1
|
Li C, Syed MU, Nimbalkar A, Shen Y, Vieira MD, Fraser C, Inde Z, Qin X, Ouyang J, Kreuzer J, Clark SE, Kelley G, Hensley EM, Morris R, Lazaro R, Belmonte B, Oh A, Walcott M, Nabel CS, Caenepeel S, Saiki AY, Rex K, Lipford JR, Heist RS, Lin JJ, Haas W, Sarosiek K, Hughes PE, Hata AN. LKB1 regulates JNK-dependent stress signaling and apoptotic dependency of KRAS-mutant lung cancers. Nat Commun 2025; 16:4112. [PMID: 40316540 PMCID: PMC12048556 DOI: 10.1038/s41467-025-58753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
The efficacy of molecularly targeted therapies may be limited by co-occurring mutations within a tumor. Conversely, these alterations may confer collateral vulnerabilities that can be therapeutically leveraged. KRAS-mutant lung cancers are distinguished by recurrent loss of the tumor suppressor STK11/LKB1. Whether LKB1 modulates cellular responses to therapeutic stress seems unknown. Here we show that in LKB1-deficient KRAS-mutant lung cancer cells, inhibition of KRAS or its downstream effector MEK leads to hyperactivation of JNK due to loss of NUAK-mediated PP1B phosphatase activity. JNK-mediated inhibitory phosphorylation of BCL-XL rewires apoptotic dependencies, rendering LKB1-deficient cells vulnerable to MCL-1 inhibition. These results uncover an unknown role for LKB1 in regulating stress signaling and mitochondrial apoptosis independent of its tumor suppressor activity mediated by AMPK and SIK. Additionally, our study reveals a therapy-induced vulnerability in LKB1-deficient KRAS-mutant lung cancers that could be exploited as a genotype-informed strategy to improve the efficacy of KRAS-targeted therapies.
Collapse
Affiliation(s)
- Chendi Li
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Yi Shen
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | | | - Cameron Fraser
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zintis Inde
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah E Clark
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Grace Kelley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Emily M Hensley
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Raul Lazaro
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Audris Oh
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Makeba Walcott
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christopher S Nabel
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anne Y Saiki
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | - Karen Rex
- Amgen Research, Amgen Inc., Thousand Oaks, CA, USA
| | | | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica J Lin
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
| | | | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Mével-Aliset M, Radu AG, Allard J, Blanchet S, Montellier E, Hainaut P, Rossignol R, Torch S, Orsi GA, Thibert C. Transcriptional regulation by LKB1 in lung adenocarcinomas: Exploring oxidative stress, neuroglial and amino acid signatures. Biochem Biophys Res Commun 2025; 755:151571. [PMID: 40043609 DOI: 10.1016/j.bbrc.2025.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 02/19/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent cancer types worldwide and has one of the poorest survival rates. Understanding its developpment is crucial for improving diagnosis, prognosis, and treatment. A key factor in LUAD is the frequent loss-of-function mutations in LKB1/STK11, a kinase that regulates metabolism. These mutations are linked to increased metastasis and worse clinical outcomes. In this study, we analyzed gene expression data from LUAD patients to explore how LKB1 mutations affect cancer behavior. We found that LKB1 mutations in KRAS-driven LUAD lead to widespread gene downregulation. By integrating avalaible protein interaction data, mass spectrometry analysis of LKB1 nuclear partners, and co-immunoprecipitations experiments, we identified BRG1, a chromatin activator and subunit of the BAF complex, as a nuclear partner of LKB1. Further analysis suggested that LKB1 mutations may impair BRG1 activity, disrupting chromatin regulation and gene expression. Notably, LUAD patients with mutated LKB1 showed gene expression patterns indicative of oxidative stress, defective neuronal-glial and neuroinflammation programs, and altered amino acid homeostasis. These changes resemble the roles LKB1 plays in neural crest stem cells, suggesting that LKB1 may reduce tumor aggressiveness in LUAD by maintaining a developmental gene expression program.
