1
|
Chen Q, Wang Z, Li Y, Yan Z, Zhang H, Hu X, Song X, Bi H, Wang Y. Toward High-Performance Pure-Green Tandem Organic Light-Emitting Diodes by Employing Barrier-Free Strategies in the Charge Generation Layer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1760-1769. [PMID: 39719061 DOI: 10.1021/acsami.4c19993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Charge generation layers (CGLs) play crucial roles in determining the electroluminescence (EL) performance of tandem organic light-emitting diodes (OLEDs). However, acquiring negligible voltage drops across the CGL unit and high-efficiency multiplications remains challenging. Here, we propose barrier-free strategies to compose a high-performance p-i-n type CGL intermediate by introducing a Yb/HI-9 modification at the heterojunction and a novel n-dopant, Yb:1,3-bis(9-phenyl-1,10-phenanthrolin-2-yl)benzene (mdPPhen), as the n-CGL. Mechanism analysis confirms that the Yb/HI-9 modification efficiently eliminates the intrinsic energy mismatch at the n-CGL/p-CGL interface, while the lowest unoccupied molecular orbital (LUMO) of the n-dopant can be aligned to the electron transport layer of adjacent EL units, creating improved electron transport. Consequently, the resulting 2-EL unit tandem OLEDs exhibited no voltage drops across the CGL intermediate with excellent efficiency multiplications. Notably, the barrier-free CGL strategy worked efficiently in the sensitized fluorescence tandem OLED with low operating voltage, extremely high efficiency (current efficiency of 267.2 cd/A, external quantum efficiency of 62.6%), and operational stability (95% of the initial luminance at 3000 cd/m2, T95 of 4713 h) with pure-green emission (CIEy coordinate of over 0.68), showing the best tandem OLED among reported CGLs to satisfy commercial demands.
Collapse
Affiliation(s)
- Qishen Chen
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
| | - Zhiheng Wang
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
- Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China
| | - Yukang Li
- Guangdong University of Technology, Guangzhou, Guangdong Province 510006, P. R. China
| | - Zhiping Yan
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
| | - Heming Zhang
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
| | - Xuming Hu
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
| | - Xiaoxian Song
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
- Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China
| | - Hai Bi
- Department of Materials Science and Technology, Ji Hua Laboratory, Foshan, Guangdong Province 528200, P. R. China
- Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China
| | - Yue Wang
- Jihua Hengye Electronic Materials Co. Ltd., Foshan, Guangdong Province 528200, P. R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
2
|
Cai W, Li W, Song X, Zheng X, Guo H, Lin C, Yang D, Ma D, Ng M, Tang MC. Host Engineering of Deep-Blue-Fluorescent Organic Light-Emitting Diodes with High Operational Stability and Narrowband Emission. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407278. [PMID: 39304997 DOI: 10.1002/advs.202407278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Indexed: 11/22/2024]
Abstract
The realization of highly operationally stable blue organic light-emitting diodes (OLEDs) is a challenge in both academia and industry. This paper describes the development of anthracene-dibenzofuran host materials, 2-(10-(naphthalen-1-yl)anthracen-9-yl)naphtho[2,3-b]benzofuran (Host 1) and 2-(10-([1,1'-biphenyl]-2-yl)anthracen-9-yl)naphtho[2,3-b]benzofuran (Host 2), namely for use in the emissive layer of an OLED stack. A multiple-resonance thermally activated delayed serves as the blue fluorescence emitter and exhibits an initial luminance of 1000 cd m-2 and long operational stability (i.e., time to decay to 90% of initial luminance) of 249 h. Furthermore, a deep-blue OLED with an optimized top-emitting architecture with a high current efficiency of 154.3 cd A-1, is fabricated and calibrated to a Commission International de l'Éclairage y chromaticity coordinate of 0.048. Moreover, the emission spectrum of this OLED has a narrowband peak at 476 nm with a full width at half maximum (FWHM) of 16 nm. This work provides valuable insights into the design of anthracene-based host materials and highlights the importance of host optimization in improving the operational stability of OLEDs.
Collapse
Affiliation(s)
- Wanqing Cai
- Faculty of Materials Science, MSU-BIT University, Shenzhen, 518172, China
| | - Wansi Li
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiaoge Song
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiujie Zheng
- Faculty of Materials Science, MSU-BIT University, Shenzhen, 518172, China
| | - Hao Guo
- Faculty of Materials Science, MSU-BIT University, Shenzhen, 518172, China
| | - Chengwei Lin
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Maggie Ng
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Man-Chung Tang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
3
|
Cheng Y, Wan H, Sargent EH, Ma D. Reduced-Dimensional Perovskites: Quantum Well Thickness Distribution and Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2410633. [PMID: 39295466 DOI: 10.1002/adma.202410633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/01/2024] [Indexed: 09/21/2024]
Abstract
Reduced-dimensional perovskites (RDPs), a large category of metal halide perovskites, have attracted considerable attention and shown high potential in the fields of solid-state displays and lighting. RDPs feature a quantum-well-based structure and energy funneling effects. The multiple quantum well (QW) structure endows RDPs with superior energy transfer and high luminescence efficiency. The effect of QW confinement directly depends on the number of inorganic octahedral layers (QW thickness, i.e., n value), so the distribution of n values determines the optoelectronic properties of RDPs. Here, it is focused on the QW thickness distribution of RDPs, detailing its effect on the structural characteristics, carrier recombination dynamics, optoelectronic properties, and applications in light-emitting diodes. The reported distribution control strategies is also summarized and discuss the current challenges and future trends of RDPs. This review aims to provide deep insight into RDPs, with the hope of advancing their further development and applications.
