1
|
Weiß E, Whisnant AW, Hennig T, Djakovic L, Dölken L, Friedel CC. HSV-1 infection induces a downstream shift of the +1 nucleosome. J Virol 2025; 99:e0208624. [PMID: 40130876 PMCID: PMC11998526 DOI: 10.1128/jvi.02086-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection induces a loss of host transcriptional activity and widespread disruption of host transcription termination, which leads to an induction of open chromatin downstream of genes. In this study, we show that lytic HSV-1 infection also leads to an extension of chromatin accessibility at promoters into downstream regions. This is most prominent for highly expressed genes and independent of the HSV-1 proteins ICP0, ICP22, ICP27, and vhs. ChIPmentation of the noncanonical histone variant H2A.Z, which is strongly enriched at +1 and -1 nucleosomes, indicated that these chromatin accessibility changes are linked to a downstream shift of +1 nucleosomes. In yeast, downstream shifts of +1 nucleosomes are induced by RNA polymerase II (Pol II) degradation. Accordingly, irreversible depletion of Pol II from genes in human cells using α-amanitin altered +1 nucleosome positioning similar to lytic HSV-1 infection. Consequently, treatment with phosphonoacetic acid and knockout of ICP4, which both prevent viral DNA replication and alleviate the loss of Pol II from host genes, largely abolished the downstream extension of accessible chromatin in HSV-1 infection. In the absence of viral genomes, doxycycline-induced expression of ICP27, which redirects Pol II from gene bodies into intergenic regions by disrupting transcription termination, induced an attenuated effect that was further enhanced by co-expression of ICP22. In summary, our study provides strong evidence that HSV-1-induced depletion of Pol II from the host genome leads to a downstream shift of +1 nucleosomes at host promoters.IMPORTANCELytic herpes simplex virus 1 (HSV-1) infection leads to a profound host transcription shutoff. Loss of RNA polymerase II (Pol II) in yeast has previously been shown to relax +1 nucleosome positioning to more thermodynamically favorable sites downstream of transcription start sites. Here, we show that a similar phenomenon is likely at play in lytic HSV-1 infection. Sequencing of accessible chromatin revealed a widening of nucleosome-free regions at host promoters into downstream regions. By mapping genome-wide positions of the noncanonical histone variant H2A.Z enriched at +1 and -1 nucleosomes, we demonstrate a downstream shift of +1 nucleosomes for most cellular genes in lytic HSV-1 infection. As chemical depletion of Pol II from genes also leads to a downstream shift of +1 nucleosomes in human cells, changes in chromatin architecture at promoters in HSV-1 infection are likely a consequence of HSV-1-induced loss of Pol II activity from the host genome.
Collapse
Affiliation(s)
- Elena Weiß
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute for Virology, Medizinische Hochschule Hannover, Hanover, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute for Virology, Medizinische Hochschule Hannover, Hanover, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Institute for Virology, Medizinische Hochschule Hannover, Hanover, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
2
|
Verstraten R, Cetraro P, Fitzpatrick AH, Alwie Y, Frommeyer YN, Loliashvili E, Stein SC, Häussler S, Ouwendijk WJ, Depledge DP. Defining expansions and perturbations to the RNA polymerase III transcriptome and epitranscriptome by modified direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.641986. [PMID: 40161704 PMCID: PMC11952314 DOI: 10.1101/2025.03.07.641986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
RNA polymerase III (Pol III) transcribes cytosolic transfer RNAs (tRNAs) and other non-coding RNAs (ncRNAs) essential to cellular function. However, many aspects of Pol III transcription and processing, including RNA modifications, remain poorly understood, mainly due to a lack of available sensitive and systematic methods for their analysis. Here, we present DRAP3R (Direct Read and Analysis of Polymerase III transcribed RNAs), a modified nanopore direct RNA sequencing approach and analysis framework that enables the specific and sensitive capture of nascent Pol III transcribed RNAs. Applying DRAP3R to distinct cell types, we identify previously unconfirmed tRNA genes and other novel Pol III transcribed RNAs, thus expanding the known Pol III transcriptome. Critically, DRAP3R also enables discrimination between co- and post-transcriptional RNA modifications such as pseudouridine (Ψ) and N 6-methyladenosine (m6A) at single-nucleotide resolution across all examined transcript types and reveals differential Ψ installation patterns across tRNA isodecoders and other ncRNAs. Finally, applying DRAP3R to epithelial cells infected with Herpes Simplex Virus Type 1 reveals an extensive remodelling of both the Pol III transcriptome and epitranscriptome. Our findings thus establish DRAP3R as a powerful tool for systematically studying Pol III transcribed RNAs and their modifications in diverse cellular contexts.