Collapse
Affiliation(s)
- Marie Mével-Aliset
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Anca G Radu
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jordan Allard
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Sandrine Blanchet
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Emilie Montellier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Pierre Hainaut
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Rodrigue Rossignol
- INSERM U1211, Bordeaux University, 146 rue Léo Saignat, 33076, Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Sakina Torch
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Guillermo A Orsi
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics of Regeneration and Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Chantal Thibert
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team "Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer", Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
3
|
Middleton G, Robbins HL, Fletcher P, Savage J, Mehmi M, Summers Y, Greystoke A, Steele N, Popat S, Jain P, Spicer J, Cave J, Shaw P, Gilligan D, Power D, Fennell D, Bajracharya M, McBride DJ, Maheswari U, Frankell AM, Swanton C, Beggs AD, Billingham L. A phase II trial of mTORC1/2 inhibition in STK11 deficient non small cell lung cancer. NPJ Precis Oncol 2025; 9:67. [PMID: 40069402 PMCID: PMC11897347 DOI: 10.1038/s41698-025-00838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025] Open
Abstract
There are no current stratified medicine options for STK11-deficient NSCLC. STK11 loss mediates mTORC activation, GLUT1 up-regulation and increased glycolysis. This metabolic reprogramming might represent a therapeutic vulnerability targetable with mTORC1/2 inhibition. In arm B2 of the National Lung Matrix Trial 54 patients with NSCLC received vistusertib, of which 49 were STK11-deficient (30 with KRAS mutation (B2D), 19 without (B2S)). Objective response (OR) and durable clinical benefit (DCB) rates with 95% credible intervals (CrI) were estimated from posterior probability distributions generated using Bayesian beta-binomial conjugate analysis. In B2D, 2 per-protocol patients obtained OR (estimated true OR rate (95%CrI) 9.8% (2.4-24.3). Estimates of true DCB rate (95%CrI): B2D 24.4% (11.1-42.3), B2S 14.6% (3.6-34.7). Overall, vistusertib cannot be recommended in this context. Longitudinal ctDNA analysis demonstrates enrichment of SMARCA4 mutations post-treatment. In vitro studies show adaptive resistance to mTORC1/2 inhibition via AKT reactivation. (NCT02664935, ISRCTN38344105, EudraCT 2014-000814-73, 10 June 2015).
Collapse
Affiliation(s)
- Gary Middleton
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Department of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK.
| | - Helen L Robbins
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Immunology & Immunotherapy, University of Birmingham, Birmingham, UK
| | - Peter Fletcher
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Joshua Savage
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Manita Mehmi
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | | | | | | | | | - Pooja Jain
- St James's University Hospital, Leeds, UK
| | - James Spicer
- King's College London, Guy's Hospital, London, UK
| | - Judith Cave
- Southampton University Hospitals NHS Trust, Southampton, UK
| | | | | | | | | | | | | | | | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Andrew D Beggs
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Department of Cancer & Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Lucinda Billingham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Hebert JD, Tang YJ, Szamecz M, Andrejka L, Lopez SS, Petrov DA, Boross G, Winslow MM. Combinatorial In Vivo Genome Editing Identifies Widespread Epistasis and an Accessible Fitness Landscape During Lung Tumorigenesis. Mol Biol Evol 2025; 42:msaf023. [PMID: 39907430 PMCID: PMC11824425 DOI: 10.1093/molbev/msaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/15/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable the evolution of cancer in vivo, largely due to a lack of methods for investigating genetic interactions in a high-throughput and quantitative manner. Here, we employed a novel platform to generate tumors with inactivation of pairs of ten diverse tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. Sign epistasis was extremely rare, suggesting a surprisingly accessible fitness landscape during lung tumorigenesis. These findings expand our understanding of the interactions that drive tumorigenesis in vivo.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuning J Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Márton Szamecz
- Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
- National Laboratory for Health Security, Centre for Eco-Epidemiology, Budapest, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven S Lopez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Gábor Boross
- National Laboratory for Health Security, Centre for Eco-Epidemiology, Budapest, Hungary
- Institute of Evolution, HUN-REN Centre for Ecological Research, Budapest, Hungary
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Kang J, Gallucci S, Pan J, Oakhill JS, Sanij E. The role of STK11/LKB1 in cancer biology: implications for ovarian tumorigenesis and progression. Front Cell Dev Biol 2024; 12:1449543. [PMID: 39544365 PMCID: PMC11560430 DOI: 10.3389/fcell.2024.1449543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
STK11 (serine-threonine kinase 11), also known as LKB1 (liver kinase B1) is a highly conserved master kinase that regulates cellular metabolism and polarity through a complex signaling network involving AMPK and 12 other AMPK-related kinases. Germline mutations in LKB1 have been causatively linked to Peutz-Jeghers Syndrome (PJS), an autosomal dominant hereditary disease with high cancer susceptibility. The identification of inactivating somatic mutations in LKB1 in different types of cancer further supports its tumor suppressive role. Deleterious mutations in LKB1 are frequently observed in patients with epithelial ovarian cancer. However, its inconsistent effects on tumorigenesis and cancer progression suggest that its functional impact is genetic context-dependent, requiring cooperation with other oncogenic lesions. In this review, we summarize the pleiotropic functions of LKB1 and how its altered activity in cancer cells is linked to oncogenic proliferation and growth, metastasis, metabolic reprogramming, genomic instability, and immune modulation. We also review the current mechanistic understandings of this master kinase as well as therapeutic implications with particular focus on the effects of LKB1 deficiency in ovarian cancer pathogenesis. Lastly, we discuss whether LKB1 deficiency can be exploited as an Achilles heel in ovarian cancer.
