1
|
Quirin S. Compact module for video-rate image mosaics in two-photon microscopy. OPTICS EXPRESS 2025; 33:1647-1659. [PMID: 39876333 PMCID: PMC12011383 DOI: 10.1364/oe.544906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/30/2025]
Abstract
Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design. To address this, the use of a liquid crystal polarization grating stack is proposed here to temporally sequence through multiple fields of view. This solution pans the native field of view with minimal latency and zero inertial movement of either the microscope or biological sample. Implemented as a simple add-on unit to existing multi-photon microscopes, this device increases the total field size by 4x, covering up to 7.6mm2. Performance constraints and functional demonstration of imaging neural activity are presented.
Collapse
Affiliation(s)
- Sean Quirin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Li H, Lu Q, Wang Z, Zhang W, Wu Y, Sun Y, Hu Y, Xiao L, Zhong D, Deng S, Hou S. Three-dimensional random-access confocal microscopy with 3D remote focusing system. COMMUNICATIONS ENGINEERING 2024; 3:166. [PMID: 39528669 PMCID: PMC11555065 DOI: 10.1038/s44172-024-00320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Understanding biological activities in cells or deep tissues requires high-speed three-dimensional (3D) imaging. Substantial progress has been made with the emergence of 3D random-access microscopy. However, current solutions for fast 3D random-access imaging remain complex and costly. Herein we propose a simple, cost-effective, and fast 3D random-access confocal microscopy with remote focusing system. Our system shows isotropic response times across the x, y, and z axes, with a 34-fold improvement in axial response time over traditional piezo stages. We demonstrate its volumetric imaging performance with fluorescent particles and live cells. Furthermore, we validate the 3D random-access imaging capability of this system by continuously monitoring the signals in three different planes, showing a refresh rate of 500 Hz on two different positions in 3D. The simplicity, versatility, and affordability of our system promise widespread applications in research and industry.
Collapse
Affiliation(s)
- Haoyang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhong Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenbo Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Yu Wu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yandong Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Yue Hu
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Lehui Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Suhui Deng
- School of Information Engineering, Nanchang University, Nanchang, China.
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Deng P, Liu S, Zhao Y, Zhang X, Kong Y, Liu L, Xiao Y, Yang S, Hu J, Su J, Xuan A, Xu J, Li H, Su X, Wu J, Jiang Y, Mu Y, Shao Z, Kong C, Li B. Long-working-distance high-collection-efficiency three-photon microscopy for in vivo long-term imaging of zebrafish and organoids. iScience 2024; 27:110554. [PMID: 39184441 PMCID: PMC11342284 DOI: 10.1016/j.isci.2024.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/31/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Zebrafish and organoids, crucial for complex biological studies, necessitate an imaging system with deep tissue penetration, sample protection from environmental interference, and ample operational space. Traditional three-photon microscopy is constrained by short-working-distance objectives and falls short. Our long-working-distance high-collection-efficiency three-photon microscopy (LH-3PM) addresses these challenges, achieving a 58% fluorescence collection efficiency at a 20 mm working distance. LH-3PM significantly outperforms existing three-photon systems equipped with the same long working distance objective, enhancing fluorescence collection and dramatically reducing phototoxicity and photobleaching. These improvements facilitate accurate capture of neuronal activity and an enhanced detection of activity spikes, which are vital for comprehensive, long-term imaging. LH-3PM's imaging of epileptic zebrafish not only showed sustained neuron activity over an hour but also highlighted increased neural synchronization and spike numbers, marking a notable shift in neural coding mechanisms. This breakthrough paves the way for new explorations of biological phenomena in small model organisms.
Collapse
Affiliation(s)
- Peng Deng
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Shoupei Liu
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Yaoguang Zhao
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Xinxin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yufei Kong
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Linlin Liu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Yujie Xiao
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Shasha Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jiahao Hu
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Jixiong Su
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Ang Xuan
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Jinhong Xu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Huijuan Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoman Su
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, MOE Frontiers Center for Brain Science, Department of Neurology of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchuan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuli Jiang
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhicheng Shao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children’s Medical Center, Children’s Hospital, Fudan University, Shanghai 200032, China
| | - Cihang Kong
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Bo Li
- Department of Neurosurgery, Huashan Hospital, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institutes for Translational Brain Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Yan F, Alhajeri ZA, Nyul-Toth A, Wang C, Zhang Q, Mercyshalinie ERS, Delfavero J, Ahire C, Mutembei BM, Tarantini S, Csiszar A, Tang Q. Dimension-based quantification of aging-associated cerebral microvasculature determined by optical coherence tomography and two-photon microscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300409. [PMID: 38176434 PMCID: PMC10961197 DOI: 10.1002/jbio.202300409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/18/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
Cerebral microvascular health is a key biomarker for the study of natural aging and associated neurological diseases. Our aim is to quantify aging-associated change of microvasculature at diverse dimensions in mice brain. We used optical coherence tomography (OCT) and two-photon microscopy (TPM) to obtain nonaged and aged C57BL/6J mice cerebral microvascular images in vivo. Our results indicated that artery & vein, arteriole & venule, and capillary from nonaged and aged mice showed significant differences in density, diameter, complexity, perimeter, and tortuosity. OCT angiography and TPM provided the comprehensive quantification for arteriole and venule via compensating the limitation of each modality alone. We further demonstrated that arteriole and venule at specific dimensions exhibited negative correlations in most quantification analyses between nonaged and aged mice, which indicated that TPM and OCT were able to offer complementary vascular information to study the change of cerebral blood vessels in aging.
