked a paradigm shift both with respect to the role of iridium in homogeneous catalysis as well as catalytic hydrogenation of olefins. In 1998, Pfaltz introduced an improved catalyst, by use of BARF- as anion, and established the first chiral variant of the Crabtree catalyst. This led to numerous practical highly enantioselective syntheses. Elucidation of mechanistic details posed great problems because of instability of the crucial intermediates. A remarkable breakthrough was achieved by Brandt, Andersson et al. in 2003, based on dft calculations. These authors replaced a previously assumed IrI /IrIII catalytic cycle by a novel IrIII /IrV cycle. The proposal was experimentally verified by Pfaltz in 2014 and corroborated by advanced quantum chemical calculations. This essay is an attempt to describe a fascinating interplay of experiments and quantum chemical calculations for an important synthetic method.
Collapse
Affiliation(s)
- Günter Helmchen
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
11
|
Ramazanova K, Chakrabortty S, Kallmeier F, Kretzschmar N, Tin S, Lönnecke P, de Vries JG, Hey-Hawkins E. Access to Enantiomerically Pure P-Chiral 1-Phosphanorbornane Silyl Ethers. Molecules 2023; 28:6210. [PMID: 37687039 PMCID: PMC10488433 DOI: 10.3390/molecules28176210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Sulfur-protected enantiopure P-chiral 1-phosphanorbornane silyl ethers 5a,b are obtained in high yields via the reaction of the hydroxy group of P-chiral 1-phosphanorbornane alcohol 4 with tert-butyldimethylsilyl chloride (TBDMSCl) and triphenylsilyl chloride (TPSCl). The corresponding optically pure silyl ethers 5a,b are purified via crystallization and fully structurally characterized. Desulfurization with excess Raney nickel gives access to bulky monodentate enantiopure phosphorus(III) 1-phosphanorbornane silyl ethers 6a,b which are subsequently applied as ligands in iridium-catalyzed asymmetric hydrogenation of a prochiral ketone and enamide. Better activity and selectivity were observed in the latter case.
Collapse
Affiliation(s)
- Kyzgaldak Ramazanova
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (N.K.); (P.L.)
| | - Soumyadeep Chakrabortty
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29A, 18059 Rostock, Germany; (S.C.); (F.K.); (S.T.); (J.G.d.V.)
| | - Fabian Kallmeier
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29A, 18059 Rostock, Germany; (S.C.); (F.K.); (S.T.); (J.G.d.V.)
| | - Nadja Kretzschmar
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (N.K.); (P.L.)
| | - Sergey Tin
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29A, 18059 Rostock, Germany; (S.C.); (F.K.); (S.T.); (J.G.d.V.)
| | - Peter Lönnecke
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (N.K.); (P.L.)
| | - Johannes G. de Vries
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29A, 18059 Rostock, Germany; (S.C.); (F.K.); (S.T.); (J.G.d.V.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany; (K.R.); (N.K.); (P.L.)
| |
Collapse
|
12
|
Peters BBC, Andersson PG. The Implications of the Brønsted Acidic Properties of Crabtree-Type Catalysts in the Asymmetric Hydrogenation of Olefins. J Am Chem Soc 2022; 144:16252-16261. [PMID: 36044252 PMCID: PMC9479089 DOI: 10.1021/jacs.2c07023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral iridium complexes derived from Crabtree's catalyst are highly useful in modern hydrogenations of olefins attributed to high reactivity, stereoselectivity, and stability. Despite that these precatalysts are pH neutral, the reaction mixtures turn acidic under hydrogenation conditions. This Perspective is devoted to the implications of the intrinsic Brønsted acidity of catalytic intermediates in asymmetric hydrogenation of olefins. Despite that the acidity has often been used only as a rationale for side-product formation, more recent methodologies have started to use this property advantageously. We hope that this Perspective serves as a stimulant for the development of such compelling and new asymmetric hydrogenations. The inherent scientific opportunities in utilizing or annihilating the generated Brønsted acid are enormous, and potential new innovations are outlined toward the end.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
13
|
Yang J, Ponra S, Li X, Peters BBC, Massaro L, Zhou T, Andersson PG. Catalytic enantioselective synthesis of fluoromethylated stereocenters by asymmetric hydrogenation. Chem Sci 2022; 13:8590-8596. [PMID: 35974749 PMCID: PMC9337738 DOI: 10.1039/d2sc02685f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
Fluoromethyl groups possess specific steric and electronic properties and serve as a bioisostere of alcohol, thiol, nitro, and other functional groups, which are important in an assortment of molecular recognition processes. Herein we report a catalytic method for the asymmetric synthesis of a variety of enantioenriched products bearing fluoromethylated stereocenters with excellent yields and enantioselectivities. Various N,P-ligands were designed and applied in the hydrogenation of fluoromethylated olefins and vinyl fluorides.
Collapse
Affiliation(s)
- Jianping Yang
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Sudipta Ponra
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Xingzhen Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Luca Massaro
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
| | - Taigang Zhou
- College of Chemistry and Chemical Engineering, Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Arrhenius Laboratory 106 91 Stockholm Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
14
|
Peters BBC, Zheng J, Krajangsri S, Andersson PG. Stereoselective Iridium-N,P-Catalyzed Double Hydrogenation of Conjugated Enones to Saturated Alcohols. J Am Chem Soc 2022; 144:8734-8740. [PMID: 35511116 PMCID: PMC9121388 DOI: 10.1021/jacs.2c02422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Asymmetric hydrogenation
of prochiral substrates such as ketones
and olefins constitutes an important instrument for the construction
of stereogenic centers, and a multitude of catalytic systems have
been developed for this purpose. However, due to the different nature
of the π-system, the hydrogenation of olefins and ketones is
normally catalyzed by different metal complexes. Herein, a study on
the effect of additives on the Ir-N,P-catalyzed hydrogenation of enones
is described. The combination of benzamide and the development of
a reactive catalyst unlocked a novel reactivity mode of Crabtree-type
complexes toward C=O bond hydrogenation. The role of benzamide
is suggested to extend the lifetime of the dihydridic iridium intermediate,
which is prone to undergo irreversible trimerization, deactivating
the catalyst. This unique reactivity is then coupled with C=C
bond hydrogenation for the facile installation of two contiguous stereogenic
centers in high yield and stereoselectivity (up to 99% ee, 99/1 d.r.) resulting in a highly stereoselective reduction of enones.
Collapse
Affiliation(s)
- Bram B C Peters
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Jia Zheng
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Suppachai Krajangsri
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691Stockholm, Sweden.,School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000Durban, South Africa
| |
Collapse
|