1
|
Liu X, Xu G, Pei T, Wu Y, Huang T, Guo H, Liu T, Zhang H. Microplastic diversity stimulates N 2O emission during NO 3--N transformation by altering microbial interaction and electron consumption in eutrophic water. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137594. [PMID: 39955989 DOI: 10.1016/j.jhazmat.2025.137594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Microplastic mixtures, consisting of various types, are widespread in aquatic ecosystems. However, the role of microplastic diversity in influencing N2O emission during NO3--N transformation remains unclear, particularly in eutrophic water bodies. To address this, we established 10 microcosms with microplastic diversity of 0, 1, 3, and 5 and explored the effects of microplastic diversity on NO3--N transformation, N2O emission, microbial communities, co-occurrence networks, and electron transfer. Results showed that microplastic diversity slightly impacted NO3--N transformation rates, but remarkably enhanced N2O emission. Although elevated microplastic diversity caused notable variations in microbial community, bacterial abundance had insignificant correlations with NO3--N transformation or N2O emission rates. Notably, the increased microplastic diversity made microbial networks more complex and stable, indirectly promoting N2O emission by altering electron transfer and consumption during NO3--N transformation. Especially, electron consumption had the most direct effect on N2O emission. Furthermore, the increasing microplastic diversity slightly affected NOR activity, while significantly decreasing NOS activity and raising (nirK+nirS)/nosZ ratio, which suggested that microplastic diversity primarily enhanced N2O emission by inhibiting its further reduction. Our findings provide deeper insight into the nitrogen transformation and greenhouse gas emission influenced by microplastic mixtures in eutrophic aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Guojia Xu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tingting Pei
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Honghong Guo
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tao Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
2
|
Huang X, Yu C, Sun W, Shi P, Wu J, Yu J, Wang J, Mu T. Partial organic substitution for chemical fertilizer reduces N 2O emissions but increases the risk of N loss through nitrification in Tibetan farmland. Sci Rep 2025; 15:14503. [PMID: 40281026 PMCID: PMC12032052 DOI: 10.1038/s41598-025-97657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The combination of organic fertilizers (OFs) and chemical fertilizers (CF) is a promising agricultural management strategy to improve soil fertility while mitigating N2O emissions in croplands. However, there is still lacking of in-depth understanding of the effects of different OF and CF blends on N2O emissions and the underlying drivers. To this end, we conducted a short-term soil incubation to address the influences of partial OF substitutions for CF, i.e., 40% substitution of compost (CP), Yak dung (YD), Qingke straw (QS), and sheep dung (SD) on the processes of nitrification and denitrification in sandy loam soils in the Lhasa Valley. We found that CP, QS, and SD reduced cumulative N2O emissions by 53.43%, 25.96% and 16.64%, respectively compared to pure chemical fertilizer (N), except YD caused a significant higher in total N2O emissions. Fertilization treatments primarily regulate potential N2O emissions by affecting denitrification processes. While ammonia-oxidizing archaea (AOA amoA) could be the main driver of nitrification, and nirS abundance explained most of the cumulative N2O emissions. In addition, NO3--N tends to accumulate in the farmland soils, indicating an increase in the risk of leaching and nutrient loss. Overall, soil N2O emission reduction was favored by applying partial organic fertilizer substitution especially after through compost. Co-composting of animal manure and crop residue has more impressive potential for mitigating farmland N2O emissions.
