1
|
Todd TD, Vithani N, Singh S, Bowman GR, Blumer KJ, Soranno A. Stabilization of interdomain closure by a G protein inhibitor. Proc Natl Acad Sci U S A 2024; 121:e2311711121. [PMID: 39196624 PMCID: PMC11388362 DOI: 10.1073/pnas.2311711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.
Collapse
Affiliation(s)
- Tyson D Todd
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130
| |
Collapse
|
2
|
Shen S, Wang D, Liu H, He X, Cao Y, Chen J, Li S, Cheng X, Xu HE, Duan J. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor. Cell Rep 2024; 43:114389. [PMID: 38935498 DOI: 10.1016/j.celrep.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/25/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
Kisspeptin signaling through its G protein-coupled receptor, KISS1R, plays an indispensable role in regulating reproduction via the hypothalamic-pituitary-gonadal axis. Dysregulation of this pathway underlies severe disorders like infertility and precocious puberty. Here, we present cryo-EM structures of KISS1R bound to the endogenous agonist kisspeptin-10 and a synthetic analog TAK-448. These structures reveal pivotal interactions between peptide ligands and KISS1R extracellular loops for receptor activation. Both peptides exhibit a conserved binding mode, unveiling their common activation mechanism. Intriguingly, KISS1R displays a distinct 40° angular deviation in its intracellular TM6 region compared to other Gq-coupled receptors, enabling distinct interactions with Gq. This study reveals the molecular intricacies governing ligand binding and activation of KISS1R, while highlighting its exceptional ability to couple with Gq. Our findings pave the way for structure-guided design of therapeutics targeting this physiologically indispensable receptor.
Collapse
Affiliation(s)
- Shiyi Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxue Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Heng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinheng He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinglong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Juanhua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shujie Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xi Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Jia Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Cui Y, Auclair H, He R, Zhang Q. GPCR-mediated regulation of beige adipocyte formation: Implications for obesity and metabolic health. Gene 2024; 915:148421. [PMID: 38561165 DOI: 10.1016/j.gene.2024.148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Obesity and its associated complications pose a significant burden on health. The non-shivering thermogenesis (NST) and metabolic capacity properties of brown adipose tissue (BAT), which are distinct from those of white adipose tissue (WAT), in combating obesity and its related metabolic diseases has been well documented. However, beige adipose tissue, the third and relatively novel type of adipose tissue, which emerges in extensive presence of WAT and shares similar favorable metabolic properties with BAT, has garnered considerable attention in recent years. In this review, we focused on the role of G protein-coupled receptors (GPCRs), the largest receptor family and the most successful class of drug targets in humans, in the induction of beige adipocytes. More importantly, we highlight researchers' clinical treatment attempts to ameliorate obesity and other related metabolic diseases through the formation and activation of beige adipose tissue. In summary, this review provides valuable insights into the formation of beige adipose tissue and the involvement of GPCRs, based on the latest advancements in scientific research.
Collapse
Affiliation(s)
- Yuanxu Cui
- Animal Zoology Department, Kunming Medical University, Kunming, China; Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hugo Auclair
- Faculty of Medicine, François-Rabelais University, Tours, France
| | - Rong He
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Qiang Zhang
- Animal Zoology Department, Kunming Medical University, Kunming, China.