Collapse
Affiliation(s)
- Ruth Verstraten
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Pierina Cetraro
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Yasmine Alwie
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Yannick Noah Frommeyer
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
| | | | - Saskia C. Stein
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE GmbH, Center of Clinical and Experimental Infection Research, a joint venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | | | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
3
|
Ou X, Gou Y, Gong L, Lin X, Liu Y, Yang W, Chen S, Liu M, Zhu D, Wang M, Jia R, Zhang S, Wu Y, Yang Q, Tian B, Zhao X, Wu Z, He Y, Cheng A. tRNA-Ser-UGA efficiently promotes the rapid release of duck hepatitis A virus from infected enterocytes and its remote dissemination to hepatocytes. Poult Sci 2025; 104:104655. [PMID: 39708671 PMCID: PMC11729666 DOI: 10.1016/j.psj.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
Enterocytes are a necessary portal for fecal-oral transmission of viruses, including duck hepatitis A virus (DHAV), that act on the absorption of amino acids (AAs). We note that the rapid death of ducklings caused by DHAV is likely due to its rapid release from enterocytes. However, the underlying mechanism driving the release of DHAV remains poorly understood. Compared to infected fibroblasts, we found that DHAV-infected enterocytes triggered much more rapid viral release and induced swift and diverse remodeling of the mature tRNAome. Surprisingly, we found that tRNA-Ser-UGA in enterocytes was rapidly and specifically upregulated by DHAV infection and was highly correlated with serine decoding of DHAV, which is enriched with UCA codons. Overexpression of tRNA-Ser-UGA in enterocytes promoted rapid DHAV release, whereas overexpression of the cognate tRNA-Ser-GCU in enterocytes or the same tRNA in fibroblasts did not. In enterocytes, inhibition of serine charging of tRNA-Ser-UGA, transfection of a tRNAm-Ala-UGA backbone mutant or a tRNAm-Ser-UGA>CGA anticodon mutant decreased DHAV release. This finding suggests that tRNA-Ser-UGA plays a prominent role in DHAV release in infected enterocytes, which should be supported by efficient protein translation of the virus. Similarly, tRNA-Ser-UGA potently enhances DHAV protein synthesis, and the inhibition of charging of this tRNA or the transfection of the two mutants decreases DHAV protein synthesis. Phenotypically, the overexpression of tRNA-Ser-UGA in enterocytes further accelerates the spread of DHAV to hepatocytes. In conclusion, we revealed a novel tRNA-Ser-UGA that efficiently promotes the rapid release of DHAV by increasing serine decoding in infected enterocytes, thereby promoting remote cell-to-cell dissemination.
Collapse
Affiliation(s)
- Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Key Laboratory of Agricultural Bioinformatics-Ministry of Education, Sichuan Agricultural University, China
| | - Yajia Gou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Lizhen Gong
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Xiaoming Lin
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yi Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Wenwen Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Bing Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Sichuan Agricultural University, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, China; Institute of Veterinary Medicine and Immunology, College of Veterinary Medicine, Sichuan Agricultural University, China.
| |
Collapse
|
4
|
Manning AC, Bashir MM, Jimenez AR, Upton HE, Collins K, Lowe TM, Tucker JM. WITHDRAWN: Gammaherpesvirus infection alters transfer RNA splicing and triggers tRNA cleavage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.16.580780. [PMID: 38405876 PMCID: PMC10888928 DOI: 10.1101/2024.02.16.580780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The authors have withdrawn this manuscript due to a duplicate posting of manuscript number BIORXIV/2024/592122. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author. The correct preprint can be found at doi: https://doi.org/10.1101/2024.05.01.592122 .