Collapse
Affiliation(s)
- Xiaofang Huang
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengqun Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Sun
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Peili Shi
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Junxi Wu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jialuo Yu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiabao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Tao Mu
- Institute of Plateau Biology, Lhasa Science and Technology Bureau, Lhasa, 850011, China
| |
Collapse
|
3
|
Zhang S, Wang J, Liu Z, Xia X, Wu X, Li X, Liu Y, Xu Z, Marzadri A, McDowell WH, Cai Y, Yang Z. Temperature has an enhanced role in sediment N 2O and N 2 fluxes in wider rivers. WATER RESEARCH 2025; 273:123095. [PMID: 39787750 DOI: 10.1016/j.watres.2025.123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/24/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Riverine N2O and N2 fluxes, key components of the global nitrogen budget, are known to be influenced by river size (often represented by average river width), yet the specific mechanisms behind these effects remain unclear. This study examined how environmental and microbial factors influenced sediment N2O and N2 fluxes across rivers with varying widths (2.8 to 2,000 m) in China. Sediment acted as sources of both N2O and N2 emissions, with both N2 (0.2 to 20.8 mmol m-2 d-1) and N2O fluxes (0.7-54.2 μmol m-2 d-1) decreasing significantly as river width increased. N2 fluxes were positively correlated with denitrifying bacterial abundance, whereas N2O fluxes, when normalized by the abundance of denitrifying bacteria, were negatively correlated with the abundance of N2O-reducing microbes. Water physicochemical factors, particularly temperature and nitrate, were more important drivers of these fluxes than sediment factors. Nitrate significantly increased denitrifying bacterial abundance, whereas higher temperatures enhanced cell-specific activity. Lower N2O and N2 emissions in wider rivers were attributed to decreased denitrifying microbial abundance and lower denitrification rates, in addition to the commonly assumed reduction in exogenous N2O and N2 inputs. Rolling regression analysis showed that nitrate concentration had a stronger effect on sediment N2O and N2 fluxes in narrower rivers, whereas temperature was more influential in wider rivers. This difference is attributed to more stable nitrate concentrations and decreased nitrogen removal efficiency in wider rivers, while temperature variation remained consistent across all river widths. Beyond sediments, temperature had a greater effect on excess N2O concentrations than nitrate in the overlying water of wider rivers (>165 m), highlighting its broader impact. This study provides new biogeochemical insights into how river width influences sediment N2O and N2 fluxes and highlights the importance of incorporating temperature into flux predictions, particularly for wider rivers.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Ziye Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinxiao Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Shandong, 264005, China
| | - Yi Liu
- Earth, Ocean and Atmospheric Sciences (EOAS) Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Zhihao Xu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Alessandra Marzadri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Wang S, Zhi W, Li S, Lyu T, Ji G. Sustainable management of riverine N 2O emission baselines. Natl Sci Rev 2025; 12:nwae458. [PMID: 39834561 PMCID: PMC11745158 DOI: 10.1093/nsr/nwae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The riverine N2O fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF5r is poorly constrained, which impedes the N2O estimation and mitigation. Our meta-analysis discovered a universal N2O emission baseline (EF5r = k/[NO3 -], k = 0.02) for natural rivers. Anthropogenic impacts caused an overall increase in baselines and the emergence of hotspots, which constitute two typical patterns of anthropogenic sources. The k values of agricultural and urban rivers increased to 0.09 and 0.05, respectively, with 11% and 14% of points becoming N2O hotspots. Priority control of organic and NH4 + pollution could eliminate hotspots and reduce emissions by 51.6% and 63.7%, respectively. Further restoration of baseline emissions on nitrate removal is a long-term challenge considering population growth and declining unit benefits (ΔN-N2O/N-NO3 -). The discovery of EF lines emphasized the importance of targeting hotspots and managing baseline emissions sustainably to balance social and environmental benefits.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Song C, Liu S, Wang G, Zhang L, Rosentreter JA, Zhao G, Sun X, Yao Y, Mu C, Sun S, Hu Z, Lin S, Sun J, Li Y, Wang Y, Li Y, Raymond PA, Karlsson J. Inland water greenhouse gas emissions offset the terrestrial carbon sink in the northern cryosphere. SCIENCE ADVANCES 2024; 10:eadp0024. [PMID: 39331717 PMCID: PMC11430465 DOI: 10.1126/sciadv.adp0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
Climate-sensitive northern cryosphere inland waters emit greenhouse gases (GHGs) into the atmosphere, yet their total emissions remain poorly constrained. We present a data-driven synthesis of GHG emissions from northern cryosphere inland waters considering water body types, cryosphere zones, and seasonality. We find that annual GHG emissions are dominated by carbon dioxide ([Formula: see text] teragrams of CO2; [Formula: see text]) and methane ([Formula: see text] teragrams of CH4), while the nitrous oxide emission ([Formula: see text] gigagrams of N2O) is minor. The annual CO2-equivalent (CO2e) GHG emissions from northern cryosphere inland waters total [Formula: see text] or [Formula: see text] petagrams of CO2e using the 100- or 20-year global warming potentials, respectively. Rivers emit 64% more CO2e GHGs than lakes, despite having only one-fifth of their surface area. The continuous permafrost zone contributed half of the inland water GHG emissions. Annual CO2e emissions from northern cryosphere inland waters exceed the region's terrestrial net ecosystem exchange, highlighting the important role of inland waters in the cryospheric land-aquatic continuum under a warming climate.