Collapse
Affiliation(s)
- Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stefano Gallucci
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Junqi Pan
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan S. Oakhill
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Elaine Sanij
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine-St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. FASEB J 2024; 38:e23885. [PMID: 39139039 PMCID: PMC11378476 DOI: 10.1096/fj.202401078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for β-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dorka Nagy
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Liu M, Gu L, Zhang Y, Li Y, Zhang L, Xin Y, Wang Y, Xu ZX. LKB1 inhibits telomerase activity resulting in cellular senescence through histone lactylation in lung adenocarcinoma. Cancer Lett 2024; 595:217025. [PMID: 38844063 DOI: 10.1016/j.canlet.2024.217025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Despite the confirmed role of LKB1 in suppressing lung cancer progression, its precise effect on cellular senescence is unknown. The aim of this research was to clarify the role and mechanism of LKB1 in restraining telomerase activity in lung adenocarcinoma. The results showed that LKB1 induced cellular senescence and apoptosis either in vitro or in vivo. Overexpression of LKB1 in LKB1-deficient A549 cells led to the inhibition of telomerase activity and the induction of telomere dysfunction by regulating telomerase reverse transcriptase (TERT) expression in terms of transcription. As a transcription factor, Sp1 mediated TERT inhibition after LKB1 overexpression. LKB1 induced lactate production and inhibited histone H4 (Lys8) and H4 (Lys16) lactylation, which further altered Sp1-related transcriptional activity. The telomerase inhibitor BIBR1532 was beneficial for achieving the optimum curative effect of traditional chemotherapeutic drugs accompanied by the glycolysis inhibitor 2DG. These data reveal a new mechanism by which LKB1 regulates telomerase activity through lactylation-dependent transcriptional inhibition, and therefore, provide new insights into the effects of LKB1-mediated senescence in lung adenocarcinoma. Our research has opened up new possibilities for the creation of new cancer treatments.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yunkuo Li
- Department of Urology, the First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Lihong Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
8
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593867. [PMID: 38798508 PMCID: PMC11118353 DOI: 10.1101/2024.05.13.593867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for β-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
|
9
|
Hebert JD, Tang YJ, Andrejka L, Lopez SS, Petrov DA, Boross G, Winslow MM. Combinatorial in vivo genome editing identifies widespread epistasis during lung tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583981. [PMID: 38496564 PMCID: PMC10942407 DOI: 10.1101/2024.03.07.583981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Lung adenocarcinoma, the most common subtype of lung cancer, is genomically complex, with tumors containing tens to hundreds of non-synonymous mutations. However, little is understood about how genes interact with each other to enable tumorigenesis in vivo , largely due to a lack of methods for investigating genetic interactions in a high-throughput and multiplexed manner. Here, we employed a novel platform to generate tumors with all pairwise inactivation of ten tumor suppressor genes within an autochthonous mouse model of oncogenic KRAS-driven lung cancer. By quantifying the fitness of tumors with every single and double mutant genotype, we show that most tumor suppressor genetic interactions exhibited negative epistasis, with diminishing returns on tumor fitness. In contrast, Apc inactivation showed positive epistasis with the inactivation of several other genes, including dramatically synergistic effects on tumor fitness in combination with Lkb1 or Nf1 inactivation. This approach has the potential to expand the scope of genetic interactions that may be functionally characterized in vivo , which could lead to a better understanding of how complex tumor genotypes impact each step of carcinogenesis.