Collapse
|
5
|
Kobayashi H, Yasukochi M, Horie M, Orba Y, Sawa H, Fujino K, Taharaguchi S. Neuron-associated retroelement-derived protein Arc/Arg3.1 assists in the early stages of alphaherpesvirus infection in human neuronal cells. PLoS One 2024; 19:e0314980. [PMID: 39666775 PMCID: PMC11637343 DOI: 10.1371/journal.pone.0314980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV), are neurotropic double-stranded DNA viruses. Alphaherpesviruses control the expression of various host factors to ensure efficient infection and propagation. Recently, HSV-1 was found to upregulate Arc/Arg3.1 (Arc) expression, which is a retroelement-derived domesticated gene. Arc is associated with learning and neuroplasticity in host neuronal cells, and its abnormal expression leads to neurological disorders. However, the detailed mechanisms underlying the upregulation of Arc and its physiological significance in viral infections remain unclear. In this study, we found that PRV infection upregulated Arc expression in vitro and identified ICP0 and EP0, the transcriptional regulatory genes of HSV-1 and PRV, as triggers for enhanced Arc expression. Mass spectrometry and co-immunoprecipitation assays identified VP5, the major capsid protein of PRV and HSV-1, as the viral factor that interacted with Arc. Arc knockdown delayed viral infection during the early stages of the viral life cycle, but did not impact the viral attachment and entry. In conclusion, we provide evidence that alphaherpesvirus ICP0 homologues control Arc expression. Additionally, we demonstrate that Arc interacts with the major capsid protein VP5 and plays an important role in the viral lifecycle after intracellular entry. This study advances our knowledge of herpesvirus and retroelement-derived Arc interactions, providing fundamental insights into the pathogenesis of retroelement-derived domesticated genes and herpesvirus-induced neurological diseases.
Collapse
Affiliation(s)
- Hiroko Kobayashi
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsuki Yasukochi
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Masayuki Horie
- Laboratory of Veterinary Microbiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kan Fujino
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Satoshi Taharaguchi
- Laboratory of Microbiology, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
6
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. eLife 2024; 12:RP90316. [PMID: 38814682 PMCID: PMC11139479 DOI: 10.7554/elife.90316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wild-type human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jessica H Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de MontpellierMontpellierFrance
| | - Jenna M Lentini
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical CenterRochesterUnited States
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of RochesterRochesterUnited States
| |
Collapse
|
7
|
Manning AC, Bashir MM, Jimenez AR, Upton HE, Collins K, Lowe TM, Tucker JM. Gammaherpesvirus infection triggers the formation of tRNA fragments from premature tRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592122. [PMID: 38746336 PMCID: PMC11092647 DOI: 10.1101/2024.05.01.592122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transfer RNAs (tRNAs) are fundamental for both cellular and viral gene expression during viral infection. In addition, mounting evidence supports biological function for tRNA cleavage products, including in the control of gene expression during conditions of stress and infection. We previously reported that infection with the model murine gammaherpesvirus, MHV68, leads to enhanced tRNA transcription. However, whether this has any influence on tRNA transcript processing, viral replication, or the host response is not known. Here, we combined two new approaches, sequencing library preparation by Ordered Two Template Relay (OTTR) and tRNA bioinformatic analysis by tRAX, to quantitatively profile full-length tRNAs and tRNA fragment (tRF) identities during MHV68 infection. We find that MHV68 infection triggers both pre-tRNA and mature tRNA cleavage, resulting in the accumulation of specific tRFs. OTTR-tRAX revealed not only host tRNAome changes, but also the expression patterns of virally-encoded tRNAs (virtRNAs) and virtRFs made from the MHV68 genome, including their base modification signatures. Because the transcript ends of several host tRFs matched tRNA splice junctions, we tested and confirmed the role of tRNA splicing factors TSEN2 and CLP1 in MHV68-induced tRF biogenesis. Further, we show that CLP1 kinase, and by extension tRNA splicing, is required for productive MHV68 infection. Our findings provide new insight into how gammaherpesvirus infection both impacts and relies on tRNA transcription and processing.