Collapse
Affiliation(s)
- Chunlin Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shaoda Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liwei Zhang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, Shanghai, China
| | - Judith A Rosentreter
- Center for Coastal Biogeochemistry, Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Gang Zhao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangyang Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuanzhi Yao
- School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Cuicui Mu
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Observation and Research Station on Eco-Environment of Frozen Ground in the Qilian Mountains, Lanzhou University, Lanzhou, China
| | - Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhaoyong Hu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shan Lin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Juying Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yang Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yuhao Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, Sichuan 610065, China
| | - Peter A Raymond
- School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Jan Karlsson
- Climate Impacts Research Centre (CIRC), Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 6, 901 87 Umeå, Sweden
| |
Collapse
|
6
|
Song K, Wang S, Xu X, Ma J, Yang Y, Zeng Y, Li J, Zhou X, Zhou Y. Benthic clade II-type nitrous oxide reducers suppress nitrous oxide emissions in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172908. [PMID: 38697552 DOI: 10.1016/j.scitotenv.2024.172908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China
| | - Yuxuan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yuli Zeng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
8
|
Zhang S, Xia X, Yu L, Liu S, Li X, Wang J, Zheng Y, Han L, Tan Q, Yang Z. Biogeography and impact of nitrous oxide reducers in rivers across a broad environmental gradient on emission rates. Environ Microbiol 2024; 26:e16622. [PMID: 38757466 DOI: 10.1111/1462-2920.16622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Microbial communities that reduce nitrous oxide (N2O) are divided into two clades, nosZI and nosZII. These clades significantly differ in their ecological niches and their implications for N2O emissions in terrestrial environments. However, our understanding of N2O reducers in aquatic systems is currently limited. This study investigated the relative abundance and diversity of nosZI- and nosZII-type N2O reducers in rivers and their impact on N2O emissions. Our findings revealed that stream sediments possess a high capacity for N2O reduction, surpassing N2O production under high N2O/NO3- ratio conditions. This study, along with others in freshwater systems, demonstrated that nosZI marginally dominates more often in rivers. While microbes containing either nosZI and nosZII were crucial in reducing N2O emissions, the net contribution of nosZII-containing microbes was more significant. This can be attributed to the nir gene co-occurring more frequently with the nosZI gene than with the nosZII gene. The diversity within each clade also played a role, with nosZII species being more likely to function as N2O sinks in streams with higher N2O concentrations. Overall, our findings provide a foundation for a better understanding of the biogeography of stream N2O reducers and their effects on N2O emissions.