| |
Collapse
|
4
|
Porebski G, Dziadowiec A, Rybka H, Kitel R, Kwitniewski M. Mast cell degranulation and bradykinin-induced angioedema - searching for the missing link. Front Immunol 2024; 15:1399459. [PMID: 38812508 PMCID: PMC11133555 DOI: 10.3389/fimmu.2024.1399459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
Initiation of the bradykinin generation cascade is responsible for the occurrence of attacks in some types of angioedema without wheals. Hereditary angioedema due to C1 inhibitor deficiency (HAE-C1-INH) is one such clinical entity. In this paper, we explore the existing evidence that mast cells (MCs) degranulation may contribute to the activation of the kallikrein-kinin system cascade, followed by bradykinin formation and angioedema. We present the multidirectional effects of MC-derived heparin and other polyanions on the major components of the kinin-kallikrein system, particularly on the factor XII activation. Although, bradykinin- and histamine-mediated symptoms are distinct clinical phenomena, they share some common features, such as some similar triggers and a predilection to occur at sites where mast cells reside, namely the skin and mucous membranes. In addition, recent observations indicate a high incidence of hypersensitivity reactions associated with MC degranulation in the HAE-C1-INH patient population. However, not all of these can be explained by IgE-dependent mechanisms. Mast cell-related G protein-coupled receptor-X2 (MRGPRX2), which has recently attracted scientific interest, may be involved in the activation of MCs through a different pathway. Therefore, we reviewed MRGPRX2 ligands that HAE-C1-INH patients may be exposed to in their daily lives and that may affect MCs degranulation. We also discussed the known inter- and intra-individual variability in the course of HAE-C1-INH in relation to factors responsible for possible variability in the strength of the response to MRGPRX2 receptor stimulation. The above issues raise several questions for future research. It is not known to what extent a prophylactic or therapeutic intervention targeting the pathways of one mechanism (mast cell degranulation) may affect the other (bradykinin production), or whether the number of mast cells at a specific body site and their reactivity to triggers such as pressure, allergens or MRGPRX2 agonists may influence the occurrence of HAE-C1-INH attacks at that site.
Collapse
Affiliation(s)
- Grzegorz Porebski
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
| | - Alicja Dziadowiec
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Krakow, Poland
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Hubert Rybka
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Mateusz Kwitniewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
5
|
Wisniewski P, Gangnus T, Burckhardt BB. Recent advances in the discovery and development of drugs targeting the kallikrein-kinin system. J Transl Med 2024; 22:388. [PMID: 38671481 PMCID: PMC11046790 DOI: 10.1186/s12967-024-05216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The kallikrein-kinin system is a key regulatory cascade involved in blood pressure maintenance, hemostasis, inflammation and renal function. Currently, approved drugs remain limited to the rare disease hereditary angioedema. However, growing interest in this system is indicated by an increasing number of promising drug candidates for further indications. METHODS To provide an overview of current drug development, a two-stage literature search was conducted between March and December 2023 to identify drug candidates with targets in the kallikrein-kinin system. First, drug candidates were identified using PubMed and Clinicaltrials.gov. Second, the latest publications/results for these compounds were searched in PubMed, Clinicaltrials.gov and Google Scholar. The findings were categorized by target, stage of development, and intended indication. RESULTS The search identified 68 drugs, of which 10 are approved, 25 are in clinical development, and 33 in preclinical development. The three most studied indications included diabetic retinopathy, thromboprophylaxis and hereditary angioedema. The latter is still an indication for most of the drug candidates close to regulatory approval (3 out of 4). For the emerging indications, promising new drug candidates in clinical development are ixodes ricinus-contact phase inhibitor for thromboprophylaxis and RZ402 and THR-149 for the treatment of diabetic macular edema (all phase 2). CONCLUSION The therapeutic impact of targeting the kallikrein-kinin system is no longer limited to the treatment of hereditary angioedema. Ongoing research on other diseases demonstrates the potential of therapeutic interventions targeting the kallikrein-kinin system and will provide further treatment options for patients in the future.