Collapse
Affiliation(s)
- Aidan C. Manning
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Mahmoud M. Bashir
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ariana R. Jimenez
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Heather E. Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Todd M. Lowe
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jessica M. Tucker
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
8
|
Dunn LEM, Birkenheuer CH, Baines JD. A Revision of Herpes Simplex Virus Type 1 Transcription: First, Repress; Then, Express. Microorganisms 2024; 12:262. [PMID: 38399666 PMCID: PMC10892140 DOI: 10.3390/microorganisms12020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The herpes virus genome bears more than 80 strong transcriptional promoters. Upon entry into the host cell nucleus, these genes are transcribed in an orderly manner, producing five immediate-early (IE) gene products, including ICP0, ICP4, and ICP22, while non-IE genes are mostly silent. The IE gene products are necessary for the transcription of temporal classes following sequentially as early, leaky late, and true late. A recent analysis using precision nuclear run-on followed by deep sequencing (PRO-seq) has revealed an important step preceding all HSV-1 transcription. Specifically, the immediate-early proteins ICP4 and ICP0 enter the cell with the incoming genome to help preclude the nascent antisense, intergenic, and sense transcription of all viral genes. VP16, which is also delivered into the nucleus upon entry, almost immediately reverses this repression on IE genes. The resulting de novo expression of ICP4 and ICP22 further repress antisense, intergenic, and early and late viral gene transcription through different mechanisms before the sequential de-repression of these gene classes later in infection. This early repression, termed transient immediate-early protein-mediated repression (TIEMR), precludes unproductive, antisense, intergenic, and late gene transcription early in infection to ensure the efficient and orderly progression of the viral cascade.
Collapse
Affiliation(s)
- Laura E M Dunn
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Claire H Birkenheuer
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Joel D Baines
- Baker Institute for Animal Health, Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
9
|
Zhang K, Eldin P, Ciesla JH, Briant L, Lentini JM, Ramos J, Cobb J, Munger J, Fu D. Proteolytic cleavage and inactivation of the TRMT1 tRNA modification enzyme by SARS-CoV-2 main protease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.10.527147. [PMID: 37502865 PMCID: PMC10370084 DOI: 10.1101/2023.02.10.527147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Nonstructural protein 5 (Nsp5) is the main protease of SARS-CoV-2 that cleaves viral polyproteins into individual polypeptides necessary for viral replication. Here, we show that Nsp5 binds and cleaves human tRNA methyltransferase 1 (TRMT1), a host enzyme required for a prevalent post-transcriptional modification in tRNAs. Human cells infected with SARS-CoV-2 exhibit a decrease in TRMT1 protein levels and TRMT1-catalyzed tRNA modifications, consistent with TRMT1 cleavage and inactivation by Nsp5. Nsp5 cleaves TRMT1 at a specific position that matches the consensus sequence of SARS-CoV-2 polyprotein cleavage sites, and a single mutation within the sequence inhibits Nsp5-dependent proteolysis of TRMT1. The TRMT1 cleavage fragments exhibit altered RNA binding activity and are unable to rescue tRNA modification in TRMT1-deficient human cells. Compared to wildtype human cells, TRMT1-deficient human cells infected with SARS-CoV-2 exhibit reduced levels of intracellular viral RNA. These findings provide evidence that Nsp5-dependent cleavage of TRMT1 and perturbation of tRNA modification patterns contribute to the cellular pathogenesis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kejia Zhang
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jessica H. Ciesla
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Jenna M. Lentini
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Jillian Ramos
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Justin Cobb
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dragony Fu
- Department of Biology, Center for RNA Biology, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
10
|
Huang J, Ji X. Never a dull enzyme, RNA polymerase II. Transcription 2023; 14:49-67. [PMID: 37132022 PMCID: PMC10353340 DOI: 10.1080/21541264.2023.2208023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
RNA polymerase II (Pol II) is composed of 12 subunits that collaborate to synthesize mRNA within the nucleus. Pol II is widely recognized as a passive holoenzyme, with the molecular functions of its subunits largely ignored. Recent studies employing auxin-inducible degron (AID) and multi-omics techniques have revealed that the functional diversity of Pol II is achieved through the differential contributions of its subunits to various transcriptional and post-transcriptional processes. By regulating these processes in a coordinated manner through its subunits, Pol II can optimize its activity for diverse biological functions. Here, we review recent progress in understanding Pol II subunits and their dysregulation in diseases, Pol II heterogeneity, Pol II clusters and the regulatory roles of RNA polymerases.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Dunn LEM, Baines JD. Herpes simplex virus 1 immediate early transcription initiation, pause-release, elongation, and termination in the presence and absence of ICP4. J Virol 2023; 97:e0096023. [PMID: 37754762 PMCID: PMC10617507 DOI: 10.1128/jvi.00960-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Infection with herpes simplex virus 1 (HSV-1) leads to lifelong infection due to the virus's remarkable ability to control transcription of its own genome, resulting in two transcriptional programs: lytic (highly active) and latent (restricted). The lytic program requires immediate early (IE) proteins to first repress transcription of late viral genes, which then undergo sequential de-repression, leading to a specific sequence of gene expression. Here, we show that the IE ICP4 functions to regulate the cascade by limiting RNA polymerase initiation at immediate early times. However, late viral genes that initiate too early in the absence of ICP4 do not yield mRNA as transcription stalls within gene bodies. It follows that other regulatory steps intercede to prevent elongation of genes at the incorrect time, demonstrating the precise control HSV-1 exerts over its own transcription.