Collapse
Affiliation(s)
- Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Zaid A. Alhajeri
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Chen Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Qinghao Zhang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | | | - Jordan Delfavero
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Chetan Ahire
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Bornface M. Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration, and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
5
|
Tian T, Fang Y, Wang W, Yang M, Tan Y, Xu C, Zhang S, Chen Y, Xu M, Cai B, Wu WQ. Durable organic nonlinear optical membranes for thermotolerant lightings and in vivo bioimaging. Nat Commun 2023; 14:4429. [PMID: 37481653 PMCID: PMC10363139 DOI: 10.1038/s41467-023-40168-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/14/2023] [Indexed: 07/24/2023] Open
Abstract
Organic nonlinear optical materials have potential in applications such as lightings and bioimaging, but tend to have low photoluminescent quantum yields and are prone to lose the nonlinear optical activity. Herein, we demonstrate to weave large-area, flexible organic nonlinear optical membranes composed of 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate@cyclodextrin host-guest supramolecular complex. These membranes exhibited a record high photoluminescence quantum yield of 73.5%, and could continuously emit orange luminescence even being heated at 300 °C, thus enabling the fabrication of thermotolerant light-emitting diodes. The nonlinear optical property of these membranes can be well-preserved even in polar environment. The supramolecular assemblies with multiphoton absorption characteristics were used for in vivo real-time imaging of Escherichia coli at 1000 nm excitation. These findings demonstrate to achieve scalable fabrication of organic nonlinear optical materials with high photoluminescence quantum yields, and good stability against thermal stress and polar environment for high-performance, durable optoelectronic devices and humanized multiphoton bio-probes.
Collapse
Affiliation(s)
- Tian Tian
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuxuan Fang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenhui Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Meifang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Ying Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chuan Xu
- Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuo Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuxin Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Mingyi Xu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bin Cai
- Shanghai Key Lab of Modern Optical System, Ministry of Education, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Wu-Qiang Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
6
|
Li H, Heydari E, Li Y, Xu H, Xu S, Chen L, Bai G. Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13010219. [PMID: 36616129 PMCID: PMC9824890 DOI: 10.3390/nano13010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 05/14/2023]
Abstract
Owing to its high reliability and accuracy, the ratiometric luminescent thermometer can provide non-contact and fast temperature measurements. In particular, the nanomaterials doped with lanthanide ions can achieve multi-mode luminescence and temperature measurement by modifying the type of doped ions and excitation light source. The better penetration of the near-infrared (NIR) photons can assist bio-imaging and replace thermal vision cameras for photothermal imaging. In this work, we prepared core-shell cubic phase nanomaterials doped with lanthanide ions, with Ba2LuF7 doped with Er3+/Yb3+/Nd3+ as the core and Ba2LaF7 as the coating shell. The nanoparticles were designed according to the passivation layer to reduce the surface energy loss and enhance the emission intensity. Green upconversion luminescence can be observed under both 980 nm and 808 nm excitation. A single and strong emission band can be obtained under 980 nm excitation, while abundant and weak emission bands appear under 808 nm excitation. Meanwhile, multi-mode ratiometric optical thermometers were achieved by selecting different emission peaks in the NIR window under 808 nm excitation for non-contact temperature measurement at different tissue depths. The results suggest that our core-shell NIR nanoparticles can be used to assist bio-imaging and record temperature for biomedicine.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Esmaeil Heydari
- Nanophotonic Sensors & Optofluidics Lab., Faculty of Physics, Kharazmi University, Tehran 15719-14911, Iran
| | - Yinyan Li
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| | - Hui Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Shiqing Xu
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
| | - Liang Chen
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| | - Gongxun Bai
- Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310018, China
- Correspondence: (Y.L.); (L.C.); (G.B.)
| |
Collapse
|
7
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|