Collapse
Affiliation(s)
- Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Leilei Yu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Qian Tan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
9
|
Li M, Shi G, Li Y, Yan X, Sun X, Yangzong D, Li S, Dong H, Zhou Y, Wang X, Kang S, Zhang Q. Isotopic Constraints on Sources and Transformations of Nitrate in the Mount Everest Proglacial Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20844-20853. [PMID: 38019560 DOI: 10.1021/acs.est.3c06419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Glacier melting exports a large amount of nitrate to downstream aquatic ecosystems. Glacial lakes and glacier-fed rivers in proglacial environments serve as primary recipients and distributors of glacier-derived nitrate (NO3-), yet little is known regarding the sources and cycling of nitrate in these water bodies. To address this knowledge gap, we conducted a comprehensive analysis of nitrate isotopes (δ15NNO3, δ18ONO3, and Δ17ONO3) in waters from the glacial lake and river of the Rongbuk Glacier-fed Basin (RGB) in the mountain Everest region. The concentrations of NO3- were low (0.43 ± 0.10 mg/L), similar to or even lower than those observed in glacial lakes and glacier-fed rivers in other high mountain regions, suggesting minimal anthropogenic influence. The NO3- concentration decreases upon entering the glacial lake due to sedimentation, and it increases gradually from upstream to downstream in the river as a soil source is introduced. The analysis of Δ17ONO3 revealed a substantial contribution of unprocessed atmospheric nitrate, ranging from 34.29 to 56.43%. Denitrification and nitrification processes were found to be insignificant in the proglacial water of RGB. Our study highlights the critical role of glacial lakes in capturing and redistributing glacier-derived NO3- and emphasizes the need for further investigations on NO3- transformation in the fast-changing proglacial environment over the Tibetan Plateau and other high mountain regions.
Collapse
Affiliation(s)
- Mingyue Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guitao Shi
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yilan Li
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xiao Yan
- Key Laboratory of Geographic Information Science, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xuejun Sun
- School of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Deji Yangzong
- Tibetan Ecology and Environment Monitoring Center, Lhasa 850000, China
| | - Shengnan Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huike Dong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianggong Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Sun H, Tian Y, Zhan W, Zhang H, Meng Y, Li L, Zhou X, Zuo W, Ngo HH. Estimating Yangtze River basin's riverine N 2O emissions through hybrid modeling of land-river-atmosphere nitrogen flows. WATER RESEARCH 2023; 247:120779. [PMID: 37897993 DOI: 10.1016/j.watres.2023.120779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Riverine ecosystems are a significant source of nitrous oxide (N2O) worldwide, but how they respond to human and natural changes remains unknown. In this study, we developed a compound model chain that integrates mechanism-based modeling and machine learning to understand N2O transfer patterns within land, rivers, and the atmosphere. The findings reveal a decrease in N2O emissions in the Yangtze River basin from 4.7 Gg yr-1 in 2000 to 2.8 Gg yr-1 in 2019, with riverine emissions accounting for 0.28% of anthropogenic nitrogen discharges from land. This unexpected reduction is primarily attributed to improved water quality from human-driven nitrogen control, while natural factors contributed to a 0.23 Gg yr-1 increase. Notably, urban rivers exhibited a more rapid N2O efflux ( [Formula: see text] ), with upstream levels nearly 3.1 times higher than rural areas. We also observed nonlinear increases in [Formula: see text] with nitrogen discharge intensity, with urban areas showing a gradual and broader range of increase compared to rural areas, which exhibited a sharper but narrower increase. These nonlinearities imply that nitrogen control measures in urban areas lead to stable reductions in N2O emissions, while rural areas require innovative nitrogen source management solutions for greater benefits. Our assessment offers fresh insights into interpreting riverine N2O emissions and the potential for driving regionally differentiated emission reductions.