Collapse
Affiliation(s)
- Laura E. M. Dunn
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Joel D. Baines
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Dremel SE, Jimenez AR, Tucker JM. "Transfer" of power: The intersection of DNA virus infection and tRNA biology. Semin Cell Dev Biol 2023; 146:31-39. [PMID: 36682929 PMCID: PMC10101907 DOI: 10.1016/j.semcdb.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Transfer RNAs (tRNAs) are at the heart of the molecular biology central dogma, functioning to decode messenger RNAs into proteins. As obligate intracellular parasites, viruses depend on the host translation machinery, including host tRNAs. Thus, the ability of a virus to fine-tune tRNA expression elicits the power to impact the outcome of infection. DNA viruses commonly upregulate the output of RNA polymerase III (Pol III)-dependent transcripts, including tRNAs. Decades after these initial discoveries we know very little about how mature tRNA pools change during viral infection, as tRNA sequencing methodology has only recently reached proficiency. Here, we review perturbation of tRNA biogenesis by DNA virus infection, including an emerging player called tRNA-derived fragments (tRFs). We discuss how tRNA dysregulation shifts the power landscape between the host and virus, highlighting the potential for tRNA-based antivirals as a future therapeutic.
Collapse
Affiliation(s)
- Sarah E Dremel
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ariana R Jimenez
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Jessica M Tucker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Dremel SE, Tagawa T, Koparde VN, Arbuckle JH, Kristie TM, Krug LT, Ziegelbauer JM. Interferon induced circRNAs escape herpesvirus host shutoff and suppress lytic infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556698. [PMID: 37886542 PMCID: PMC10602050 DOI: 10.1101/2023.09.07.556698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A first line of defense during infection is expression of interferon (IFN)-stimulated gene products which suppress viral lytic infection. To combat this, herpesviruses express endoribonucleases to deplete host RNAs. Here we demonstrate that IFN-induced circular RNAs (circRNAs) can escape viral-mediated degradation. We performed comparative circRNA expression profiling for representative alpha- (Herpes simplex virus-1, HSV-1), beta- (human cytomegalovirus, HCMV), and gamma-herpesviruses (Kaposi sarcoma herpesvirus, KSHV; murine gamma-herpesvirus 68, MHV68). Strikingly, we found that circRNAs are, as a population, resistant to host shutoff. This observation was confirmed by ectopic expression assays of human and murine herpesvirus endoribonucleases. During primary lytic infection, ten circRNAs were commonly regulated across all subfamilies of human herpesviruses, suggesting a common mechanism of regulation. We tested one such mechanism, namely how interferon-stimulation influences circRNA expression. 67 circRNAs were upregulated by either IFN-β or -γ treatment, with half of these also upregulated during lytic infection. Using gain and loss of function studies we found an interferon-stimulated circRNA, circRELL1, inhibited lytic HSV-1 infection. We have previously reported circRELL1 inhibits lytic KSHV infection, suggesting a pan-herpesvirus antiviral activity. We propose a two-pronged model in which interferon-stimulated genes may encode both mRNA and circRNA with antiviral activity. This is critical in cases of host shutoff, such as alpha- and gamma-herpesvirus infection, where the mRNA products are degraded but circRNAs escape.