Collapse
Affiliation(s)
- Petra Wisniewski
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Tanja Gangnus
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany
| | - Bjoern B Burckhardt
- Individualized Pharmacotherapy, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstr. 48, 48149, Münster, Germany.
| |
Collapse
|
6
|
Culhuac EB, Bello M. Evaluation of Urtica dioica Phytochemicals against Therapeutic Targets of Allergic Rhinitis Using Computational Studies. Molecules 2024; 29:1765. [PMID: 38675586 PMCID: PMC11052477 DOI: 10.3390/molecules29081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Allergic rhinitis (AR) is a prevalent inflammatory condition affecting millions globally, with current treatments often associated with significant side effects. To seek safer and more effective alternatives, natural sources like Urtica dioica (UD) are being explored. However, UD's mechanism of action remains unknown. Therefore, to elucidate it, we conducted an in silico evaluation of UD phytochemicals' effects on known therapeutic targets of allergic rhinitis: histamine receptor 1 (HR1), neurokinin 1 receptor (NK1R), cysteinyl leukotriene receptor 1 (CLR1), chemoattractant receptor-homologous molecule expressed on type 2 helper T cells (CRTH2), and bradykinin receptor type 2 (BK2R). The docking analysis identified amentoflavone, alpha-tocotrienol, neoxanthin, and isorhamnetin 3-O-rutinoside as possessing a high affinity for all the receptors. Subsequently, molecular dynamics (MD) simulations were used to analyze the key interactions; the free energy of binding was calculated through Generalized Born and Surface Area Solvation (MMGBSA), and the conformational changes were evaluated. Alpha-tocotrienol exhibited a high affinity while also inducing positive conformational changes across all targets. Amentoflavone primarily affected CRTH2, neoxanthin targeted NK1R, CRTH2, and BK2R, and isorhamnetin-3-O-rutinoside acted on NK1R. These findings suggest UD's potential to treat AR symptoms by inhibiting these targets. Notably, alpha-tocotrienol emerges as a promising multi-target inhibitor. Further in vivo and in vitro studies are needed for validation.
Collapse
Affiliation(s)
- Erick Bahena Culhuac
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca 50000, Mexico
| | - Martiniano Bello
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| |
Collapse
|
7
|
Greive SJ, Bacri L, Cressiot B, Pelta J. Identification of Conformational Variants for Bradykinin Biomarker Peptides from a Biofluid Using a Nanopore and Machine Learning. ACS NANO 2024; 18:539-550. [PMID: 38134312 DOI: 10.1021/acsnano.3c08433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
There is a current need to develop methods for the sensitive detection of peptide biomarkers in complex mixtures of molecules, such as biofluids, to enable early disease detection. Moreover, to our knowledge, there is currently no detection method capable of identifying the different conformations of a peptide biomarker differing by a single amino acid. Single-molecule nanopore sensing promises to provide this level of resolution. In order to be able to identify these differences in a biofluid such as serum, it is necessary to carefully characterize electrical parameters to obtain specific signatures of each biomarker population observed. We are interested here in a family of peptide biomarkers, kinins such as bradykinin and des-Arg9 bradykinin, that are involved in many disabling pathologies (allergy, asthma, angioedema, sepsis, or cancer). We show the proof of concept for direct identification of these biomarkers in serum at the single-molecule level using a protein nanopore. Each peptide exhibits two unique electrical signatures attributed to specific conformations in bulk. The same signatures are found in serum, allowing their discrimination and identification in a complex mixture such as biofluid. To extend the utility of our experimental results, we developed a principal component analysis approach to define the most relevant electrical parameters for their identification. Finally, we used semisupervised classification to assign each event type to a specific biomarker at physiological serum concentration. In the future, single-molecule scale analysis of peptide biomarkers using a powerful nanopore coupled with machine learning will facilitate the identification and quantification of other clinically relevant biomarkers from biofluids.