Collapse
Affiliation(s)
- Yuanzhuang Cheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoyue Wan
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Gong C, Li H, Wang H, Zhang C, Zhuang Q, Wang A, Xu Z, Cai W, Li R, Li X, Zang Z. Silver coordination-induced n-doping of PCBM for stable and efficient inverted perovskite solar cells. Nat Commun 2024; 15:4922. [PMID: 38858434 PMCID: PMC11164978 DOI: 10.1038/s41467-024-49395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
The bidirectional migration of halides and silver causes irreversible chemical corrosion to the electrodes and perovskite layer, affecting long-term operation stability of perovskite solar cells. Here we propose a silver coordination-induced n-doping of [6,6]-phenyl-C61-butyric acid methyl ester strategy to safeguard Ag electrode against corrosion and impede the migration of iodine within the PSCs. Meanwhile, the coordination between DCBP and silver induces n-doping in the PCBM layer, accelerating electron extraction from the perovskite layer. The resultant PSCs demonstrate an efficiency of 26.03% (certified 25.51%) with a minimal non-radiative voltage loss of 126 mV. The PCE of resulting devices retain 95% of their initial value after 2500 h of continuous maximum power point tracking under one-sun irradiation, and > 90% of their initial value even after 1500 h of accelerated aging at 85 °C and 85% relative humidity.
Collapse
Affiliation(s)
- Cheng Gong
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Haiyun Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Huaxin Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Cong Zhang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Qixin Zhuang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Awen Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zhiyuan Xu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China
| | - Xiong Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing, 400044, China.
- College of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
5
|
Luo A, Bao Y, Liu X, Liu J, Han W, Yang G, Yang Y, Bin Z, You J. Unlocking Structurally Nontraditional Naphthyridine-Based Electron-Transporting Materials with C-H Activation-Annulation. J Am Chem Soc 2024; 146:6240-6251. [PMID: 38315826 DOI: 10.1021/jacs.3c14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inherent benefits of C-H activation have given rise to innovative approaches in designing organic optoelectronic molecules that depart from conventional methods. While theoretical calculations have suggested the suitability of the 2,6-naphthyridine scaffold for electron transport materials (ETMs) in organic light-emitting diodes (OLEDs), the existing synthetic methodologies have proven to be insufficient for the construction of multiple arylated and fully aryl-substituted molecules. Herein, we present a solution for the synthesis of 2,6-naphthyridine derivatives, with the rhodium-catalyzed consecutive C-H activation-annulation process of fumaric acid with alkynes standing as the pivotal step within this strategy. The ETMs, purposefully designed and synthesized based on the 2,6-naphthyridine framework, exhibit an impressively high glass-transition temperature (Tg) of 282 °C and high electron mobility (μe), setting a new benchmark for ETMs in OLEDs with a μe exceeding 10-2 cm2 V-1 s-1. These materials prove to be versatile ETM candidates suitable for red, green, and blue phosphorescent OLED devices.
Collapse
Affiliation(s)
- Anping Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yuanyuan Bao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Xiaoyu Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Weiguo Han
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Ge Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
6
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Oono T, Okada T, Sasaki T, Inagaki K, Ushiku T, Shimizu T, Hatakeyama T, Fukagawa H. Unlocking the Full Potential of Electron-Acceptor Molecules for Efficient and Stable Hole Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210413. [PMID: 36571784 DOI: 10.1002/adma.202210413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Understanding the hole-injection mechanism and improving the hole-injection property are of pivotal importance in the future development of organic optoelectronic devices. Electron-acceptor molecules with high electron affinity (EA) are widely used in electronic applications, such as hole injection and p-doping. Although p-doping has generally been studied in terms of matching the ionization energy (IE) of organic semiconductors with the EA of acceptor molecules, little is known about the effect of the EA of acceptor molecules on the hole-injection property. In this work, the hole-injection mechanism in devices is completely clarified, and a strategy to optimize the hole-injection property of the acceptor molecule is developed. Efficient and stable hole injection is found to be possible even into materials with IEs as high as 5.8 eV by controlling the charged state of an acceptor molecule with an EA of about 5.0 eV. This excellent hole-injection property enables direct hole injection into an emitting layer, realizing a pure blue organic light-emitting diode with an extraordinarily low turn-on voltage of 2.67 V, a power efficiency of 29 lm W-1 , an external quantum efficiency of 28% and a Commission Internationale de l'Eclairage y coordinate of less than 0.10.
Collapse
Affiliation(s)
- Taku Oono
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuya Okada
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Tsubasa Sasaki
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Kaito Inagaki
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takuma Ushiku
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takahisa Shimizu
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirohiko Fukagawa
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| |
Collapse
|