Collapse
Affiliation(s)
- Sarah E. Dremel
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, United States
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, United States
| | - Vishal N. Koparde
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Jesse H. Arbuckle
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Thomas M. Kristie
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, United States
| | - Joseph M. Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
14
|
Zhou S, Van Bortle K. The Pol III transcriptome: Basic features, recurrent patterns, and emerging roles in cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1782. [PMID: 36754845 PMCID: PMC10498592 DOI: 10.1002/wrna.1782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
The RNA polymerase III (Pol III) transcriptome is universally comprised of short, highly structured noncoding RNA (ncRNA). Through RNA-protein interactions, the Pol III transcriptome actuates functional activities ranging from nuclear gene regulation (7SK), splicing (U6, U6atac), and RNA maturation and stability (RMRP, RPPH1, Y RNA), to cytoplasmic protein targeting (7SL) and translation (tRNA, 5S rRNA). In higher eukaryotes, the Pol III transcriptome has expanded to include additional, recently evolved ncRNA species that effectively broaden the footprint of Pol III transcription to additional cellular activities. Newly evolved ncRNAs function as riboregulators of autophagy (vault), immune signaling cascades (nc886), and translation (Alu, BC200, snaR). Notably, upregulation of Pol III transcription is frequently observed in cancer, and multiple ncRNA species are linked to both cancer progression and poor survival outcomes among cancer patients. In this review, we outline the basic features and functions of the Pol III transcriptome, and the evidence for dysregulation and dysfunction for each ncRNA in cancer. When taken together, recurrent patterns emerge, ranging from shared functional motifs that include molecular scaffolding and protein sequestration, overlapping protein interactions, and immunostimulatory activities, to the biogenesis of analogous small RNA fragments and noncanonical miRNAs, augmenting the function of the Pol III transcriptome and further broadening its role in cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Processing of Small RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Sihang Zhou
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kevin Van Bortle
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Naesens L, Haerynck F, Gack MU. The RNA polymerase III-RIG-I axis in antiviral immunity and inflammation. Trends Immunol 2023; 44:435-449. [PMID: 37149405 PMCID: PMC10461603 DOI: 10.1016/j.it.2023.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Nucleic acid sensors survey subcellular compartments for atypical or mislocalized RNA or DNA, ultimately triggering innate immune responses. Retinoic acid-inducible gene-I (RIG-I) is part of the family of cytoplasmic RNA receptors that can detect viruses. A growing literature demonstrates that mammalian RNA polymerase III (Pol III) transcribes certain viral or cellular DNA sequences into immunostimulatory RIG-I ligands, which elicits antiviral or inflammatory responses. Dysregulation of the Pol III-RIG-I sensing axis can lead to human diseases including severe viral infection outcomes, autoimmunity, and tumor progression. Here, we summarize the newly emerging role of viral and host-derived Pol III transcripts in immunity and also highlight recent advances in understanding how mammalian cells prevent unwanted immune activation by these RNAs to maintain homeostasis.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
| |
Collapse
|
16
|
Ren D, Mo Y, Yang M, Wang D, Wang Y, Yan Q, Guo C, Xiong W, Wang F, Zeng Z. Emerging roles of tRNA in cancer. Cancer Lett 2023; 563:216170. [PMID: 37054943 DOI: 10.1016/j.canlet.2023.216170] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Transfer RNAs (tRNAs) play pivotal roles in the transmission of genetic information, and abnormality of tRNAs directly leads to translation disorders and causes diseases, including cancer. The complex modifications enable tRNA to execute its delicate biological function. Alteration of appropriate modifications may affect the stability of tRNA, impair its ability to carry amino acids, and disrupt the pairing between anticodons and codons. Studies confirmed that dysregulation of tRNA modifications plays an important role in carcinogenesis. Furthermore, when the stability of tRNA is impaired, tRNAs are cleaved into small tRNA fragments (tRFs) by specific RNases. Though tRFs have been found to play vital regulatory roles in tumorigenesis, its formation process is far from clear. Understanding improper tRNA modifications and abnormal formation of tRFs in cancer is conducive to uncovering the role of metabolic process of tRNA under pathological conditions, which may open up new avenues for cancer prevention and treatment.