Collapse
Affiliation(s)
| | - Laurent Bacri
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Benjamin Cressiot
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, F-95000 Cergy, France
| |
Collapse
|
8
|
Sychev IV, Denisenko NP, Kachanova AA, Lapshtaeva AV, Abdullaev SP, Goncharova LN, Mirzaev KB, Sychev DA. Pharmacogenetic markers of development of angioneurotic edema as a secondary side effect to enalapril in patients with essential arterial hypertension. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2024; 35:37-47. [PMID: 37742663 DOI: 10.3233/jrs-230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Angioneurotic edema is the most dangerous complication in angiotensin-converting enzyme inhibitors (ACEIs) therapy. Based on the current data, the clinical and genetic predictors of angioedema development are still understudied, which demonstrates the relevance of this study. OBJECTIVE To reveal the pharmacogenetic predictors of the angioedema as a secondary side effect to enalapril in patients with essential arterial hypertension. METHODS The study enrolled 111 subjects randomized into two groups: study group, patients with the angioedema as a secondary side effect to enalapril; and control group, patients without adverse drug reaction. All patients underwent pharmacogenetic testing. RESULTS An association between the development of the angioneurotic edema and the genotypes AA rs2306283 of gene SLCO1B1, TT rs4459610 of gene ACE, and CC rs1799722 of gene BDKRB2 in patients was revealed. CONCLUSION The findings justify further investigations of the revealed genetic predictors of angioedema with larger-size patient populations.
Collapse
Affiliation(s)
- Ivan V Sychev
- Department of Faculty Therapy, Ogarev Mordovia State University, Saransk, Russian Federation
| | - Natalia P Denisenko
- Research Institute of Molecular and Personalized Medicine, Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Anastasiya A Kachanova
- Predictive and Prognostic Biomarkers Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Anna V Lapshtaeva
- Department of Immunology, Microbiology and Virology, Ogarev Mordovia State University, Saransk, Russian Federation
| | - Sherzod P Abdullaev
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Ludmila N Goncharova
- Department of Faculty Therapy, Ogarev Mordovia State University, Saransk, Russian Federation
| | - Karin B Mirzaev
- Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| | - Dmitry A Sychev
- Clinical Pharmacology and Therapy Department named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russian Federation
| |
Collapse
|
9
|
Sychev IV, Denisenko NP, Kachanova AA, Lapshtaeva AV, Goncharova LN, Mirzaev KB, Sychev DA. Pharmacogenetic predictors of development of secondary to enalapril dry cough in hypertensive patients. Drug Metab Pers Ther 2023; 38:247-254. [PMID: 37201212 DOI: 10.1515/dmpt-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/25/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES Development of the secondary to ACEI cough leads to discontinuation of the drugs of this group. Assessing the safety of the ACEIs with further development of customized approaches for their administration is a major scientific and practical problem. The objective of this study was to assess the association of the genetic markers with the development of the adverse drug reaction in the form of secondary to enalapril dry cough in the patients with essential arterial hypertension. METHODS Study involved 113 patients with the secondary to enalapril cough and 104 patients without development of the secondary to enalapril adverse drug reaction. RESULTS The patients carriers of the genotype AA rs2306283 of gene SLCO1B1 had 2-fold higher odds of developing the dry cough than those with the genotypes AG and GG (ОR=2.01, 95%CI=1.10-3.66, р=0.023). Similarly, the patients heterozygous for rs8176746 of gene АВО had 2.3-fold higher odds of developing the ADR in the form of dry cough than the carriers of the genotypes GG and TT (ОR=2.30, 95%CI=1.24-4.29, р=0.008). CONCLUSIONS Statistically significant association between the development of the ADR in the form of secondary to enalapril dry cough and polymorphisms rs2306283 of gene SLCO1B1 and rs8176746 of gene ABO was revealed.