Collapse
|
10
|
Hu X, Xie J, Yang Y, Qiu Z, Lu W, Lin X, Xu B. Multi-Target Neural Differentiation (MTND) Therapeutic Cocktail to Suppress Brain Tumor. Int J Mol Sci 2023; 24:12329. [PMID: 37569705 PMCID: PMC10418641 DOI: 10.3390/ijms241512329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Brain tumors have been proved challenging to treat. Here we established a Multi-Target Neural Differentiation (MTND) therapeutic cocktail to achieve effective and safe treatment of brain malignancies by targeting the important hallmarks in brain cancers: poor cell differentiation and compromised cell cycle. In-vitro and in-vivo experiments confirmed the significant therapeutic effect of our MTND therapy. Significantly improved therapeutic effects over current first-line chemo-drugs have been identified in clinical cells, with great inhibition of the growth and migration of tumor cells. Further in-vivo experiments confirmed that sustained MTND treatment showed a 73% reduction of the tumor area. MTND also induced strong expression of phenotypes associated with cell cycle exit/arrest and rapid neural reprograming from clinical glioma cells to glutamatergic and GABAergic expressing cells, which are two key neuronal types involved in many human brain functions, including learning and memory. Collectively, MTND induced multi-targeted genotypic expression changes to achieve direct neural conversion of glioma cells and controlled the cell cycle/tumorigenesis development, helping control tumor cells' malignant proliferation and making it possible to treat brain malignant tumors effectively and safely. These encouraging results open avenues to developing new therapies for brain malignancies beyond cytotoxic agents, providing more effective medication recommendations with reduced toxicity.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Yilin Yang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Ziyi Qiu
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Weicheng Lu
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou 510060, China; (J.X.); (W.L.)
| | - Xudong Lin
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China; (X.H.); (Y.Y.)
- School of Biomedical Engineering (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
11
|
Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. Posttranslational regulation of liver kinase B1 (LKB1) in human cancer. J Biol Chem 2023; 299:104570. [PMID: 36870679 PMCID: PMC10068580 DOI: 10.1016/j.jbc.2023.104570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Liver kinase B1 (LKB1) is a serine-threonine kinase that participates in multiple cellular and biological processes, including energy metabolism, cell polarity, cell proliferation, cell migration, and many others. LKB1 is initially identified as a germline-mutated causative gene in Peutz-Jeghers syndrome (PJS) and is commonly regarded as a tumor suppressor due to frequent inactivation in a variety of cancers. LKB1 directly binds and activates its downstream kinases including the AMP-activated protein kinase (AMPK) and AMPK-related kinases by phosphorylation, which has been intensively investigated for the past decades. An increasing number of studies has uncovered the posttranslational modifications (PTMs) of LKB1 and consequent changes in its localization, activity, and interaction with substrates. The alteration in LKB1 function as a consequence of genetic mutations and aberrant upstream signaling regulation leads to tumor development and progression. Here, we review current knowledge about the mechanism of LKB1 in cancer and the contributions of PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, prenylation, and others, to the regulation of LKB1 function, offering new insights into the therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Lanlin Hu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxin Liu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Tang
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Li
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
12
|
Tilston-Lunel AM, Varelas X. Polarity in respiratory development, homeostasis and disease. Curr Top Dev Biol 2023; 154:285-315. [PMID: 37100521 DOI: 10.1016/bs.ctdb.2023.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The respiratory system is composed of a multitude of cells that organize to form complex branched airways that end in alveoli, which respectively function to guide air flow and mediate gas exchange with the bloodstream. The organization of the respiratory sytem relies on distinct forms of cell polarity, which guide lung morphogenesis and patterning in development and provide homeostatic barrier protection from microbes and toxins. The stability of lung alveoli, the luminal secretion of surfactants and mucus in the airways, and the coordinated motion of multiciliated cells that generate proximal fluid flow, are all critical functions regulated by cell polarity, with defects in polarity contributing to respiratory disease etiology. Here, we summarize the current knowledge of cell polarity in lung development and homeostasis, highlighting key roles for polarity in alveolar and airway epithelial function and outlining relationships with microbial infections and diseases, such as cancer.
Collapse
|
13
|
Epithelial-mesenchymal transition in cancer stemness and heterogeneity: updated. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:193. [PMID: 36071302 DOI: 10.1007/s12032-022-01801-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/15/2022] [Indexed: 10/14/2022]
Abstract
Epithelial-mesenchymal transition (EMT) as a trans-differentiation program and a key process in tumor progression is linked positively with increased expansion of cancer stem cells and cells with stem-like properties. This is mediated through modulation of critical tumorigenic events and is positively correlated with hypoxic conditions in tumor microenvironment. The presence of cells eliciting diverse phenotypical states inside tumor is representative of heterogeneity and higher tumor resistance to therapy. In this review, we aimed to discuss about the current understanding toward EMT, stemness, and heterogeneity in tumors of solid organs, their contribution to the key tumorigenic events along with major signaling pathway involved, and, finally, to suggest some strategies to target these critical events.
Collapse
|