Collapse
Affiliation(s)
- Daixi Ren
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China; Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.
| |
Collapse
|
17
|
Lari A, Glaunsinger BA. Murine Gammaherpesvirus 68 ORF45 Stimulates B2 Retrotransposon and Pre-tRNA Activation in a Manner Dependent on Mitogen-Activated Protein Kinase (MAPK) Signaling. Microbiol Spectr 2023; 11:e0017223. [PMID: 36752632 PMCID: PMC10100704 DOI: 10.1128/spectrum.00172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 02/09/2023] Open
Abstract
RNA polymerase III (RNAPIII) transcribes a variety of noncoding RNAs, including tRNA (tRNA) and the B2 family of short interspersed nuclear elements (SINEs). B2 SINEs are noncoding retrotransposons that possess tRNA-like promoters and are normally silenced in healthy somatic tissue. Infection with the murine gammaherpesvirus MHV68 induces transcription of both SINEs and tRNAs, in part through the activity of the viral protein kinase ORF36. Here, we identify the conserved MHV68 tegument protein ORF45 as an additional activator of these RNAPIII loci. MHV68 ORF45 and ORF36 form a complex, resulting in an additive induction RNAPIII and increased ORF45 expression. ORF45-induced RNAPIII transcription is dependent on its activation of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway, which in turn increases the abundance of the RNAPIII transcription factor Brf1. Other viral and nonviral activators of MAPK/ERK signaling also increase the levels of Brf1 protein, B2 SINE RNA, and tRNA, suggesting that this is a common strategy to increase RNAPIII activity. IMPORTANCE Gammaherpesviral infection alters the gene expression landscape of a host cell, including through the induction of noncoding RNAs transcribed by RNA polymerase III (RNAPIII). Among these are a class of repetitive genes known as retrotransposons, which are normally silenced elements and can copy and spread throughout the genome, and transfer RNAs (tRNAs), which are fundamental components of protein translation machinery. How these loci are activated during infection is not well understood. Here, we identify ORF45 from the model murine gammaherpesvirus MHV68 as a novel activator of RNAPIII transcription. To do so, it engages the MAPK/ERK signaling pathway, which is a central regulator of cellular response to environmental stimuli. Activation of this pathway leads to the upregulation of a key factor required for RNAPIII activity, Brf1. These findings expand our understanding of the regulation and dysregulation of RNAPIII transcription and highlight how viral cooption of key signaling pathways can impact host gene expression.
Collapse
Affiliation(s)
- Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Britt A. Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, USA
- Howard Hughes Medical Institute, Berkeley, California, USA
| |
Collapse
|
18
|
Friedl MS, Djakovic L, Kluge M, Hennig T, Whisnant AW, Backes S, Dölken L, Friedel CC. HSV-1 and influenza infection induce linear and circular splicing of the long NEAT1 isoform. PLoS One 2022; 17:e0276467. [PMID: 36279270 PMCID: PMC9591066 DOI: 10.1371/journal.pone.0276467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus 1 (HSV-1) virion host shut-off (vhs) protein cleaves both cellular and viral mRNAs by a translation-initiation-dependent mechanism, which should spare circular RNAs (circRNAs). Here, we show that vhs-mediated degradation of linear mRNAs leads to an enrichment of circRNAs relative to linear mRNAs during HSV-1 infection. This was also observed in influenza A virus (IAV) infection, likely due to degradation of linear host mRNAs mediated by the IAV PA-X protein and cap-snatching RNA-dependent RNA polymerase. For most circRNAs, enrichment was not due to increased circRNA synthesis but due to a general loss of linear RNAs. In contrast, biogenesis of a circRNA originating from the long isoform (NEAT1_2) of the nuclear paraspeckle assembly transcript 1 (NEAT1) was induced both in HSV-1 infection-in a vhs-independent manner-and in IAV infection. This was associated with induction of novel linear splicing of NEAT1_2 both within and downstream of the circRNA. NEAT1_2 forms a scaffold for paraspeckles, nuclear bodies located in the interchromatin space, must likely remain unspliced for paraspeckle assembly and is up-regulated in HSV-1 and IAV infection. We show that NEAT1_2 splicing and up-regulation can be induced by ectopic co-expression of the HSV-1 immediate-early proteins ICP22 and ICP27, potentially linking increased expression and splicing of NEAT1_2. To identify other conditions with NEAT1_2 splicing, we performed a large-scale screen of published RNA-seq data. This uncovered both induction of NEAT1_2 splicing and poly(A) read-through similar to HSV-1 and IAV infection in cancer cells upon inhibition or knockdown of CDK7 or the MED1 subunit of the Mediator complex phosphorylated by CDK7. In summary, our study reveals induction of novel circular and linear NEAT1_2 splicing isoforms as a common characteristic of HSV-1 and IAV infection and highlights a potential role of CDK7 in HSV-1 or IAV infection.