Collapse
Affiliation(s)
- Ivan V Sychev
- Department of Faculty Therapy with Courses of Physiotherapy, Physical Therapy, Ogarev Mordovia State University, Saransk, Russian Federation
- 68, Bolshevitskaya Street, Saransk, Republic of Mordovia, 430005, Russia
| | - Natalia P Denisenko
- Research Institute of Molecular and Personalized Medicine, Department of Clinical Pharmacology and Therapy named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anastasiya A Kachanova
- Predictive and Prognostic Biomarkers Department, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Anna V Lapshtaeva
- Department of Immunology, Microbiology and Virology with a course of clinical immunology and allergology, Ogarev Mordovia State University, Saransk, Russian Federation
| | - Ludmila N Goncharova
- Department of Faculty Therapy with Courses of Physiotherapy, Physical Therapy, Ogarev Mordovia State University, Saransk, Russian Federation
| | - Karin B Mirzaev
- Research and Innovation, Research Institute of Molecular and Personalized Medicine, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitry A Sychev
- Clinical Pharmacology and Therapy Department named after Academician B.E. Votchal, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
10
|
Zhang D, Liu Y, Zaidi SA, Xu L, Zhan Y, Chen A, Guo J, Huang X, Roth BL, Katritch V, Cherezov V, Zhang H. Structural insights into angiotensin receptor signaling modulation by balanced and biased agonists. EMBO J 2023; 42:e112940. [PMID: 37038975 PMCID: PMC10233375 DOI: 10.15252/embj.2022112940] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
The peptide hormone angiotensin II regulates blood pressure mainly through the type 1 angiotensin II receptor AT1 R and its downstream signaling proteins Gq and β-arrestin. AT1 R blockers, clinically used as antihypertensive drugs, inhibit both signaling pathways, whereas AT1 R β-arrestin-biased agonists have shown great potential for the treatment of acute heart failure. Here, we present a cryo-electron microscopy (cryo-EM) structure of the human AT1 R in complex with a balanced agonist, Sar1 -AngII, and Gq protein at 2.9 Å resolution. This structure, together with extensive functional assays and computational modeling, reveals the molecular mechanisms for AT1 R signaling modulation and suggests that a major hydrogen bond network (MHN) inside the receptor serves as a key regulator of AT1 R signal transduction from the ligand-binding pocket to both Gq and β-arrestin pathways. Specifically, we found that the MHN mutations N1113.35 A and N2947.45 A induce biased signaling to Gq and β-arrestin, respectively. These insights should facilitate AT1 R structure-based drug discovery for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Dongqi Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yongfeng Liu
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
| | - Saheem A Zaidi
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Lingyi Xu
- Department of BiophysicsZhejiang University School of MedicineHangzhouChina
- Department of Neurology of the Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuting Zhan
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Anqi Chen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Jiangtao Guo
- Department of BiophysicsZhejiang University School of MedicineHangzhouChina
- Department of Neurology of the Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xi‐Ping Huang
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
| | - Bryan L Roth
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
- National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP)University of North Carolina School of MedicineChapel HillNCUSA
- Division of Chemical Biology and Medicinal ChemistryUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Vsevolod Katritch
- Department of Quantitative and Computational BiologyUniversity of Southern CaliforniaLos AngelesCAUSA
- Department of Chemistry, Bridge InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Vadim Cherezov
- Department of Chemistry, Bridge InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Haitao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti‐Cancer Drug Research, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Shen JK, Zhang HT. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol Sin 2023; 44:489-498. [PMID: 36075965 PMCID: PMC9453710 DOI: 10.1038/s41401-022-00982-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/08/2022]
Abstract
Type 2 bradykinin receptor (B2R) is an essential G protein-coupled receptor (GPCR) that regulates the cardiovascular system as a vasodepressor. Dysfunction of B2R is also closely related to cancers and hereditary angioedema (HAE). Although several B2R agonists and antagonists have been developed, icatibant is the only B2R antagonist clinically used for treating HAE. The recently determined structures of B2R have provided molecular insights into the functions and regulation of B2R, which shed light on structure-based drug design for the treatment of B2R-related diseases. In this review, we summarize the structure and function of B2R in relation to drug discovery and discuss future research directions to elucidate the remaining unknown functions of B2R dimerization.