Collapse
Affiliation(s)
- Huihang Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Zhan
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haoran Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiming Meng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zuo
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Chen X, Zhang S, Liu J, Wang J, Xin Y, Sun S, Xia X. Tracing Microbial Production and Consumption Sources of N 2O in Rivers on the Qinghai-Tibet Plateau via Isotopocule and Functional Microbe Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7196-7205. [PMID: 37097256 DOI: 10.1021/acs.est.3c00950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrous oxide (N2O), a potent greenhouse gas, is produced in rivers through a series of microbial metabolic pathways. However, the microbial source of N2O production and the degree of N2O reduction in river systems are not well understood and quantified. This work investigated isotopic compositions (δ15N-N2O and δ18O-N2O) and N2O site preference as well as N2O-related microbial features, thereby differentiating the importance of nitrification, denitrification, and N2O reduction in controlling N2O emissions from five rivers on the eastern Qinghai-Tibet Plateau (EQTP). The average N2O concentration in overlying water (15.2 nmol L-1) was close to that in porewater (17.5 nmol L-1), suggesting that both overlying water and sediment are potentially important sources of N2O. Canonical and nitrifier denitrification dominated riverine N2O production, with contribution being approximately 90%. Nitrification is a non-negligible source of N2O production, and N2O concentration was positively correlated with nitrification genetic potential. The degree of N2O reduction ranged from 78.1 to 94.1% (averaging 90%), significantly exceeding the reported values (averaging 70%) in other freshwaters, which was attributed to the higher ratios of organic carbon to nitrogen and lower ratio of (nirS + nirK)/nosZ in EQTP rivers. This study indicates that a combination of isotopic and isotopocule values with functional microbe analysis is useful for quantifying the microbial sources of N2O in rivers, and the intense microbial reduction of N2O significantly accounts for the low N2O emissions observed in EQTP rivers, suggesting that both the production and consumption of N2O in rivers should be considered in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiao Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Siyue Sun
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Yuan D, Zheng L, Liu YX, Cheng H, Ding A, Wang X, Tan Q, Wang X, Xing Y, Xie E, Wu H, Wang S, Zhu G. Nitrifiers Cooperate to Produce Nitrous Oxide in Plateau Wetland Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:810-821. [PMID: 36459424 DOI: 10.1021/acs.est.2c06234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The thawing of dormant plateau permafrost emits nitrous oxide (N2O) through wetlands; however, the N2O production mechanism in plateau wetlands is still unclear. Here, we used the 15N-18O double tracer technique and metagenomic sequencing to analyze the N2O production mechanism in the Yunnan-Kweichow and Qinghai-Tibet plateau wetlands during the summer of 2020. N2O production activity was detected in all 16 sediment samples (elevation 1020-4601 m: 2.55 ± 0.42-26.38 ± 3.25 ng N g-1 d-1) and was promoted by nitrifier denitrification (ND). The key functional genes of ND (amoA, hao, and nirK) belonged to complete ammonia oxidizing (comammox) bacteria, and the key ND species was the comammox bacterium Nitrospira nitrificans. We found that the comammox bacterial species N. nitrificans and the ammonia oxidizing bacterial (AOB) species Nitrosomonas europaea cooperate to produce N2O in the plateau wetland sediments. Furthermore, we inferred that environmental factors (elevation and total organic matter (TOM)) influence the cooperation pattern via N. nitrificans, thus affecting the N2O production activity in the plateau wetland sediments. Our findings advance the mechanistic understanding of nitrifiers in biogeochemical cycles and global climate change.
Collapse
Affiliation(s)
- Dongdan Yuan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Lei Zheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Hongguang Cheng
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Qiuyang Tan
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Xue Wang
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Yuzi Xing
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing100083, China
| | - Haoming Wu
- College of Water Sciences, Beijing Normal University, Beijing100875, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| |
Collapse
|
13
|
Guo Z, Su R, Zeng J, Wang S, Zhang D, Yu Z, Wu QL, Zhao D. NosZI microbial community determined the potential of denitrification and nitrous oxide emission in river sediments of Qinghai-Tibetan Plateau. ENVIRONMENTAL RESEARCH 2022; 214:114138. [PMID: 35988830 DOI: 10.1016/j.envres.2022.114138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Denitrification in river sediments is the hotspot of nitrogen removal and nosZI gene is essential for reducing nitrous oxide (N2O) emissions. However, few studies tried to link nosZI communities with variations of denitrification rates in sediments along the high-elevation rivers. Here, we investigated the spatial variation of potential denitrification rates of sediments along a section (hereafter YJ) of the middle reaches of the Yarlung Zangbo River in the Qinghai-Tibetan Plateau. We also used the real-time quantitative PCR (qPCR) and high-throughput sequencing techniques to evaluate the abundance and composition of nosZI-containing microbial groups. The influences of physicochemical factors and denitrifier communities on potential denitrification rates were further revealed through structural equation modeling. The obtained results indicated that potential denitrification rates and N2O/(N2O + N2) ratio in the sediments along YJ section were greatly different. Moreover, the alpha diversity and composition of nosZI-containing microbial community in river sediments differed remarkably, mainly driven by the ammonia nitrogen (NH4+-N), organic matter (OM) and pH in sediments. The relative abundances of Zoogloeaceae, Oxalobacteraceae, Rhodospirillaceae and Bradyrhizobiaceae significantly differed among five groups (P < 0.05). Structural equation modeling further suggested that nitrogen nutrients directly influenced the potential denitrification rates, while total phosphorus (TP) showed indirect effects on potential denitrification rates through modulating denitrifier abundances and nosZI community. The abundance and composition of nosZI community were powerful predictors in regulating denitrification rates and N2O/(N2O + N2) ratio. Our findings highlight that the nosZI-containing microbial groups play a non-negligible role in nitrogen removal and N2O mitigation in high-elevation river sediments.