Collapse
Affiliation(s)
- Marie-Sophie Friedl
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Adam W. Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Simone Backes
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
19
|
Rodriguez W, Muller M. Shiftless, a Critical Piece of the Innate Immune Response to Viral Infection. Viruses 2022; 14:1338. [PMID: 35746809 PMCID: PMC9230503 DOI: 10.3390/v14061338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Since its initial characterization in 2016, the interferon stimulated gene Shiftless (SHFL) has proven to be a critical piece of the innate immune response to viral infection. SHFL expression stringently restricts the replication of multiple DNA, RNA, and retroviruses with an extraordinary diversity of mechanisms that differ from one virus to the next. These inhibitory strategies include the negative regulation of viral RNA stability, translation, and even the manipulation of RNA granule formation during viral infection. Even more surprisingly, SHFL is the first human protein found to directly inhibit the activity of the -1 programmed ribosomal frameshift, a translation recoding strategy utilized across nearly all domains of life and several human viruses. Recent literature has shown that SHFL expression also significantly impacts viral pathogenesis in mouse models, highlighting its in vivo efficacy. To help reconcile the many mechanisms by which SHFL restricts viral replication, we provide here a comprehensive review of this complex ISG, its influence over viral RNA fate, and the implications of its functions on the virus-host arms race for control of the cell.
Collapse
Affiliation(s)
| | - Mandy Muller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
20
|
Ball CB, Parida M, Li M, Spector BM, Suarez GA, Meier JL, Price DH. Human Cytomegalovirus Infection Elicits Global Changes in Host Transcription by RNA Polymerases I, II, and III. Viruses 2022; 14:v14040779. [PMID: 35458509 PMCID: PMC9026722 DOI: 10.3390/v14040779] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
How human cytomegalovirus (HCMV) infection impacts the transcription of the host genome remains incompletely understood. Here, we examine the global consequences of infection of primary human foreskin fibroblasts (HFFs) on transcription by RNA polymerase I, II, and III over the course of a lytic infection using PRO-Seq. The expected rapid induction of innate immune response genes is observed with specific subsets of genes exhibiting dissimilar expression kinetics. We find minimal effects on Pol II initiation, but increased rates of the release of paused Pol II into productive elongation are detected by 24 h postinfection and pronounced at late times postinfection. Pol I transcription increases during infection and we provide evidence for a potential Pol I elongation control mechanism. Pol III transcription of tRNA genes is dramatically altered, with many induced and some repressed. All effects are partially dependent on viral genome replication, suggesting a link to viral mRNA levels and/or a viral early–late or late gene product. Changes in tRNA transcription are connected to distinct alterations in the chromatin state around tRNA genes, which were probed with high-resolution DFF-ChIP. Additionally, evidence is provided that the Pol III PIC stably contacts an upstream −1 nucleosome. Finally, we compared and contrasted our HCMV data with results from published experiments with HSV-1, EBV, KSHV, and MHV68. We report disparate effects on Pol II transcription and potentially similar effects on Pol III transcription.
Collapse
Affiliation(s)
- Christopher B. Ball
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Mrutyunjaya Parida
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA 52242, USA; (M.L.); (J.L.M.)
| | - Benjamin M. Spector
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Gustavo A. Suarez
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, IA 52242, USA; (M.L.); (J.L.M.)
| | - David H. Price
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242, USA; (C.B.B.); (M.P.); (B.M.S.); (G.A.S.)
- Correspondence:
| |
Collapse
|