Collapse
Affiliation(s)
- Jin-Kang Shen
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Tao Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Structures of human gastrin-releasing peptide receptors bound to antagonist and agonist for cancer and itch therapy. Proc Natl Acad Sci U S A 2023; 120:e2216230120. [PMID: 36724251 PMCID: PMC9963752 DOI: 10.1073/pnas.2216230120] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gastrin releasing peptide receptor (GRPR), a member of the bombesin (BBN) G protein-coupled receptors, is aberrantly overexpressed in several malignant tumors, including those of the breast, prostate, pancreas, lung, and central nervous system. Additionally, it also mediates non-histaminergic itch and pathological itch conditions in mice. Thus, GRPR could be an attractive target for cancer and itch therapy. Here, we report the inactive state crystal structure of human GRPR in complex with the non-peptide antagonist PD176252, as well as two active state cryo-electron microscopy (cryo-EM) structures of GRPR bound to the endogenous peptide agonist gastrin-releasing peptide and the synthetic BBN analog [D-Phe6, β-Ala11, Phe13, Nle14] Bn (6-14), in complex with Gq heterotrimers. These structures revealed the molecular mechanisms for the ligand binding, receptor activation, and Gq proteins signaling of GRPR, which are expected to accelerate the structure-based design of GRPR antagonists and agonists for the treatments of cancer and pruritus.
Collapse
|
13
|
Brusco I, Fialho MFP, Becker G, Brum ES, Favarin A, Marquezin LP, Serafini PT, Oliveira SM. Kinins and their B 1 and B 2 receptors as potential therapeutic targets for pain relief. Life Sci 2023; 314:121302. [PMID: 36535404 DOI: 10.1016/j.lfs.2022.121302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Navarro-Lérida I, Aragay AM, Asensio A, Ribas C. Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants (Basel) 2022; 11:1599. [PMID: 36009317 PMCID: PMC9405508 DOI: 10.3390/antiox11081599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
All processes in human physiology relies on homeostatic mechanisms which require the activation of specific control circuits to adapt the changes imposed by external stimuli. One of the critical modulators of homeostatic balance is autophagy, a catabolic process that is responsible of the destruction of long-lived proteins and organelles through a lysosome degradative pathway. Identification of the mechanism underlying autophagic flux is considered of great importance as both protective and detrimental functions are linked with deregulated autophagy. At the mechanistic and regulatory levels, autophagy is activated in response to diverse stress conditions (food deprivation, hyperthermia and hypoxia), even a novel perspective highlight the potential role of physical forces in autophagy modulation. To understand the crosstalk between all these controlling mechanisms could give us new clues about the specific contribution of autophagy in a wide range of diseases including vascular disorders, inflammation and cancer. Of note, any homeostatic control critically depends in at least two additional and poorly studied interdependent components: a receptor and its downstream effectors. Addressing the selective receptors involved in autophagy regulation is an open question and represents a new area of research in this field. G-protein coupled receptors (GPCRs) represent one of the largest and druggable targets membrane receptor protein superfamily. By exerting their action through G proteins, GPCRs play fundamental roles in the control of cellular homeostasis. Novel studies have shown Gαq, a subunit of heterotrimeric G proteins, as a core modulator of mTORC1 and autophagy, suggesting a fundamental contribution of Gαq-coupled GPCRs mechanisms in the control of this homeostatic feedback loop. To address how GPCR-G proteins machinery integrates the response to different stresses including oxidative conditions and mechanical stimuli, could provide deeper insight into new signaling pathways and open potential and novel therapeutic strategies in the modulation of different pathological conditions.
Collapse
Affiliation(s)
- Inmaculada Navarro-Lérida
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Anna M. Aragay
- Department of Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish National Research Council (CSIC), 08028 Barcelona, Spain
| | - Alejandro Asensio
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| | - Catalina Ribas
- Molecular Biology Department and Center of Molecular Biology “Severo Ochoa”, CSIC-UAM, 28049 Madrid, Spain
- Health Research Institute “La Princesa”, 28006 Madrid, Spain
- Center for Biomedical Research in Cardiovascular Diseases Network (CIBERCV), ISCIII, 28029 Madrid, Spain
- Connexion Cancer-CSIC, 28006 Madrid, Spain
| |
Collapse
|