Collapse
Affiliation(s)
- Zixu Guo
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Rui Su
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shuren Wang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Danrong Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Zhongbo Yu
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
14
|
Li L, Jiang E, Yin H, Wu K, Dong G. Ultrashort-term responses of riparian vegetation restoration to adjacent cycles of ecological water conveyance scheduling in a hyperarid endorheic river basin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115803. [PMID: 35947904 DOI: 10.1016/j.jenvman.2022.115803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The management of ecological water conveyance (EWC) can allow riparian vegetation communities to survive the threat of degradation in hyperarid inland areas and promote the health of groundwater-recharged riparian ecosystems. However, the ultrashort-term effects of periodic EWC scheduling on riparian vegetation remain unclear. This study explored the spatiotemporal differentiation in species structure (herbs, shrubs, and trees), diversity (measured by the Simpson, Shannon-Wiener, Pielou, and Margalef indices), stability (evaluated via Godron fitting distances and abundance-biomass comparison curves), and integrity (proxied by the vegetation-based index of biotic integrity) of vegetation communities in the downstream Heihe River Basin, China. Empirical orthogonal function, Pearson correlation, canonical correspondence analysis (CCA), and partial CCA methods were used to evaluate the effects of dominant habitat environmental factors from the hydrogeographic features, soil physicochemical properties, and anthropogenic impacts. The results showed that the riparian vegetation community diversity, stability, and integrity varied moderately to slightly with hierarchical distance from near wetlands (<200 m; containing mainly herbs) to far desert edges (>800 m; occupied by shrubs/subshrubs). The middle transition zone (200-800 m; occupied mostly by trees/subtrees) had the best diversity and integrity but relatively poor stability. The most significant influencing factors were EWC and soil moisture. The simple diversity, fair-level integrity, and disturbed but not irreversibly damaged stability of the vegetation community were generally improved by 14.82%, 20.33%, and 30.57%, respectively, in the pre-EWC period but worsened in the post-EWC period. The difference in spatially distributed EWC quantities caused more apparent vegetation restoration in high water-supplied subareas where certain biological community instability existed. Therefore, adequate EWC management can be considered a prerequisite for the maintenance of high richness and structural stability in local communities and requires a good balance between interregional vegetation abundance and enhanced environmental tolerance.
Collapse
Affiliation(s)
- Lingqi Li
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Henan Key Laboratory of Ecological Protection and Restoration of Yellow River Basin, Zhengzhou, 450003, China
| | - Enhui Jiang
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Henan Key Laboratory of Ecological Protection and Restoration of Yellow River Basin, Zhengzhou, 450003, China.
| | - Huijuan Yin
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Henan Key Laboratory of Ecological Protection and Restoration of Yellow River Basin, Zhengzhou, 450003, China
| | - Kai Wu
- Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou, 450003, China; Henan Key Laboratory of Ecological Protection and Restoration of Yellow River Basin, Zhengzhou, 450003, China
| | - Guotao Dong
- Heihe Water Resources and Ecological Protection Research Center, Lanzhou, 730030, China
| |
Collapse
|